
REVIEW ARTICLE
published: 17 November 2011
doi: 10.3389/fphar.2011.00069

Diabetes and alpha lipoic acid
Saeid Golbidi , Mohammad Badran and Ismail Laher*

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada

Edited by:

Adolfo Andrade-Cetto, Universidad
Nacional Autónoma de México,
Mexico

Reviewed by:

Adolfo Andrade-Cetto, Universidad
Nacional Autónoma de México,
Mexico
L. Pari, Annamalai University, India

*Correspondence:

Ismail Laher , Department of
Pharmacology and Therapeutics,
Faculty of Medicine, University of
British Columbia, Vancouver, BC,
Canada V6T 1Z3.
e-mail: ilaher@interchange.ubc.ca

Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxida-
tive stress that contributes to the pathogenesis of this debilitating disease. This has
prompted several investigations into the use of antioxidants as a complementary thera-
peutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an
essential role in mitochondrial bioenergetic reactions, has gained considerable attention as
an antioxidant for use in managing diabetic complications. Lipoic acid quenches reactive
oxygen species, chelates metal ions, and reduces the oxidized forms of other antioxi-
dants such as vitamin C, vitamin E, and glutathione. It also boosts antioxidant defense
system through Nrf-2-mediated antioxidant gene expression and by modulation of perox-
isome proliferator activated receptors-regulated genes. ALA inhibits nuclear factor kappa
B and activates AMPK in skeletal muscles, which in turn have a plethora of metabolic con-
sequences. These diverse actions suggest that lipoic acid acts by multiple mechanisms,
many of which have only been uncovered recently. In this review we briefly summarize
the known biochemical properties of lipoic acid and then discussed the oxidative mecha-
nisms implicated in diabetic complications and the mechanisms by which lipoic acid may
ameliorate these reactions. The findings of some of the clinical trials in which lipoic acid
administration has been tested in diabetic patients during the last 10 years are summa-
rized. It appears that the clearest benefit of lipoic acid supplementation is in patients with
diabetic neuropathy.
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INTRODUCTION
Lipoic acid (LA) or α-lipoic acid (ALA) is a naturally occurring
compound that is also known as 1,2-dithiolane-3-pentanoic acid
or thioctic acid (Busby et al., 1999). It is synthesized enzymatically
in plant and animal mitochondria from octanoic acid and cysteine
(as a sulfur source). ALA acts as a cofactor for pyruvate dehy-
drogenase and α-keto-glutarate dehydrogenase activity (Schmidt
et al., 1994), and is also required for the oxidative decarboxyla-
tion of pyruvate to acetyl-CoA, a critical step bridging glycolysis
and the citric acid cycle (Reed, 1998). The presence of an asym-
metric carbon produces two optical isomers R-LA and S-LA. Only
the naturally occurring R isomer is bound to protein and acts as

Abbreviations: AICAR, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofurano
side; ACC, acetyl-CoA carboxylase; ADMA, asymmetric dimethylarginine; AGEs,
advanced glycation end products; ALA, alpha lipoic acid; ASK1, apoptosis signal-
regulating kinase 1 (also known as MAP3K5, mitogen activated protein kinase kinase
kinase 5); BH4, tetrahydrobiopterin; DHLA, dihydrolipoic acid; DDAH, dimethy-
larginine dimethylamino hydrolase; eNOS, endothelial nitric oxide synthase; FAD,
flavin adenine dinucleotide; FMN, flavin mononucleotide; GLUT4, glucose trans-
porter 4; GSH, glutathione; IκB, inhibitor of kappa B; IKK α and β, TNF-α-inducible
IκB kinase complex; Keap1, Kelch-like ECH-associated protein 1; LA, lipoic acid;
LDL, low density lipoprotein; MAPKs, mitogen activated protein kinases; MEKs,
MAPK kinases; MEKKs, MEK kinases; NADH, nicotinamide adenine dinucleotide;
NF-κB, nuclear factor kapp B; NOS, nitric oxide synthase; Nrf2, nuclear factor ery-
throid 2-related factor 2; p38-MAPK, P38-mitogen activated protein kinases; PARP,
poly (ADP-ribose) polymerase; PKC, protein kinase C; PPARs, peroxisome prolifer-
ator activated receptors; ROS, reactive oxygen species; TAK 1, transforming growth
factor β activated kinase 1; TBARS, thiobarbituric acid reactive substances; CoQ10,
ubiquinone.

an essential cofactor in biological systems (Reed, 1998). However,
synthetic LA is a racemic mixture of R and S isoforms, where S-LA
can prevent the polymerization of R-LA to enhance its bioavail-
ability (Shay et al., 2009). In cells containing mitochondria, ALA
is reduced in an NADH-dependent reaction with lipoamide dehy-
drogenase to form dihydrolipoic acid (DHLA), whereas in cells
that lack mitochondria, ALA can instead be reduced to DHLA
via NADPH with glutathione (GSH) and thioredoxin reductases
(Jones et al., 2002). Unlike GSH, for which only the reduced form
is an antioxidant, both the oxidized and reduced forms of LA are
powerful antioxidants whose functions include: (1) quenching of
reactive oxygen species (ROS), (2) regeneration of exogenous and
endogenous antioxidants such as vitamins C and E, and GSH, (3)
chelation of metal ions, and (4) reparation of oxidized proteins (5)
regulation of gene transcription (6) inhibition of the activation of
nuclear factor kapp B (NF-κB; Biewenga et al., 1997; Packer, 1998;
Zhang and Frei, 2001; Figure 1). This impressive array of cellu-
lar and molecular functions has raised considerable interest for
the use of this substance as a nutritive supplement and also as
a therapeutic agent. In view of this growing interest, this review
provides an update on the therapeutic role(s) of this substance in
ameliorating diabetes and diabetes-induced complications.

BIOLOGICAL FUNCTION OF LIPOIC ACID
QUENCHING REACTIVE OXYGEN SPECIES
Based on the definition of an antioxidant provided by Halliwell
and Gutteridge as being “any substance that when present at low
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FIGURE 1 | Selected biological actions of lipoic acid.

concentrations compared to those of an oxidizable substrate sig-
nificantly delays or prevents oxidation of that substrate,” LA has
several unique characteristics among other natural antioxidants to
fulfill this criterion (Petersen Shay et al., 2008). Common antioxi-
dants are either water-soluble or lipid soluble agents. In contrast,
LA has both hydrophilic and hydrophobic properties. Being both
water and fat-soluble means that ALA is widely distributed in
plants and animals in both cellular membranes and in the cytosol
(Wada et al., 1997). Therefore, it can elicit its antioxidant action
in both the cytosol and plasma membrane in contrast to vitamin
C (which is lipophobic) and vitamin E (which is lipophilic). Both
LA and DHLA scavenge hydroxyl radicals and hypochlorous acid
and prevent protein carbonyl formation. In addition DHLA may
also be able to regenerate other endogenous antioxidants such as
vitamins C and E, and has the beneficial property of neutralizing
free radicals without itself becoming one in the process (Biewenga
et al., 1997; Bast and Haenen, 2003).

REGENERATION OF OTHER ANTIOXIDANTS
When an antioxidant molecule reacts with an unstable free radical
molecule, the antioxidant molecule itself becomes oxidized and
loses its benefits until it is reduced again. DHLA has the ability of
reducing the oxidized forms of other antioxidants such as vitamin
C and E, and GSH.

Glutathione is one of the most important low molecular weight
cellular antioxidants, buffering the thiol redox state. The level of
GSH is strictly controlled by either substrate availability or tran-
scriptional regulation of specific gene (Petersen Shay et al., 2008).
A critical role has recently been described for a transcription factor
“nuclear factor erythroid 2-related factor 2 (Nrf2)” against oxida-
tive stress. Normally, Nrf2 is located in the cytoplasm and kept
dormant by a cytoplasmic repressor Kelch-like ECH-associated

protein 1 (Keap1). A variety of activators release and translo-
cate Nrf2 into the nucleus, where it can regulate the expression
of antioxidant enzymes (Lee et al., 2011). LA is one such inducer
of Nrf-2-mediated antioxidant gene expression and by so doing
is able to significantly increase the cellular capacity of GSH syn-
thesis (Petersen Shay et al., 2008). Furthermore LA also elevates
GSH levels through its ability to increase cysteine uptake (Busse
et al., 1992). In a variety of cultured cells such as human Jurkat T
cells human erythrocytes, C6 glial cells, NB41A3 neuroblastoma
cells, and peripheral blood lymphocyte, DHLA also increases GSH
synthesis by reducing the ratio of cystine to cysteine (as cysteine is
the rate-limiting substrate for this reaction; Han et al., 1997).

Dihydrolipoic acid also regenerates vitamin E either as a result
of the direct reaction with tocopheroxyl radical or indirectly by
reducing dehydroascorbate, which in turn reduces alpha toco-
pherol. DHLA is also able to reduce ubiquinone (CoQ10) to
ubiquinol, which is an important component of the mitochon-
drial electron transport chain (Bast and Haenen, 2003). DHLA
also reduces the oxidized form of CoQ10, which can additionally
reduce the alpha-tocopheroxyl radical (Smith et al., 2004).

CHELATION OF METAL IONS
Because of the presence of two thiol groups, LA and DHLA both
have metal chelating properties. In fact, ALA is a potent chelator
of divalent metal ions in vitro and forms stable complexes with
Mn2+, Cu2+, Fe2+, Pb2+, and Zn2+ (Ou et al., 1995). Decreased
iron uptake and its diminished cytosolic reactive pool have been
shown in cultured lens epithelial cells following LA administra-
tion. These changes were associated with increased cell resistance
to a H2O2 challenge, thus allowing LA to reduce the risk of iron
induced oxidative stress (Goralska et al., 2003). In another ani-
mal study, R-LA prevented age related cortical iron accumulation
and improved antioxidant status (Suh et al., 2005). DHLA also
regenerates ascorbate, which in turn reduces iron (Bonomi et al.,
1989).

REPARATION OF OXIDIZED PROTEINS
Accumulation of oxidized proteins is thought to be the hallmark
of the cell’s aging process (Berlett and Stadtman, 1997; Beckman
and Ames, 1998). This can be due to either an increase in the rate
of protein oxidation or a decrease in the rate of oxidized protein
repair, or a combination of both. Cysteine and methionine, both
sulfur-containing amino acids, are among the most sensitive to
oxidation; however they are the only amino acids in which the
oxidation products can be repaired by specific enzymatic systems
(Mary et al., 2004).

Glutathione (GSH) as a versatile antioxidant that has a criti-
cal role in maintaining protein thiols in a reduced form and so
in regulating the cell cycle (Dickinson and Forman, 2002a,b). Age
related decreases in tissue GSH and/or reduced GSH/GSSG (oxi-
dized glutathione) ratios occur in different tissues such as brain,
heart (Suh et al., 2004), and liver (Hagen et al., 2000). LA reversed
these age related changes and significantly boosted antioxidant
system. The beneficial use of LA in reducing the age-associated
alterations in GSH can be explained in different ways. First, deliv-
ery of exogenous GSH to tissues such as the heart and brain is
impossible since it is not transported into these tissues. Second,
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conventional cysteine delivery agents (e.g., N -acetylcysteine) have
low bioavailability to the brain. However, LA is easily taken up into
neural tissues and can thus modulate the age related alteration in
GSH levels (McLellan et al., 1995; Suh et al., 2005).

REGULATION OF GENE TRANSCRIPTION
Further to the effects of LA on Nrf-2-mediated antioxidant gene
expression, LA has also been shown to modulate peroxisome pro-
liferator activated receptors (PPARs)-regulated genes. The PPARs
are a group of nuclear receptor proteins that function as transcrip-
tion factors regulating the expression of genes (Michalik et al.,
2006), and have essential roles in the regulation of cellular dif-
ferentiation, development and metabolism (carbohydrate, lipid,
protein), and tumorigenesis (Belfiore et al., 2009) of higher organ-
isms (Berger and Moller, 2002). The discovery of the effects of
thiazolidinediones and fibrates on PPAR-γ and PPAR-α respec-
tively, confirms the importance of ligand-dependent modulation
of gene transcription as a pharmacological target in human meta-
bolic diseases. LA activates both PPAR-α (Butler et al., 2009) and -γ
(McCarty et al., 2009). PPAR-α regulates the expression of carni-
tine palmitoyltransferase 1A and acetyl-CoA synthase and PPAR-γ
increases the expression of fatty acid translocase/CD36, adipocyte
fatty acid binding protein, and lipoprotein lipase. These enzymes
are key regulators of glucose and lipid metabolism (Pershadsingh
et al., 2005). Some of the metabolic effects of LA are secondary to
its regulatory effect on these pathways.

INHIBITION OF THE ACTIVATION OF NF-κB
Nuclear factor kapp B is a protein complex that controls the tran-
scription of DNA. NF-κB is found in almost all animal cell types
and is involved in cellular responses to stimuli such as stress,
cytokines, free radicals, ultraviolet irradiation, oxidized low den-
sity lipoprotein (LDL), and bacterial or viral antigens (Brasier,
2006; Gilmore, 2006). NF-κB has a key role in regulating the
immune response to infection. Incorrect regulation of NF-κB has
been linked to cancer, inflammatory and autoimmune diseases,
septic shock, viral infection, and improper immune development.
NF-κB has also been implicated in processes of synaptic plasticity
and memory (Meffert et al., 2003; Tian and Brasier, 2003). The
NF-κB protein complex is normally located in the cytoplasm in
an inactive form by virtue of its binding to a family of inhibitor
of NF-κB (IκB) proteins. Upon cell stimulation by a wide vari-
ety of stimuli, signal responsive IKK α and β (TNF-α-inducible
IκB kinase complex also known as IKK1 and IKK2) are activated,
resulting in the phosphorylation of IκB and its proteasomal degra-
dation. IκB degradation liberates NF-κB, allowing it to translocate
to the nucleus and induce gene expression (Baldwin, 1996; Barnes
and Karin, 1997).

It is been shown that LA inhibits IκB degradation and NF-κB-
dependent gene expression by inhibition of IKK2, suggesting that
LA inhibits NF-κB activation independent of its antioxidant func-
tion (Ying et al., 2011). ALA inhibits NF-κB activation at the level
of or upstream of, IKK-α and IKK-β, by modulating the MEKK1–
MKK4–IKK pathway (Lee et al., 2008). This system is a signaling
pathway of intracellular protein kinases that can transduce sig-
nals from the cell surface to changes in gene expression. Mitogen
activated protein kinases (MAPKs) are the most important group

of protein kinases in this regard (Zeigler et al., 1999). MAPKs
are phosphorylated by upstream MAPK kinases (MEKs), which in
turn are activated by MEK kinases (MEKKs; Widmann et al., 1999;
Kyriakis and Avruch, 2001). The MEKK system is extraordinary
diverse and complex and consists of several members, including
MEKK1, 2, 3, 4, ASK1, TAK1, and MLK3. Among these MEKK1
is the best-characterized member and is present in spleen, heart,
brain, lung, and kidney (Gardner et al., 1994). The hierarchy of
these pathways varies depending on the extracellular stimuli, the
specific enzymes expressed in the cell, and the cell types (Packer
et al., 1995).

CLINICAL USES OF ALA
Alpha lipoic acid is effective in many pathological conditions
where ROS have been implicated, including diabetes mellitus.
Before considering these studies, however, it may be helpful to
briefly discuss the pharmacokinetics of this compound.

In humans, LA is synthesized in liver and other tissues and
is also obtained from both animal and plant sources in the diet.
In animal tissue, higher concentrations of LA are found in the
heart, liver, and kidney while spinach, broccoli, tomato, garden
peas, brussel sprouts, and rice bran are among rich plant sources.
Naturally occurring R-LA in foods covalently bound to lysine in
proteins (lipoyllysine), while LA in supplements is free (Singh and
Jialal, 2008). An oral dose of LA is rapidly absorbed from the
gastrointestinal tract and appreciably increases plasma LA levels.
Typically, 20–40% of orally administered racemic ALA is absorbed
with peak plasma concentrations higher in the R isomer compared
to the S-isomer (Gleiter et al., 1996; Hermann et al., 1996) suggest-
ing better absorption in the former isomer. The amount of a given
dose and the presence or absence of food may explain absorption
variability. Rapid gastrointestinal uptake is followed by an equally
rapid clearance, reflecting both transport into tissues as well as
glomerular filtration and renal exertion. Experiments using radi-
olabeled ALA indicate that when 14C-labeled LA was administered
to rats (intraperitoneal, oral, or by a nasogastric tube) 80% of the
administered dose was either excreted or found in the tissues (Har-
rison and McCormick, 1974). LA is subject to extensive catabolism.
The most common metabolites are bisnorlipoate, tetranorlipoate,
and β-hydroxy-bisnorlipoate (Shay et al., 2009). In addition to
its catabolism, some is rapidly reduced to DHLA, which is equally
rapidly excreted from cells (Jones et al., 2002). In all animal models
studied, LA and its metabolites are readily excreted, primarily in
the urine (Biewenga et al., 1997). However, ALA is safe in patients
with end stage renal failure as well as in liver disease (Bustamante
et al., 1998; Teichert et al., 2005), and in fact, has been used in
the treatment of several hepatic diseases with encouraging results
(Berkson, 1999; Poh and Goh, 2009).

DIABETES AND OXIDATIVE STRESS
Diabetes is a chronic metabolic disorder that continues to be a
major worldwide health issue. It is characterized by absolute or
relative deficiencies in insulin secretion and/or insulin action and
is associated with chronic hyperglycemia and disturbances of car-
bohydrate, lipid, and protein metabolism. As a consequence of
the metabolic derangements in diabetes, various complications
develop including both macro- and micro-vascular dysfunctions
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(Duckworth, 2001). Many studies have shown that diabetes mel-
litus (type 1 and 2) is associated with increased formation of free
radicals and decreased antioxidant potential, leading to oxida-
tive damage of cell components (Bashan et al., 2009). Direct
evidence of oxidative stress in diabetes is provided by the mea-
surement of oxidative stress markers such as plasma and urinary
F2-isoprostane as well as plasma and tissue levels of nitrotyro-
sine and superoxide radicals ( O•

2− ; Ceriello et al., 2001; Oberg
et al., 2004; Vega-Lopez et al., 2004). There are multiple sources of
oxidative stress in diabetes, including non-enzymatic, enzymatic,
and mitochondrial pathways.

Non-enzymatic sources of oxidative stress originate from
the oxidative biochemistry of glucose. Hyperglycemia directly
increases ROS generation since glucose undergoes autoxidation
to generate • OH radicals (Turko et al., 2001). In addition, glu-
cose reacts with proteins in a non-enzymatic manner leading
to the development of Amadori products followed by formation
of advanced glycation end products (AGEs). ROS is generated
at multiple steps during this process. In hyperglycemia, there is
enhanced metabolism of glucose through the polyol (sorbitol)
pathway, which also results in enhanced production of O•

2 − .
Enzymatic sources of augmented generation of ROS in diabetes

include nitric oxide synthase (NOS), NAD(P)H oxidase, and xan-
thine oxidase (Guzik et al., 2000, 2002; Aliciguzel et al., 2003). All
isoforms of NOS require five cofactors/prosthetic groups such as
flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN),
heme, tetrahydrobiopterin (BH4), and Ca2+-calmodulin. If NOS
lacks its substrate l-arginine or one of its cofactors (“uncou-
pled” NOS), NOS produces O•

2− instead of • NO (Aliciguzel
et al., 2003; Maritim et al., 2003). A major source of O•

2− pro-
duction is NAD(P)H oxidase which is a membrane associated
enzyme that consists of five subunits (Guzik et al., 2000, 2002;
Etoh et al., 2003; Kitada et al., 2003). Guzik et al. (2002) inves-
tigated O•

2− levels in vascular specimens from diabetic patients
and probed sources of O•

2− using inhibitors of NOS, NAD(P)H
oxidase, xanthine oxidase, and the mitochondrial electron trans-
port chain and reported that the enhanced production of O•

2−
in diabetic patients is predominantly mediated by NAD(P)H
oxidase.

The mitochondrial respiratory chain is a non-enzymatic source
of reactive species. During oxidative phosphorylation, electrons
are transferred from the electron carriers NADH and FADH2,
through four complexes in the inner mitochondrial membrane, to
oxygen, and generate ATP in the process (Green et al., 2004). Under
normal conditions, O•

2− is immediately eliminated by natural
antioxidant defense mechanisms. Cells have evolved highly com-
plex antioxidant systems (enzymic and non-enzymatic), which
work synergistically to protect cells and organ systems against
free radical-induced damage. The most efficient enzymatic antiox-
idants involve glutathione peroxidase, catalase, and superoxide
dismutase. Non-enzymatic antioxidants include vitamins E and
C and thiol antioxidants (glutathione, thioredoxin; Golbidi and
Laher, 2010). Each of these antioxidants can combine with reactive
oxidants to produce other less reactive species that generally has
reduced or no toxicity. Superoxide dismutase promotes the dismu-
tation of the superoxide radical to form hydrogen peroxide (H2O2)
and oxygen. Enzymes such as glutathione peroxidase (GPx) use

reduced glutathione (GSH) as a reducing equivalent to reduce
H2O2 to form oxidized glutathione and water. Furthermore, GSH
can remove selected oxygen radicals directly and assist in the recy-
cling of vitamin C and E. Catalase converts H2O2 to water and
oxygen. The newly identified peroxiredoxin family, which has six
isoforms in mammalian cells, represents a group of peroxidases
that also catalyze the reduction of H2O2 (Cox et al., 2009). Among
the six mammalian isoforms known so farm, peroxiredoxin III is
synthesized with a mitochondrial targeting sequence, as is the case
for MnSOD.

Hyperglycemia-induced generation of O•
2− at the mitochon-

drial level is thought to be the major driver of the vicious cycle
of oxidative stress in diabetes (Nishikawa et al., 2000; Brownlee,
2001). There is increased generation of ROS (especially O•

2− )
when endothelial cells are exposed to clinically relevant hyper-
glycemic conditions. The augmented generation of pyruvate via
accelerated glycolysis under hyperglycemic conditions is thought
to flood the mitochondria and thus generates O•

2− formation at
the level of Complex II in the respiratory chain (Nishikawa et al.,
2000).

Reactive oxygen species stimulates oxidation of LDL; ox-LDL
is not recognized by the LDL receptor and is subsequently taken
up by scavenger receptors in macrophages to form foam cells and
so lead to atherosclerotic plaques (Boullier et al., 2001). Super-
oxide anions can activate several damaging pathways in diabetes
including accelerated formation of AGE’s, polyol pathway, hex-
osamine pathway, and protein kinase C (PKC), all of which are
involved in micro and macrovascular complications. Both O•

2−
and H2O2 stimulate stress-related signaling mechanisms such as
NF-κB, p38-mitogen activated protein kinases (p38-MAPK) and
signal transducers and activators of transcription-Janus kinases
(STAT-JAK), resulting in vascular smooth muscle cell migration
and proliferation. In endothelial cells, H2O2 mediates apoptosis
and pathological angiogenesis (Taniyama and Griendling, 2003).
Furthermore, O•

2− immediately reacts with •NO to generate cyto-
toxic peroxynitrite (ONOO−) and this reaction itself has several
consequences. First, ONOO− alters the function of biomole-
cules by protein nitration as well as by causing lipid peroxidation
(Turko et al., 2001). For example, potassium channels, which
regulate vasorelaxation, are inhibited by nitration (Liu and Gut-
terman, 2002; Liu et al., 2002). As reviewed by Turko et al. (2001)
increased levels of nitrotyrosine are associated with apoptosis of
myocytes, endothelial cells, and fibroblasts in diabetes. Impor-
tantly, ONOO− causes single-strand DNA breakage, which in turn
activates nuclear enzyme poly(ADP-ribose) polymerase (PARP;
a nuclear DNA-repair enzyme that is able to cause a depletion
of NAD+; Soriano et al., 2001). Additionally, ONOO− decreases
•NO bioavailability causing impaired relaxation and inhibition of
the anti-proliferative effects of •NO (Maritim et al., 2003). Fur-
thermore, ONOO− oxidizes BH4, an important cofactor for NOS,
and causes uncoupling of NOS to produce O•

2− instead of •NO
(Maritim et al., 2003). ROS-induced peroxidation of membrane
lipids alters the structure and the fluidity of biological mem-
branes, which will have global effects that alter vascular function
(Soriano et al., 2001; Liu and Gutterman, 2002; Liu et al., 2002;
Griendling and FitzGerald, 2003; Maritim et al., 2003; Taniyama
and Griendling, 2003).
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ALA AS A THERAPEUTIC ADJUVANT
Lipoic acid has potential applications for many aspects of the
pathology of diabetes. One important action of LA is on the
expression of AMPK in the hypothalamus and peripheral tis-
sues. The AMPK complex is evolutionally a well-conserved ser-
ine/threonine kinase that functions as a fuel sensor in the cell
and is activated when cellular energy is depleted and AMP/ADP
ratio rises (Kola et al., 2006). The result of AMPK activation is the
inhibition of energy-consuming biosynthetic pathways and the
activation of ATP producing catabolic pathways. AMPK can also
affect transcription of specific genes involved in energy metab-
olism, thereby exerting long-term metabolic control (Winder,
2001). The heterotrimeric protein AMPK is formed by combi-
nation of the catalytic α subunit (with two isoforms α1 and
α2) with β (two isoforms) and γ (three isoforms) subunits. The
γ subunit includes four particular cystathionine beta synthase
domains giving AMPK its ability to sensitively detect shifts in the
AMP/ATP ratio (Cheung et al., 2000). The catalytic domain has
a site of phosphorylation at a threonine residue (Thr172) that
is an important site for AMPK activation by upstream kinases.
Binding of AMP to the regulatory γ subunit of AMPK pro-
motes (a) allosteric activation, (b) phosphorylation of Thr172 by
upstream kinases and (c) inhibition of dephosphorylation by pro-
tein phosphatases. Cellular stresses that cause an increase in the
AMP/ATP ratio such as hypoxia, oxidative stress, hypoglycemia,
exercise, or nutrient deprivation can affect cellular metabolic con-
ditions partially through this pathway (Kola et al., 2006). After the
discovery of the effect of insulin-sensitizing anti-diabetic drugs
such as metformin and thiazolidinediones on the activation of
AMPK, much interest was generated toward targeting this path-
way for the treatment of diabetes (Musi et al., 2002; Saha et al.,
2004). In vivo and in vitro studies have shown that activation of
AMPK leads to reduce glucose output form the liver (Viollet et al.,
2009). Overexpression of hepatic AMPK also leads to mild hypo-
glycemia in normal mice and prevented hyperglycemia in diabetic
mice (Foretz et al., 2005; Viana et al., 2006). This hypoglycemic
effect of AMPK activation is accompanied by down regulation
of gluconeogenic gene expression (e.g., phosphoenolpyruvate car-
boxykinase and glucose-6-phosphatase) and reduced glucose pro-
duction in hepatocytes expressing activated MAPK or treated
with AICAR (5-Aminoimidazole-4-carboxamide ribotide, metab-
olized to ZMP which is an analog of AMP; Lochhead et al., 2000;
Foretz et al., 2005; Viana et al., 2006). Activation of AMPK in
skeletal muscle, a major regulator of cellular energy metabo-
lism, increases glucose uptake and fatty acid oxidation. AMPK
stimulates GLUT4 translocation to the plasma membrane in an
insulin independent manner and increases the expression of the
GLUT4 gene through enhanced binding of the transcription factor
MEF-2 (myocyte enhancer factor-2) to promoters in the GLUT4
gene (Konrad et al., 2001). Some studies have also shown that
AMPK regulates glucose transport through GLUT1 (Xi et al.,
2001).

Insulin sensitivity is also improved through reduced triglyc-
eride accumulation by skeletal muscles (Evans et al., 2002). This
occurs as a result of AMPK phosphorylating, and thus inactiva-
tion, of acetyl-CoA carboxylase (ACC), resulting in decreases in
malonyl-coenzyme A (Winder and Hardie, 1996; Ruderman and

Flier, 2001). ACC is an important rate-limiting enzyme for the
synthesis of malonyl-CoA, which in turn is a critical precursor of
fatty acids biosynthesis and a potent inhibitor of mitochondrial
fatty acid oxidation. Decrease in malonyl-CoA content results in
reduction of fatty acid synthesis and increases in fatty acid oxi-
dation. Triglyceride accumulation in skeletal muscle contributes
to insulin resistance in obesity associated insulin resistance and
type 2 diabetes (Goodpaster and Kelley, 2002). Muscular AMPK
is decreased in Obese Long Evans Tokushima Fatty rats, which are
prone to diabetes (Lee et al., 2005a). When these rats are admin-
istered ALA, there is increased insulin stimulated whole body
glucose disposal and also in skeletal muscle. ALA also increased
fatty acid oxidation and stimulated AMPK in skeletal muscle (Lee
et al., 2005a). Adenovirus mediated administration of dominant
negative AMPK into skeletal muscle prevented the ALA induced
increases in fatty acid oxidation and insulin stimulated glucose
uptake. These results imply that ALA induced improvement of
insulin sensitivity is mediated by activation of AMPK and reduced
triglyceride accumulation in skeletal muscle (Lee et al., 2005a).

The exact mechanism underlying ALA stimulated AMPK acti-
vation remains to be clarified. To date, two upstream AMPK
kinases (AMPKK) have been identified: LKB1 (serine–threonine
kinase liver kinase B1, also known as STK11) and Ca/calmodulin
dependent protein kinase kinase (CaMKK; Shackelford and Shaw,
2009). LKB1 was originally recognized as a tumor suppressor in
humans, and may dictate most of the AMPK activation in the
majority of tissues (except hypothalamic neurons Anderson et al.,
2008, T cells Tamás et al., 2009, and endothelial cells Stahmann
et al., 2006). Activation and phosphorylation of AMPK by LKB1
requires an increase in AMP. Binding of MAP to AMPK changes
the conformation of AMPK, making it a better substrate for LKB1.
Therefore, LKB1 mediates the prolonged and adaptive activation
of AMPK following energy stress (Shackelford and Shaw, 2009).
CaMKK phosphorylates and activates AMPK in an AMP indepen-
dent manner; CAMKK is activated by a rise in intracellular Ca2+
concentrations (Hawley et al., 2005; Hurley et al., 2005). CaMKK
has two isoforms,CaMKK-α (e.g., in skeletal muscle) and CaMKK-
β (in neural tissues; Anderson et al., 1998; Jensen et al., 2007). In an
attempt to clarify the mechanism(s) of ALA induced AMPK acti-
vation, Shen et al. (2007) reported that LKB1 may not be involved
in this process, since ALA treatment of C2C12 myotubes increased
the intracellular Ca2+ concentration, suggesting that ALA may
activate AMPK by stimulating the CaMKK pathway. Chelation
of intracellular free Ca2+ and inhibition of CaMKK abolished
ALA induced AMPK activation, with ALA treatment increasing
the association of AMPK with CaMKK.

AMPK is also expressed in the hypothalamus where it is
implicated in the regulation of appetite (Andersson et al., 2004;
Minokoshi et al., 2004). Activation of hypothalamic AMPK
increases food intake and body weight, whereas inhibition of it is
necessary for leptin to promote satiety and reduce food consump-
tion (Andersson et al., 2004). Increases in energy expenditure,
decreases hypothalamic AMPK activity and reduced plasma glu-
cose, insulin, free fatty acid, and leptin have all been demonstrated
in ALA treated rats (Kim et al., 2004; Lee et al., 2005b). Further-
more, intracerebroventricular injection of AICAR (an activator of
AMPK) reversed the effects of ALA on food consumption. These
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studies suggest that hypothalamic AMPK is involved in appetite
regulation and ALA exerts anorexic, anti-obesity effects by sup-
pressing hypothalamic AMPK activity. ALA suppresses AMPK
phosphorylation and α2 MAPK activity in the arcuate nucleus but
not in the paraventricular nucleus or the lateral hypothalamic area
(Kim et al., 2004). Recently, a report shows that ALA (1800 mg/day)
reduced body weight in obese diabetic human subjects (Koh et al.,
2011; Table 1).

As discussed earlier, some of the metabolic effects of LA could
be secondary to its modifying effects on PPAR α/γ. Adenovirus
mediated overexpression of PPAR coactivator-1α in the skeletal
muscle increases mitochondrial respiration and elevates GLUT4
transcript levels (Michael et al., 2001). ALA increases mRNA
expression of PPAR coactivator-1α, which might account for
improved glucose homeostasis (Wang et al., 2010). It is also been
shown that ALA prevented hyperglycemia-induced reduction of
PPAR-γ, hyperinsulinemia, insulin resistance, systolic hyperten-
sion, and superoxide production (Midaoui et al., 2003; El Midaoui
et al., 2006).

Alpha lipoic acid can have both detrimental and cytoprotective
effects on pancreatic beta cells, based on the underlying patho-
physiologic state and on the concentration of ALA. In type 2
diabetes, lowering of beta cell numbers is accompanied by a sig-
nificant increase in beta cell apoptosis where oxidative stress is an
important contributor (Butler et al., 2003; Marchetti et al., 2004).
The prolonged AMPK activation by ALA leads to enhanced pro-
duction of mitochondria-derived oxygen radicals and onset of
an intrinsic mitochondrial apoptosis pathway (Targonsky et al.,
2006; Cai et al., 2007). Using type 1 diabetic mice, Richards
et al. (2005) reported that adenovirus mediated activation of
AMPK in isolated mouse islets resulted in reduced glucose oxida-
tion and insulin secretion and poorer glycemic control compared
with islet cells infected with null or dominant negative AMPK
viruses. However, a review of the literature indicates that ALA
effects are concentration dependent (Bilska and Wlodek, 2005).
For instance, in tumor cells LA induces cell proliferation at low
concentrations (1 μmol/l) while it is anti-proliferative at higher
concentrations (100 μmol/l; Dovinova et al., 1999). The con-
centration of ALA required for significant induction of AMPK
activation in islet cells is at least 500 μmol/l (Targonsky et al.,
2006), which is considerably greater than the plasma concentra-
tions of ALA reached during treatment of diabetic neuropathy
(Niebch et al., 1997; Chen et al., 2005). There are also several
reports on the pro-oxidant effects of LA – which again, occur at
different concentrations than those associated with its beneficial
effects (Saris et al., 1998; Mottley and Mason, 2001; Dicter et al.,
2002; Moini et al., 2002). However, it is reasonable to conclude that
the beneficial/protective effects of ALA are most likely to occur
under conditions of increased oxidative stress such as diabetes.
For example, Lee et al. (2009) demonstrated dose-dependent, pro-
apoptotic effects of LA in rat insulinoma cells, while in a related
study, they also reported that pre-treatment with ALA reduced
ROS production, mitochondrial membrane depolarization, and
c-JNK activation in beta cells. It is believed that while ALA is
detrimental to beta cells at high concentrations, it exerts cyto-
protective effects on beta cells in diabetes at clinically relevant
concentrations.

Another potential application for using LA as an adjuvant in
the treatment of diabetes is related to its ability to inhibit glyca-
tion reactions. Although several mechanisms have been explained
for the pathophysiology of chronic diabetic complications, protein
glycation potentially can be an important underlying mechanism
(Brownlee et al., 1988; Schalkwijk et al., 2002). Preventive effects
of ALA in these reactions have been shown in different studies
(Suzuki et al., 1992; Kawabata and Packer, 1994). Both LA and
DHLA can protect albumin from glycation, suggesting that the
preventive effect is independent of its redox state. It has been sug-
gested that non-covalent hydrophobic binding to serum albumin
is involved in this effect (Kawabata and Packer, 1994). Due to the
presence of a hydrophobic carbon chain, it is likely that binding
between albumin and α-lipoate is by hydrophobic interactions
similar to that with fatty acids. This reaction leads to masking the
glycation sites of serum albumin (Packer et al., 1995). Protective
effects of ALA against LDL glycation have also been investigated in
several studies (Kawabata and Packer, 1994; Schepkin et al., 1994).
ALA was found not to protect LDL from glycation in the short
term in vitro studies.

As stated earlier, ROS-induced vascular dysfunction is one of
the main features of diabetic mellitus; this state of ROS accumula-
tion is strongly associated with impaired endothelium dependent
NO-mediated vasodilation. Activated PKC has a variety of effects
on gene expression, such as decreased expression of eNOS and
increases in the expression of endothelin, vascular endothelial
growth factor, plasminogen activator inhibitor-1, transforming
growth factor-β, NAD(P)H oxidases, and NFκB (which in turn
activates many proinflammatory genes in the vasculature; Gol-
bidi et al., 2011). LA improves the redox state of the plasma and
endothelium dependent vasodilation (Heitzer et al., 2001; Sena
et al., 2008). It is known that insulin receptor tyrosine kinase,
phosphatidylinositol 3-kinase (PI 3-kinase), and Akt are essential
components of insulin signaling pathways related to production
of NO in vascular endothelium. Phosphorylation of endothelial
nitric oxide synthase (eNOS) by Akt is also necessary for its acti-
vation by insulin (Montagnani et al., 2002). In aged endothelial
cells, administration of LA partially restores the reductions in
eNOS phosphorylation through Akt (Smith and Hagen, 2003).
ALA also induces Akt phosphorylation in human umbilical vas-
cular endothelial cells and the THP-1 human monocyte cell line
(Artwohl et al., 2007; Zhang et al., 2007). These studies suggest
that improved endothelial function due to ALA is at least partially
attributed to recoupling of eNOS and increased NO bioavailability.

Asymmetric dimethylarginine (ADMA) is an endogenous NOS
inhibitor that is produced by methylation of protein bound l-
arginine in a reaction that is catalyzed by protein arginine methyl-
transferases (McBride and Silver, 2001). ADMA is excreted via
the kidneys following metabolism by the enzyme dimethylargi-
nine dimethylamino hydrolase (DDAH), which is sensitive to
oxidative stress (Mittermayer et al., 2010). DDAH is expressed
in different tissues such as kidneys, pancreas, brain, liver, lungs,
endothelium, and myocardial cells (Kimoto et al., 1993; Nijveldt
et al., 2003a,b). ADMA causes endothelial dysfunction in forearm
resistance arteries (Calver et al., 1993) and increases the systemic
vascular resistance and arterial blood pressure while decreasing
cardiac output (Achan et al., 2003). An increased concentration
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Table 1 | Selected clinical trials with ALA in diabetic patients during the last 10 years.

References # Patient groups and

characteristics

Treatment

duration

Measured

parameters

Outcome

METABOLIC, ANTI-INFLAMMATORY, AND ANTIOXIDANT EFFECTS

Koh et al.

(2011)

360 obese patients with

DM, HT, or

hypercholesterolemia

randomized to:

20 weeks – BW, waist circumference, body fat, BP,

FBS, TC, LDL, HDL, TG

– ALA 1800 mg/day led to a modest weight

loss in obese subjects

(a) ALA 1200 mg/day

(b) ALA 1800 mg/day

(c) Placebo

Palacka et al.

(2010)

59 patients with T2D in

three groups:

3 months – CRP – Combined therapy had better results

in increasing antioxidant levels, decreasing

MDA and improving left ventricular function

– LDH

(a) PL (n = 19; 10 min, bid) – MDA

(b) QALA (n = 20; 60 mg

CoQ10 + 100 mg

ALA + 200 mg Vit E)

– Serum antioxidant level (CoQ10, α and

τ-tocopherol, β-carotene)

(c) PL + QALA – Echocardiographic parameters of left

ventricular function

Mittermayer

et al. (2010)

30 T2D patients 21 days – Blood levels of ADMA (NOS inhibitor). – ALA decreased plasma levels of ADMA.
(a) ALA (600 mg/day, iv)

(b) Placebo

Gianturco et al.

(2009)

14 T2D patients 4 weeks – Markers of oxidative stress (assessed

by commercially available test,

d-ROMs)

– ALA decreased markers of oxidative stress

and HDL, had a borderline effect on BAP

(p = 0.06) and LDL (p = 0.07)

(a) ALA (400 mg/day)

(b) Placebo

– BAP – No significant effect on CRP, TC, and TG

– Lipid profile, CRP

Huang and

Gitelman

(2008)

40 adolescents with T1D 90 days – 8-hydroxy-2′ deoxyguanosine -2-TBARS – No significant differences in any of the

measured parameters– Protein carbonyl

– Total reactive antioxidant potential

(a) Controlled release

ALA (17 mg/kg/day)

(b) Placebo – HbA1c

– Urine albumin to creatinine ratio

Kamenova

(2006)

– 12 T2D patients

compared to 12 healthy

subjects

4 weeks – Insulin sensitivity – ALA increased insulin sensitivity in dia-

betic patients

(a) ALA (600 mg/day)

Ansar et al.

(2011)

57 T2D patients 2 months – FBS – Decreases in FBS and PPG, insulin resis-

tance and GH-Px in treated group.– 2 h PPG(a) ALA (300 mg/day)

(b) Placebo – Serum insulin level

– GH-Px

Zhang et al.

(2011)

22 obese subjects with

IGT

2 weeks – ISI – In treated group ISI improved. Decreases

in FFAs,TG,TC, LDL, sd-LDL, ox-LDL, VLDL,

MDA, 8-iso-PG, TNF-α, and IL-6

– FFAs

– LDL, sd-LDL, ox-LDL, VLDL, TG,

TC

(a) ALA (600 mg/day, iv,

n = 13)

(b) Placebo (n = 9) – MDA, 8-iso-PG

– TNF-α, IL-6

de Oliveira

et al. (2011)

102 T2D patients 4 months – Plasma α-tocopherol – Improved lipid fractions in the LA, vitamin

E, and combined groups, HOMA index in LA

group

(a) ALA (600 mg/day,

n = 26)

– Lipid profile

(b) α-tocopherol

(800 mg/day, n = 25)

– Glucose – All the above were not significant statisti-

cally

(c) α-tocopherol +ALA – Insulin

(d) Placebo – HOMA index

(Continued)
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Table 1 | Continued

References # Patient groups and

characteristics

Treatment

duration

Measured

parameters

Outcome

Rahman et al.

(2011)

40 diabetic patients with

stage I hypertension

8 weeks – BP – Urinary albumin decreased by 30% in the

QUI group and 53% in QUI +ALA

(a) Quinapril (QUI)

40 mg/day

– 24 h urinary albumin – FMD increased 58% in QUI group and

116% in QUI +ALA

(b) QUI +ALA

(600 mg/day)

– Endothelial dependent FMD – QUI decreased BP by 10%, no further

reduction in combined group

DIABETIC POLYNEUROPATHY

Ziegler et al.

(2006)

– 181 T2D patients 5 weeks – Evaluation of neuropathic pain based on

TSS, neuropathy symptoms and change

score, neuropathy impairment score, and

patients’ global assessment

– ALA improved neuropathic symptoms

(600 mg/day, had the optimal risk to benefit

ratio)

(a) ALA (600 mg/day)

(b) ALA (1200 mg/day)

(c) ALA (1800 mg/day)

(d) Placebo

Tankova et al.

(2004)

46 T1D patients with

different forms of

autonomic neuropathy

60 days – Scoring different signs and symptoms

of autonomic neuropathy

– ALA alleviated diabetic autonomic neu-

ropathy

(a) ALA (600 mg/day, i.v.)

10 days followed by ALA

(600 mg/day, oral) 50 days

– Laboratory parameters of oxidative

stress

– Increased serum antioxidant capacity

(b) Control group

Hahm et al.

(2004)

38 (out of 61) T2D with

symptomatic

polyneuropathy

8 weeks – Primary efficacy parameter (TSS for

neuropathic symptoms)

– Improvement of polyneuropathy symp-

toms (decreased TSS score)
– Secondary efficacy parameters (clinical

neurological assessment, overall rating by

the physician and patients at the end of

treatment)

– FBS and HbA1c did not change

(a) ALA (600 mg/day)

– Laboratory measurements (HbA1c, FBS)

Ametov et al.

(2003)

120 T2D patients ∼3 weeks – TSS – ALA significantly improved neuropathic

symptoms– Score of neuropathy signs(a) ALA (600 mg/day, i.v.,

5 days a week for 14

doses)

(b) Placebo

– Score of neuropathy symptoms and

change

– Quantitative sensation tests

Gu et al. (2010) 236 T2D with

polyneuropathy

12 weeks – TSS – TSS and individual symptom scores

decreased significantly

– NCV – No changes in NCV(a) ALA (600 mg/tid

n = 117)

(b) Placebo (n = 119)

– Individual symptom score

– HbA1c and safety parameters – Major side effect was burning sensation

in esophagus.

Ametov et al.

(2010)

T2D patients with

myodiabetic

polyneuropathy

3 weeks – TSS – Decreases in TSS and NIS-LL score in

treated individuals

(a) ALA (600 mg/day, iv) – NIS-LL

(b) Placebo

Ziegler et al.

(2011)

460 T2D patients with

mild to moderate DSPN

4 years – NIS and NIS-LL – Changes from baseline were better with

ALA than placebo for NIS, NIS-LL, and NIS-

LL muscular weakness subscores(a) ALA (600 mg/day,

n = 233)

– NCV

(b) Placebo (n = 227) – QSTs

Burekovic

et al. (2008)

100 diabetic patients

(type I and II)

3 months – Subjective and objective assessment of

polyneuropathy symptoms

– ALA is effective in reducing the symptoms

of diabetic polyneuropathy

(a) ALA 600 mg/day, iv,

followed by 3 weeks of

300–600 mg/day, per os

(Continued)
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Table 1 | Continued

References # Patient groups and

characteristics

Treatment

duration

Measured

parameters

Outcome

DIABETIC ANGIOPATHY

Heinisch et al.

(2010)

30 T2D patients 21 days – Endothelium dependent and

independent vasodilation, assessed by

forearm blood flow.

– ALA improved endothelium dependent

vasodilation.(a) ALA (600 mg/day, iv)

(b) Placebo

Xiang et al.

(2008)

– 42 subject with IGT

test and 26 health

controls

– Endothelium dependent FMD – ALA improved endothelial dysfunction

during acute hyperglycemia.

(a) 300 mg ALA before

GTT

(b) Placebo

Vossler et al.

(2007)

114 T2D patients 4 weeks – Percentage change in the FMD of

brachial artery.

– No significant difference in FMD
(a) Tromethamine salt of

R-ALA (dexlipotam;

960 mg/day)

(b) Dexlipotam

(1920 mg/day)

–Tendency toward a reduction of inflamma-

tory markers and BP

(c) Placebo

DIABETIC RETINOPATHY

Haritoglou

et al. (2011)

467 T2D patients 2 years – CSME – 600 mg/day ALA did not prevent CSME
(a) ALA (600 mg/day,

n = 235)

(b) Placebo (n = 232)

DIABETIC NEPHROPATHY

Chang et al.

(2007)

– 50 diabetic patients

with ESRD who

undergoing hemodialysis

(3 times/week)

12 weeks – ADMA – ALA decreased ADMA levels significantly.

(a) ALA (600 mg/day)

(b) Control group

– TC, hsCRP, ox-LDL, albumin, HbA1c

Morcos et al.

(2001)

– 84 diabetic patients

(T1D and T2D)

18 months – Plasma thrombomodulin – Plasma thrombomodulin decreased in

treated group (increased in controls)

(a) 35 patients (20 T1D,

15 T2D, ALA 600 mg/day)

– Urinary albumin concentration (UAC) – UAC unchanged in treated group

(increased in controls)

(b) 49 patients as controls

ALA, alpha lipoic acid; ADMA, asymmetric dimethylarginine; BAP, biological antioxidant potential; BP, blood pressure; CRP, C reactive protein; CSME, clinically significant

macular edema; DSPN, distal symmetric sensorimotor polyneuropathy; ESRD, end stage renal disease; FBS, fasting blood sugar; FMD, flow mediated dilatation; FFA,

free fatty acid; GTT, glucose tolerance test; GH-Px, glutathione peroxidase; HDL, high density lipoproteins; hsCRP, high sensitivity CRP; HOMA index, homeostatic

model assessment; IGT, impaired glucose tolerance; ISI, insulin sensitivity index; IL-6, interleukin-6; 8-iso-PG, 8-iso-prostaglandin; LDL, low density lipoprotein; MDA,

malondialdehyde; NCV, nerve conduction velocity; NIS, neuropathy impairment score; NIS-LL, neuropathy impairment score in the lower limbs; NOS, nitric oxide

synthase; ox-LDL, oxidized LDL; PL, polarized light; PPG, postprandial glucose; QSTs, quantitative sensory tests; TBARS, thiobarbituric acid reactive substances; TC,

total cholesterol; TG, triglyceride; TNF-α, tumor necrosis factor alpha; TTS, total symptom score; VLDL, very low density lipoprotein.

of ADMA predicts cardiovascular events in different populations
including T2D patients (Böger et al., 1997, 1998; Surdacki et al.,
1999; Abbasi et al., 2001; Zoccali et al., 2001; Mittermayer et al.,
2002; Stühlinger et al., 2002; Tarnow et al., 2004; Krzyzanowska
et al., 2005, 2006, 2007). Indeed, ADMA may not only be a risk
marker but also an etiologic factor in adverse cardiovascular events
(Krzyzanowska et al., 2008). Reduced degradation of ADMA due
to decreased DDAH activity has been proposed as an important
mechanism for endothelial dependent vasodilator dysfunction in
hypercholesterolemia (Ito et al., 1999) and diabetes (Lin et al.,

2002). It has been reported that ALA decreases ADMA levels in
the culture media of endothelial cells by increased expression
and activity of DDAH and also of signal transducer and activa-
tor of transcription (STAT)3 phosphorylation. ALA also amplified
STAT3 transfection-induced increase in DDAH II promoter activ-
ity (Lee et al., 2010). In two other studies, ALA was shown to
reduce ADMA in diabetic patients with end stage renal disease
(Chang et al., 2007) and with normal renal function (Mittermayer
et al., 2010). These data provide a novel mechanism by which ALA
regulates endothelial function.
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Diabetic neuropathy is another potential clinical indication for
ALA usage. At present, it is believed that several mechanisms con-
tribute to the pathogenesis of this condition. These mechanisms
for diabetic neuropathy are no longer being considered as being
separate, but rather as a complex interplay giving rise to mul-
tiple interactions. The following mechanisms are thought to be
involved in diabetic neuropathy: (a) increased flux through the
polyol pathway with resulting sorbitol and fructose accumulation.
Sorbitol production produces compensatory depletion of other
organic osmolytes such as myo-inositol and taurine. The latter is
an endogenous antioxidant, whose reduction leads to attenuation
of oxidative defenses (Ziegler, 2006). Depletion of myo-inositol is
associated with reduced Na+–K+-ATPase activity (Vallianou et al.,
2009). (b) Endoneurial micro-vascular damage and hypoxia due
to nitric oxide inactivation (Kishi et al., 1999). (c) Accumulation
of AGEs and subsequent activation of NF-κB (Ziegler, 2006). (d)
Homocysteinemia (Ambrosch et al., 2001). (e) Increased nerve
lipid peroxidation (Low et al., 1997). (f) Modulation of MAPKs
(Cavaletti et al., 2007). (g) Abnormal Ca2+ homeostasis and sig-
naling (Hall et al., 2001) and (h) Decreased expression and level of
neurotrophic factors, such as nerve growth factor, neurotrophin
3, and insulin like growth factor as well as alterations in axonal
transport. LA has direct or indirect corrective effects on nearly
all of these mechanisms. In a small study on a group of diabetic
patients with neuropathy,ALA increased low pre-treatment level of
plasma nitrates and nitrites, which are commonly, used markers of
NO production. Increased NO production theoretically increases
circulation to the neurons (Strokov et al., 2000). In another in vitro
study, addition of ALA resulted in reduction of hyperglycemia-
induced lipid peroxidation in both brain and sciatic tissues as
measured by TBARS (Nickander et al., 1996). This effect on lipid
peroxidation was confirmed in a study of 10 diabetic patients with
peripheral neuropathy. A single daily dose of 600 mg LA for 70 days
reduced serum lipid peroxidation (Androne et al., 2000). ALA also
reduces protein glycosylation (measured by glycated hemoglobin),
lower lipid peroxidation, and increase Na+/K+-ATPase activity in
human red blood cells exposed to high glucose concentration (Jain
and Lim, 2000).

The effects of LA on diabetic neuropathy have also been stud-
ied in streptozotocin-induced diabetic rats, where ALA promoted
glucose uptake by nerve cells (Kishi et al., 1999), increased nerve
myo-inositol (Kishi et al., 1999; Stevens et al., 2000), GSH lev-
els (Böger et al., 1998; Stühlinger et al., 2002), Na/K-ATPase
activity (Stevens et al., 2000), and nerve blood flow (Nagamatsu
et al., 1995) while normalizing NAD/NADH ratios (Stevens et al.,
2000).

CONCLUSION
The many unique properties of ALA and its interaction with other
important antioxidant such as vitamin E, ascorbate, and GSH
provide a fertile field for continued research. A number of experi-
mental and clinical studies have shown the beneficial effect of ALA
as a therapeutic agent for a diverse spectrum of diseases from heavy
metal poisoning, radiation damage, ischemia-reperfusion injury,
and neurodegenerative diseases to managing metabolic syndrome,
diabetes, and its various complications. ALA/DHLA redox cou-
ple affects important biological processes including the regulation
of several gene transcriptions and the activity of enzymes and
receptors. Specifically in diabetes, it prevents beta cell destruc-
tion, enhances glucose uptake, and its antioxidant effects may be
particularly useful in slowing the development of diabetic compli-
cations such as diabetic neuropathy. Given the growing evidence
for increased oxidative stress and inflammatory pathways acti-
vated in diabetes, therapeutic paradigms may have to shift to
target these processes through the use of compounds such as ALA.
So far, the strongest evidence for the clinical use of ALA is from
double blind, placebo controlled trials showing that LA adminis-
tration significantly ameliorates polyneuropathies associated with
diabetes. However, further work is necessary to assess the poten-
tial therapeutic roles for other diabetes-associated complications
such as retinopathy and cataract. The lack of clear-cut benefits in
some of the clinical trials to date does not disprove the benefits of
ALA. It is believed that better designed experiments with appro-
priate doses, duration, and the selection of populations based on
a specific pathophysiology may provide evidence for some of the
hidden therapeutic potential of ALA.
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