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Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD).
Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the
present study, we sought to measure benefit from administration of a novel calpain
inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothe-
sis that treatment with C101 mitigates progressive weakness and severe muscle pathology
observed in young dogs with golden retriever muscular dystrophy (GRMD).Young (6-week-
old) GRMD dogs were treated daily with either C101 (17 mg/kg twice daily oral dose, n = 9)
or placebo (vehicle only, n = 7) for 8 weeks. A battery of functional tests, including tibio-
tarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed
at baseline and every 2 weeks during the 8-week study. Results indicate that C101-treated
GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors)
while placebo-treated dogs progressively lost strength. However, concomitant improve-
ment was not observed in posterior pelvic limb muscles (tibiotarsal extensors). C101
treatment did not mitigate force drop following repeated eccentric contractions and no
improvement was seen in the development of joint contractures, lean muscle mass, or
muscle histopathology.Taken together, these data do not support the hypothesis that treat-
ment with C101 mitigates progressive weakness or ameliorates severe muscle pathology
observed in young dogs with GRMD.
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INTRODUCTION
Several lines of evidence (Figarella-Branger et al., 2002; Spencer
and Mellgren, 2002; Gissel, 2005; Takamure et al., 2005; Courdier-
Fruh and Briguet, 2006; Whitehead et al., 2006; Gailly et al., 2007;
Hopf et al., 2007) support a rationale to explore the potential
therapeutic value of calpain inhibitors in Duchenne muscular dys-
trophy (DMD) because calpains likely contribute directly to DMD
pathophysiology (Saez et al., 2006; Gailly et al., 2007; Hopf et al.,
2007; Briguet et al., 2008; Urasawa et al., 2008). Transient mem-
brane ruptures in the muscles of DMD patients allow an influx
of calcium that subsequently triggers calcium-activated proteases
(m- and μ-calpain) that, in turn, modify calcium leak channels to
cause further calcium ingress. Thus, a vicious cycle occurs whereby
calcium homeostasis becomes dysregulated. Calpain may initiate
the early steps in protein turnover by creating nicks in myofib-
rillar and cytoskeletal proteins for subsequent degradation by
other enzymes (Hopf et al., 2007). In normal skeletal muscle, the
sarcolemmal protein, dystrophin, forms a glycoprotein complex
(Hoffman et al., 1987) that protects the muscle from mechanical
damage. In dystrophin-deficient DMD muscle, the sarcolemma is

highly susceptible to mechanical damage and subsequent calcium
leak (Turner et al., 1991, 1993; McCarter and Steinhardt, 2000).
Calcium leaks activate calpain that in turn degrades additional
membrane proteins leading to even further calcium leakage.

Dystrophin-deficient dogs with golden retriever muscular dys-
trophy (GRMD) carry a mutation in the dystrophin gene resulting
from an RNA processing error and termination of the dystrophin
reading frame (Sharp et al., 1992; Schatzberg et al., 1999). The
GRMD dog remains the best-studied large animal model of DMD
as it recapitulates the severity and progression of the disease as it
appears in humans (Cooper et al., 1988; Cooper, 1989; Dubowitz,
1992; Childers et al., 2001; Kornegay et al., 2011). The present pre-
clinical study tested the idea that calpain inhibition with C101, a
novel calpain inhibitor derived from leupeptin (Selsby et al., 2010),
can mitigate the progressive decline in strength and ameliorate the
severe muscle pathology observed in young dogs with GRMD.
The compound, C101, was chosen for this study based on several
unique features. First, C101 is covalently linked to leupeptin, to
provide efficient uptake into muscle cells via the carnitine organic
cation transporter found on the sarcolemma (Selsby et al., 2010),
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this unique design has the potential to improve both muscle tissue
penetration and blood clearance. Second, C101 inhibits calpain
(as shown previously by Selsby et al., 2010) due to its derivation
from leupeptin. Finally, the dose of C101 chosen for the present
study was based on our earlier (unpublished) pilot of leupeptin
in GRMD dogs. GRMD dogs were previously given oral leupeptin
(15 mg/kg twice daily). Analysis of blood plasma leupeptin levels
verified that twice daily oral dosing was appropriate to maintain a
stable amount of leupeptin in the blood.

MATERIALS AND METHODS
STUDY DESIGN AND USE OF ANIMALS
Golden retriever cross-bred dogs (n = 16) from a GRMD colony
were studied (Kornegay et al., 1988). Dogs were used and cared
for according to principles outlined in the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. The
study was conducted as a randomized blinded placebo-controlled
intervention trial to test the efficacy and safety of oral C101 in a
canine model of DMD. Experimental treatments were concealed
from investigators responsible for functional muscle evaluations.
Dogs were randomized into two groups: an interventional (treat-
ment) group (n = 9) and a placebo group (n = 7). Newborn
GRMD dogs were identified based on elevation of serum creatine
kinase and subsequent development of characteristic clinical signs
(Kornegay et al., 2011). Genotype was confirmed by polymerase
chain reaction (PCR) as described (Bartlett et al., 1996). The exper-
imental treatment, C101, is a proprietary compound consisting of
a leupeptin derivative bound to l-aminocarnityl through a linker
sequence (Selsby et al., 2010). C101 (17 mg/kg) was given orally
twice daily. A placebo (vehicle only) was given as a control. Biopsies
were obtained from the cranial sartorius, vastus lateralis, cranial
tibialis, and lateral head of the gastrocnemius muscles from C101-
and placebo-treated GRMD dogs at the beginning of the study.
Samples from the same muscles were obtained at the end of the
8-week study.

PRIMARY MUSCLE CELL CULTURES
For fluorogenic calpain assays and calpain-specific degradation of
talin immunoblots, normal, and GRMD myoblasts were grown
in culture as previously described (McClorey et al., 2006). Briefly,
cranial sartorius muscles from an untreated normal and a GRMD
dog 5 months of age, were minced and placed in culture media
with collagenase, incubated at 37˚C for 1 h, and then plated onto
gelatin-coated culture plates in rich serum media for 3–4 days until
cells reached 50% confluence.

ASSAY FOR μ- AND m-CALPAIN ACTIVITY
This assay is based on the unique ability of calpain to cat-
alyze the release of the fluorogenic compound 7-amino-4-methyl-
coumarin (AMC) from the substrate Suc-LLVY AMC. We followed
the manufacturer’s instructions for a commercial kit (Calpain
Assay Kit,Calbiochem,#QIA120). Calpain activity was determined
by subtracting the activity obtained using the inhibition buffer
from the activity detected with the activation buffer. Standards
and controls were run in duplicate on a fluorometer (Synergy
HT, Bio-Tek). Two independent experiments from four separate
muscle cell cultures were assayed.

MUSCLE TISSUE PREPARATION
Biopsy samples were minced and homogenized in buffer con-
taining protease inhibitors (Sigma, P2714). After homogenization,
lysates were centrifuged for 10 min at 10,000 rpm to separate the
insoluble aggregates from the supernatant. The Bradford assay was
used to determine protein concentration in each GRMD sample
(Zor and Selinger, 1996). Each sample was prepared in duplicate
and assayed in triplicate.

SDS GEL ELECTROPHORESIS AND IMMUNOBLOTS
Muscle lysates were mixed with Laemmli sample buffer (Bio-
Rad) boiled and electrophoresed on 3–8% Tris-Acetate gels
(Nupage, Invitrogen) for 75 min at 150 V. Proteins (20 μg/lane)
were transferred to a polyvinylidene difluoride (PVDF) membrane
(Immobilon-P, Millipore, MA,USA) over-night at 4˚C. The success
of protein transfer to the membrane was confirmed by Ponceau
stain and by staining gels with Coomassie blue to confirm complete
and equal transfer of all protein. Following transfer, the membrane
was blocked over-night in 5% milk.

Antibodies
Calpain biomarker activity was accomplished by measuring the
relative amount of calpain-specific cleavage products of talin,
vinculin, or αII-spectrin on immunoblots using the following
antibodies: anti-talin (1:400; Abcam 9290), anti-vinculin (1:2000;
Sigma V4505), and anti-αII-spectrin (1:5000, Enzo Life Sciences;
Nath et al., 1996; McGinn et al., 2009; Zhang et al., 2009). Follow-
ing over-night blocking, membranes were rinsed, probed with the
primary antibodies followed by Horseradish Peroxidase (HRP)-
linked anti-Biotin and goat anti-mouse IgG (Cell Signaling Tech-
nology, Beverly, MA, USA) secondary antibodies. Immunoblots
were imaged by chemiluminescence (Super Signal West Femto
Maximum Sensitivity Substrate, Thermo Scientific) using digital
photography. All gel electrophoresis, transfer, and blotting proce-
dures were repeated to produce three independent immunoblots
for each sample.

IMAGE ACQUISITION AND QUANTIFICATION
ImageJ densitometry software (Version 1.4, National Institute of
Health, Bethesda, MD, USA) was used to measure density of
immunoblot bands (Kobeissy et al., 2006; McGinn et al., 2009;
Zhang et al., 2009). Optical density for each band was measured
three times and values were averaged.

IN VIVO STRENGTH ASSESSMENT OF THE HIND LIMB
To assess effects of C101 on muscle strength in GRMD dogs, we
used a non-invasive method (Kornegay et al., 1999) to measure
tarsal joint flexor and extensor muscle strength in anesthetized
dogs. Briefly, the dog was positioned in a stereotactic frame that
aligned the tibia at a right angle to the femur. Hind limb isometric
force was measured by wrapping the foot to a pedal affixed to a
force transducer. Percutaneous stimulation (26 gage needle elec-
trodes) of the peroneal nerve at the stifle (knee) activated hind
limb muscles to pull the foot up toward the body to generate iso-
metric flexion force. Percutaneous stimulation of the tibial nerve
activated muscles to push the foot away from the body to gen-
erate isometric extension of the tarsal joint. Hind limb strength
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(isometric flexion and extension of the tarsal joint) was measured
at baseline and at the end of the 8-week study.

To determine if C101 could mitigate effects of muscle dam-
age in GRMD dogs, we applied repeated eccentric (lengthening)
contractions to the cranial tibial compartment muscles using
established methods (Childers et al., 2002). Briefly, stimulating the
sciatic nerve via percutaneous needle electrodes induced eccen-
tric contractions in tibiotarsal flexor muscles. The sciatic nerve
innervates both the cranial (anterior) and caudal (posterior) tibial
compartment muscles. Stimulation of the muscles of the caudal
compartment, larger and stronger than muscles of the cranial com-
partment, resulted in lengthening (eccentric) contractions of the
flexor muscles.

JOINT ANGLE MEASUREMENTS
To determine if C101 could mitigate joint contractures in GRMD
dogs, anesthetized dogs were placed in dorsal recumbency and the
angle between the tarsus and the tibia (with the stifle at 90˚) was
measured as described (Kornegay et al., 1994). The average of two
measurements was recorded.

LEAN BODY MUSCLE MASS COMPOSITION BY DUAL-ENERGY X-RAY
ABSORPTIOMETRY
Dual-energy X-ray absorptiometry (DEXA) was used to assess
whether C101 can maintain or improve total lean body muscle
mass in GRMD. Whole-body DEXA scans were performed at base-
line and after 8 weeks of treatment to quantify lean body and fat
mass. The Hologic Whole-Body Composition Analysis (version
5.47P) software package was used as previously described for dogs
(Lauten et al., 2001).

HISTOLOGY
To determine effects of C101 on muscle histopathology, biopsy
frozen sections (10 μm) were cut on a cryostat (Leica Jung
CM1800, Bremen, Germany) and stored at −80˚C. Muscle sam-
ples were processed, stained (see below), and evaluated with a
light microscope. Sections were stained with hematoxylin and
eosin (H and E) for general morphology, alizarin red (pH 4.2)
for the detection of calcium precipitates, and modified Gomori
trichrome for assessment of fibrosis (Childers et al., 2001). One
investigator (Joe N. Kornegay) examined images after randomiza-
tion and coding using an Olympus light microscope. Each slide
was previewed under low magnification to identify areas devoid
of staining artifacts. Lesions considered included the degree of
myofiber necrosis with particular reference to numbers of hyaline
and mineralized fibers, fibrosis, and regeneration (Badalamente
and Stracher, 2000). Depending on the severity of lesions, scores
of 0 (normal), 1 (mild), 2 (moderate), and 3 (severe) were assigned
to each slide.

STATISTICAL ANALYSES
The student’s t -test (unpaired) was used to test the hypothesis
that muscle damage, as measured by the force deficit, resulted as
a consequence of experimental contractions and was also used to
test for differences in treatment groups with respect to percent
change in force. Student’s t -test was further used in image analy-
ses, histologic, and calpain assays to test for differences between

the C101 and placebo-treated samples as well as between GRMD
and normal samples. Statistical significance was set at the 5% level
(p < 0.05).

RESULTS
ENDOGENOUS CALPAIN ACTIVITY IS INCREASED IN VITRO TO A
GREATER EXTENT IN GRMD COMPARED TO NORMAL PRIMARY
CULTURED MUSCLE CELLS
To measure in vitro changes in endogenous calpain activity in
GRMD myoblasts, in vitro calpain activity was compared between
normal and GRMD cultured muscle cells. A fluorogenic calpain
assay in two independent experiments from four separate pri-
mary muscle cell cultures demonstrated in vitro calpain activity
was about 60% greater in GRMD versus normal canine mus-
cle cell lysates, respectively (Table 1). Calpain activity (assessed
using the biomarker, talin, and its 190 kDa cleavage product) sug-
gested greater activity in GRMD versus normal. As shown in
Figure 1, immunoblot densitometry analysis of intact to cleaved
talin was 2.61 ± 0.1 and 2.92 ± 0.3, for normal and GRMD cul-
tured muscle cells, respectively (p = 0.11). These findings indicate
that in vitro calpain activity is increased in dystrophin-deficient
GRMD compared to normal canine muscle cells.

CALPAIN-SPECIFIC SPECTRIN DEGRADATION IN VIVO IS INCREASED
TO A GREATER EXTENT IN GRMD COMPARED TO NORMAL SKELETAL
PELVIC LIMB MUSCLE
To investigate whether endogenous calpain activity is increased
in adult GRMD skeletal muscle tissue in vivo, a biomarker for
calpain activity was assessed in pelvic limb muscle biopsy sam-
ples from age-matched GRMD and normal littermates. Muscle
lysates prepared from adult GRMD dogs demonstrated higher
than normal levels of calpain-specific breakdown of α-2 spectrin
(Figure 1C). This result indicates that in vivo calpain activity is
greater-than-normal in GRMD skeletal pelvic limb muscle.

EFFECTS OF C101 ON MUSCLE FUNCTION IN GRMD DOGS
To investigate potential functional benefit of C101 in GRMD mus-
cle function, a series of mechanical muscle tests were performed
in the pelvic limb. Isometric flexion and extension force measures
(Kornegay et al., 1999), resting tibiotarsal joint angles (Kornegay
et al., 1994), and mechanical response to repeated lengthening
(eccentric) contractions (Childers et al., 2002) were measured in
GRMD dogs at baseline (6 weeks-of-age) and after 8 weeks of daily
administration of C101 (n = 9) or placebo (n = 7). Forces (N)
were measured relative to body mass (N/kg).

HIND LIMB STRENGTH
Compared to untreated controls, isometric tibiotarsal flexion force
(i.e., the force generated by the cranial compartment muscles,

Table 1 | Calpain activity in primary cultured muscle cell lysates.

Sample RFU/mg/min

GRMD muscle cells 2821

1034

Normal muscle cells 1625

661
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FIGURE 1 | Calpain-specific degradation of talin in primary muscle

cell culture lysates from GRMD and normal dogs. A representative
immunoblot of cell lysates probed with an anti-talin antibody (1:400;
Abcam cat. #9290) (A). Densitometry ratios of the intact talin to cleaved
190 kDa breakdown product (B) between normal (n = 4) and GRMD
(n = 4) cell lysates. α-2 spectrin, a major cytoskeletal substrate of
calpains, is cleaved in succession to yield two fragments of 150 and

145 kDa [(C), upper panel]. A representative immunoblot of muscle
lysates probed with an anti- α-2 spectrin antibody (1:5000; Biomol cat.
#fg6090) [(C), lower panel]. In vivo calpain-specific degradation of α-2
spectrin in muscle biopsy sample lysates, 20 μg each, is shown for a
normal adult dog (lane 2) and age-matched GRMD littermates (lanes 3
and 4). Note that the 150-kDa spectrin breakdown product appears
visibly darker in lanes 3 and 4.

the cranial tibialis, and extensor digitorum longus, EDL) was
generally maintained in C101-treated dogs (Figure 2A). GRMD
dogs treated with C101 generated 0.380 ± 0.11 N/kg at baseline
and 0.363 ± 0.07 N/kg at the end of the 8-week study. In con-
trast, flexion force in placebo-treated GRMD dogs declined from
0.494 ± 0.15 at baseline to 0.325 ± 0.11 N/kg at the study comple-
tion (p < 0.05). These results indicate that the cranial compart-
ment muscles were relatively stronger in the C101-treated group
compared to the placebo group.

A general decline in isometric extension force (i.e., the force
generated primarily by the gastrocnemius and superficial dig-
ital flexor muscles) occurred in both the C101 and placebo-
treated GRMD dogs (Figure 2B). Extension force in C101-treated
dogs measured 2.64 ± 0.5 N/kg at baseline and 2.37 ± 0.5 N/kg at
8 weeks. Extension force in placebo-treated dogs also declined
from 3.30 ± 0.2 N/kg at baseline to 2.96 ± 0.7 N/kg at the study
end. These results indicate that the caudal compartment muscles
were weaker at the end of the study in both treatment groups, and
that there was no detectable benefit from C101 treatment in these
muscles.

JOINT CONTRACTURES
Resting tibiotarsal joint angles were comparable (149˚ ± 9˚ versus
152˚ ± 8˚) between treated and untreated 6-week-old GRMD dogs
at the beginning of the study. After chronic administration of C101
or placebo, no significant differences were detected between treat-
ment groups (152˚ ± 8˚ versus 161˚ ± 7˚, respectively, Figure 2C).
This finding indicates that C101 treatment had no measureable
effect on the progression of tibiotarsal joint contractures in GRMD
dogs.

RESPONSE TO REPEATED ECCENTRIC CONTRACTIONS
To assess the possibility that C101 might mitigate contraction-
induced muscle damage in dystrophin-deficient skeletal muscle,
GRMD pelvic limbs were subjected to repeated in vivo eccen-
tric contractions. Muscles of the cranial compartment (i.e., the
cranial tibialis and EDL) were subjected to repeated stretch-
activations that typically result in muscle damage and loss of force
(Childers et al., 2002). Thus, to measure the extent of stretch-
induced muscle damage, force drop was measured before and
3 days after repeated eccentric contractions. At the end of the
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FIGURE 2 | Comparison of in vivo pelvic limb isometric force

normalized to body mass between placebo and C101 – treated

GRMD dogs. Flexion (A) and extension (B) isometric force
responses for both treatment groups at baseline (6 weeks-of-age)

and at the end of the treatment (14 weeks-of-age). Resting tibiotarsal
joint angles at ages 6 and 14 weeks (C) Data are presented as
mean ± SD. Blue-filled diamonds = placebo group; red-filled
boxes = C101 group.

study, significant differences were not detected between treatment
groups: the force drop was 21.7 ± 9 and 30.7 ± 16%, for C101- and
placebo-treated dogs, respectively. Interestingly, analysis of force
drop results over the course of the study indicated that very young
GRMD dogs (6 weeks-of-age) respond differently than older dogs.
Flexion force for 6-week-old GRMD dogs was 0.408 ± 0.10 N/kg
and dropped to 0.382 ± N/kg after eccentric contractions. In con-
trast, at the end of the study, flexion force in 16-week-old GRMD
dogs was 0.346 ± 0.09 N/kg and dropped to 0.266 ± 0.08 N/kg
after eccentric contractions. Thus, in GRMD dogs, 6-week-old
pups manifested only a small force drop of 11.6 ± 20% com-
pared to 26.6 ± 7% in 15-week-old animals, p < 0.05 (Figure 3).
Together, these results suggest that age has an effect on the extent
of stretch-induced muscle damage in dystrophin-deficient muscle.

LEAN BODY MASS
To assess whether or not C101 might have an effect in main-
taining or improving total lean body muscle mass in dogs with

GRMD, whole-body DEXA scans were performed at baseline and
at 15 weeks-of-age to quantify fat and lean body mass. At the
beginning of the study, lean body mass was comparable between
treatment groups (not shown). At the study completion, dif-
ferences were not detected among the groups. The percent fat
and lean body mass were 16.2 ± 2 and 81.3 ± 2 compared to
15.4 ± 5 and 82.3 ± 5 for C101- and placebo- treated dogs, respec-
tively. This result indicates that C101 treatment did not lead
to an improvement in total lean body mass in young GRMD
dogs.

MUSCLE HISTOLOGY
To investigate effects of C101 treatment on muscle histopathology
in GRMD dogs, pelvic limb muscle biopsy samples taken at base-
line and at the end of the study were sectioned, stained, and scored
for evidence of myofiber necrosis and calcification (Childers et al.,
2001). Briefly, assessment of myofiber necrosis and calcification
was performed by examining serial transverse cryosections stained
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FIGURE 3 | Maximum isometric tibiotarsal flexion force normalized to

body mass before (white bars) and after (black bars) a series of

eccentric (lengthening) contractions. At 6 weeks-of-age, GRMD dogs do
not demonstrate a loss of isometric force (A), whereas at 14 weeks,

normalized isometric force drops significantly (p < 0.05) (B). There were no
differences in the extent of isometric force drop after eccentric
contractions between placebo and C101-treated GRMD dogs (data not
shown).

with H and E and alizarin red (pH 4.2) using light microscopy.
Evidence of myofiber necrosis consisted of identifying “hyaline” or
hypercontracted fibers, fibers undergoing myophagocytosis (fibers
surrounded by phagocytic cells), or empty sarcolemmal tubes. Evi-
dence of myofiber calcification consisted of identifying bright red
myofibers stained by calcium precipitates. The combined mean
necrosis scores for all of the muscles examined were 2.85 ± 3.4
and 3.20 ± 3.5 for the C101 and placebo groups, respectively. The
combined means scores of necrosis and calcification for each mus-
cle evaluated over time and among treatment groups did not
reveal significant differences between any of the variables exam-
ined (Table 2). These results indicate that C101 treatment did
not lead to a detectable improvement in muscle histopathology in
young GRMD dogs.

CALPAIN-SPECIFIC SPECTRIN DEGRADATION IN VIVO
To determine if chronic daily administration of C101 inhibited
calpain-specific spectrin degradation in vivo to a greater extent
than placebo, the 150-kDa breakdown product of α-2 spectrin in
muscle lysates was measured and compared between the treatment
groups. As shown in Figure 4, GRMD muscle lysates demon-
strate significantly greater-than-normal degradation of the 250-
kDa intact α-2 spectrin (p < 0.05). A change in the 150-kDa
product was noted in the placebo group over time (the base-
line relative intensity increased from 0.45 to 0.67 by the end of
the study, p = 0.14). In contrast, the C101 group remained stable
(0.54–0.56, p = 0.44). However, significant differences were not
detected between treatment groups for inhibition of the 150-kDa
spectrin breakdown product.
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Table 2 | Comparison of pelvic muscle necrosis scores in GRMD dogs treated with C101 or placebo.

Group LDE Gastroc Vastus lateralis Cranial sartorius

BASELINE NECROSIS INDEX

Placebo (n = 7) 3.40 (2.5) 3.27 (1.4) 2.38 (1.6) 3.75 (1.6)

C101 (n = 9) 2.78 (1.2) 2.45 (1.5) 3.05 (1.3) 3.11 (2.0)

POST-TREATMENT NECROSIS INDEX

Placebo (n = 7) 3.90 (1.9) 2.23 (0.5) 4.91 (3.3) 3.11 (1.3)

C101 (n = 9) 4.89 (2.7) 2.26 (1.6) 2.82 (1.9) 3.81 (2.7)

FIGURE 4 | Calpain-specific degradation of α-2 spectrin in muscle biopsy

lysates from normal and GRMD dogs. In vivo calpain-specific degradation
of α-2 spectrin in muscle biopsy sample lysates, 20 μg each, is shown for a
normal dog (lane 1) and age-matched GRMD dogs (lanes 2–5, (A).
Densitometry ratios (B) of the intact α-2 spectrin to the cleaved 150 kDa

fragment among treatment groups. Significant differences were detected
between normal and GRMD dogs (p < 0.05) but no differences were detected
between placebo or C101 treatment groups. Legend: red-filled
bars = C101-treated groups (pre- and post-treatment); blue-filled
bars = placebo groups. Data are presented as mean ± SD.

CLINICAL SAFETY
C101 (17 mg/kg twice daily oral administration) was generally
well tolerated without notable adverse clinical effects. Blood
serum chemistries and clotting profiles remained within nor-
mal limits throughout the treatment timeline in all dogs (not
shown).

DISCUSSION
We tested the hypothesis that treatment with the novel calpain
inhibitor, C101, can mitigate the progressive weakness and severe
muscle pathology observed in young GRMD dogs. Our find-
ings do not support this hypothesis and are in agreement with
a recent report of leupeptin-based calpain inhibitors in mdx mice.
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In their report, Selsby et al. (2010) demonstrated that C101 given
intra-peritoneal (i.p.) over 4 weeks failed to improve the pheno-
type of mdx mice. In our study, we administered oral C101 at
a dose based on oral leupeptin biodistribution in GRMD dogs
(data not shown). We found that C101 given over 8 weeks failed
to improve the phenotype of GRMD dogs. The only functional
difference between C101 and placebo-treated dogs was preserva-
tion of flexor force; however, results from a prednisone treatment
study in GRMD indicated that flexion was paradoxically decreased
while extension force improved (Liu et al., 2004). We believe this
resulted from reduced necrosis early in the disease process, thus
preventing functional hypertrophy in flexor muscles. In this con-
text, preserved flexor force actually is more compatible with an
overall decline in function.

STUDY LIMITATIONS
C101 was designed as a small molecule leupeptin derivative cova-
lently linked to carnitine (Selsby et al., 2010). The sarcolemmal
membrane contains an organic carnitine transporter that has the
potential to rapidly clear C101 from the circulation and actively
transport the compound into muscle cells (Grigat et al., 2009).
Indeed, peak serum C101 levels (∼29 μM) occur within 30 min
but fall to 3 μM 2 h later (Selsby et al., 2010). Our results suggest
that C101 failed to inhibit calpain activity in vivo as determined
by quantitative assessment of the biomarker α-spectrin. How-
ever, we did not measure serum or muscle lysate C101 content,
and it is possible that the dose given was not sufficient to reach
inhibitory activity. This possibility is unlikely, as Selsby et al. pre-
viously demonstrated the ability of C101 to inhibit calpain both
in vitro and in vivo.

In general, there is a shift to a MHC type I phenotype in dys-
trophic muscle over time. We previously observed this in GRMD
dogs, that a gradual shift in fiber type occurs in selected hind
limb muscles between 3 and 6 months of age with a general trend
toward type I (slow) fiber predominance in by 6 months of age. In
the flexors, this appears to be particularly evident. Thus, it is con-
ceivable that some beneficial effects of C101 might have escaped
detection in the present study because the eccentric contrac-
tion assays were only performed in the flexor muscles. However,
it is generally accepted that dystrophin-deficient myofibers are
more highly susceptible to mechanical damage due to the lack of

dystrophin (rather than due to a fiber type shift). The disease also
affects the heart and diaphragm muscles, and it is conceivable that
some beneficial effect from the experimental intervention may
have been present, and not tested. Further experiments specifi-
cally targeted at these critical muscles are required to address this
possibility.

NEW FINDINGS
Unexpectedly, we found that pelvic limb muscles of very young
(6-week-old) GRMD dogs did not demonstrate a drop in iso-
metric force 3 days after repeated eccentric contractions, whereas
older (15-week-old) dogs demonstrate a significant force drop
(Figure 3), a feature shown to represent the functional effects of
muscle damage (Childers et al., 2002, 2005; Markert et al., 2006).
The absence of a force drop in young GRMD dogs may be related
to age. In a related study of EDL muscles from young mdx mice
(9–12 days of age), there was no force drop between the first and
last of a series of five acute eccentric contractions (Grange et al.,
2002). However, in EDL muscles of older (∼90–125 days) mdx
mice subjected to the same injury protocol, force drop markedly
increased. Thus, the age of both GRMD dogs and mdx mice may
influence the extent of force drop in muscles subjected to repeated
eccentric contractions.

CLINICAL IMPLICATIONS
Failure of C101 to improve the phenotype in dystrophin-deficient
mice and dogs might be explained by the observation that long-
term exposure to leupeptin in mdx mice results in an increase in the
autolysis of m-calpain (Cong et al., 1989; Goll et al., 1992, 2003).
Chronic administration of a calpain inhibitor (e.g., C101) might
not change the calpain activity set point because of a compen-
satory increase in calpain autolysis in dystrophin-deficient mus-
cle. Together, both murine and canine studies generally indicate
that pharmacological inhibition of calpain alone may not benefit
patients with DMD probably due to several protease mechanisms
functioning in dystrophin-deficient skeletal muscle.
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