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Treatment of cancer often requires exposure to radiation, which has several limitations
involving non-specific toxicity toward normal cells, reducing the efficacy of treatment.
Efforts are going on to find chemical compounds which would effectively offer protec-
tion to the normal tissues after radiation exposure during radiotherapy of cancer. In
this regard, plant-derived compounds might serve as “leads” to design ideal radiopro-
tectors/radiosensitizers. This article reviews some of the recent findings on prospective
medicinal plants, phytochemicals, and their analogs, based on both in vitro and in vivo
tumor models especially focused with relevance to cancer radiotherapy. Also, pertinent
discussion has been presented on the molecular mechanism of apoptotic death in relation
to the oxidative stress in cancer cells induced by some of these plant samples and their
active constituents.
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INTRODUCTION
Cancer is now the third leading cause of death worldwide, with
an estimated 12 million new cases and 7.6 million cancer deaths
reported in American Cancer Society (2007). It is projected that by
2030 there would be about 26 million new cases, while a majority
of deaths due to cancer will occur in developing countries (Bray
and Moller, 2006; World Cancer Report, 2008). In the meantime,
the global distribution of cancer along with the predominating
types of the disease continues to change. Thus, cancers of the lung,
breast, colon/rectum, and prostate are no longer confined to the
Western industrialized countries but are among the most common
cancers occurring all over the world. As for the therapy and man-
agement of cancer, newer strategies comprising multi-faceted and
integrative approach involving surgery, followed by chemotherapy
along with radiation is currently gaining consensus (Oehler et al.,
2007). At the same time, advancement in the understanding of the
disease processes at molecular level has offered novel targets for
prevention, detection, control, and elimination of cancer.

Application of ionizing radiation, over and above surgery, and
chemotherapy, has been the treatment of choice in case of solid
malignancies (Kinsella, 2011). However, a substantial fraction of
such tumors would fail to respond well to the radiation treatment,
and require a very high dose to get killed, posing a severe limita-
tion to the radiotherapy. Additionally, undesirable complications
would occur owing to radiation injury to the surrounding normal
tissues and to the skin, brain, heart, lung, kidney, liver, or gastroin-
testinal system of the cancer patient. Also, symptoms like tissue
fibrosis, hair loss, xerostomia, xerophthalmia, etc., considerably
restrict the application of a high dose of radiation aimed at the
tumor-bearing organs (Dest, 2006).

Moreover, co-administration of radiation (delivered in the
range of 40–80 Gy) along with the chemotherapeutic regimen

might aggravate these complications (Curry and Curran, 2003).
Patients undergoing treatment with taxol or vincristine often
suffer from peripheral neuropathy as a side effect, while anthracy-
cline drugs like doxorubicin (adriamycin), epirubicin, and mitox-
antrone, etc., might lead to cardiac dysfunction (Choy, 2001).
Abnormal kidney function and hearing loss were some of the
common adverse effects occurring upon radiotherapy given to
patients under treatment with platinum compounds (Amorino
et al., 2000). Combination with some of the alkylating agents,
like cyclophosphamide, ifosfamide, and leukeran (chlorambucil),
might cause infertility (Verma et al., 2007). Again, a long term
problem might emerge due to the post-radiotherapy incidence of
a second tumor appearing either at the site of irradiation or away
from it (Ng et al., 2002). Hence, it is a major challenge to radia-
tion oncologists and researchers to develop alternative approaches
to minimize the dosage through selective sensitization of tumor
cells to respond to the radiation treatment, and thereby evade the
detrimental consequences of radiotherapy (Rosenberg and Knox,
2006).

The exposure to radiation would primarily generate intracellu-
lar reactive oxygen species (ROS,viz., superoxide and hydroxyl rad-
icals), which in turn would lead to DNA strands breaks and con-
formational alterations of biomolecules (Halliwell and Gutteridge,
1989). This will inevitably cause damage to surrounding normal
cells. Hence, certain compounds/formulations could be envisaged
to effectively scavenge the free radicals and thereby protect the sur-
rounding normal cells from radiation induced injury. Historically,
the seminal findings on the radioprotective ability of naturally
occurring amino-metabolites like cysteine and cysteamine trig-
gered the search for other thiolamines which would protect us
from the acute effects of radiation (Patt et al., 1949). Thus, ami-
fostine ([S-2-[3-aminopropylamino] ethylphosphorothioic acid)
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was developed as a potential radioprotector molecule (Weiss and
Landauer, 2000; Grdina et al., 2002; Bensadoun et al., 2006). Nev-
ertheless, its wider applicability has been restricted due to the
major limitations associated with nausea, diarrhea, hypotension,
hypocalcaemia, sleeplessness, dizziness, nephro- and neuro-toxic
effects. Other non-protein thiols possessing antioxidative prop-
erties, viz. captopril ([S]-1-[3-mercapto-2-methyl-1-oxo-propyl]-
l-proline), mesna (sodium-2-mercapto-ethanesulfonate), and N -
acetyl-l-cysteine (NAC), were also relevant in this regard (Murley
et al., 2004). However, these exogenous antioxidants proved to
be ineffective if administered at the post-irradiation stage. These
scavengers, acting only for a limited period of time (15 min to 1 h
under in vivo conditions), must be administered shortly before
the radiation exposure as the generation of highly reactive free
radicals following radiation is a very rapid process, spanning less
than 10−3 s (Grdina et al., 2002). Hence, there is an urgent need
to look for more suitable molecules to be used in combination
with chemo- and radio-therapy of cancer in order to minimize
the adverse effects, and to enhance the overall curative outcome in
the patients.

Screening and testing of compounds from natural as well as
synthetic sources have been carried out over the last few decades
in order to find effective radioprotectors capable of inhibiting radi-
ation damage not only during radiotherapy of cancer patients, but
also to healthy individuals undergoing occupational and accidental
exposures to radiation (Stone et al., 2003). In this context, several
authors have reviewed the prospective application of traditional
medicinal plants which are known to contain anti-inflammatory,
antioxidant, and immunomodulatory compounds (Arora et al.,
2005; Venkatachalam and Chattopadhyay, 2005; Jagetia, 2007).
Again, plant-derived polyphenolic compounds with radiosensitiz-
ing property have been extensively reviewed elsewhere (Garg et al.,
2005). Incidentally, some of these antioxidants and plant products
were also shown to be effective in prevention of cancer incidence
(Suresh and Vasudevan, 1994; Zhao et al., 1997; Lee et al., 2002;
Girdhani et al., 2005). The present article would be following up
these developments during the last 5 years, and aim to highlight
the current endeavor (since 2006) to identify phytochemicals and
secondary metabolites of medicinal plants with relevance to can-
cer radiotherapy, and at the same time, attempt to elucidate the
mechanistic premise in the light of available reports.

POTENTIAL PLANT PRODUCTS FOR APPLICATION IN
CANCER RADIOTHERAPY
The global search for naturally occurring phytochemicals as poten-
tial radiotherapeutic agents has unearthed a host of plant products
broadly categorized as (i) “radioprotectors”- to ameliorate the
undesired damages caused to the normal cells, hence, minimize
the side effects of radiation therapy; and (ii) “radiosensitizers”- to
enhance the radiation-induced cell death inflicted to the tumor,
and thereby minimize the dose of radiation treatment. In the
present article, some of the major findings on traditional medicinal
plants and active phytochemicals with promising radioprotective
or radiosensitizing efficacy have been briefly summarized in a
tabular form (Tables 1 and 2; post-2006).

In Table 1, we have enlisted the reports on the
crude extracts/semi-purified fractions of plant samples which

demonstrated substantial prospect to enhance the clinical success
of radiotherapy through a combination treatment. It is to be noted
that 14 out of the twenty six plants in this list, viz. Aloe arborescens,
Angelica sinensis, Azadirachta indica, Biophytum sensitivum, Boer-
haavia diffusa, Citrus sinensis, Genista sessilifolia, Grewia asiatica,
Isatis indigotica, Moringa oleifera, Olea europaea, Rosmarinus offici-
nalis, Rubus spp., and Xylopia aethiopica have not been investigated
prior to 2006. Most of the reports were obtained from the in vivo
study on mouse models, where the radio-protecting activity was
found to be associated with significant scavenging of free radicals,
and depletion in lipid peroxidation with elevation in the glu-
tathione, catalase, and lactate dehydrogenase enzyme levels. Also,
several of these studies were conducted on propagatory cell lines
and primary cultures to unravel the underlying mode of action
at the molecular level (Table 1; Kimura and Sumiyoshi, 2009; Lee
et al., 2010; Park et al., 2011).

In Table 2, we have presented the pure plant constituents and/or
their analogs which could be considered as emerging candidates to
be developed for the aforesaid application in future. Here, it is to be
noted that the radiotherapeutic prospect of several plant-derived
compounds, viz. allicin, betulinic acid, crocetin, diospyrin, hon-
okiol, maytansine, oleuropein, α-santalol, tangeritin, withaferin A,
and zingerone have been reported for the first time during the last
5 years.

Here, in Table 2, it has to be mentioned that we have
not included the established plant-derived anticancer drugs, viz.
etoposide, pactitaxel, and Vinca alkaloids, which have not only
been recognized as potential radiosensitizers, but already under
clinical application in association with cancer radiotherapy (Bur-
ris and Hurtig, 2010). Nevertheless, these drugs and their analogs
are also under continuous appraisal for further development in
this regard (Hiro et al., 2010; Orditura et al., 2010; Lillo et al.,
2011; Schwarzenberger et al., 2011).

Again, prospective radiotherapeutic application of herbal for-
mulations composed of traditional medicinal plants, and mar-
keted as Triphala, Abana, Mentat, Septilin, Chyavanaprasha,
Oligonol, HemoHIM, Fuzheng zengxiao formula, etc., have been
reported by Sandhya et al. (2006), Jagetia (2007), Kundu et al.
(2008), Park et al. (2010), Huang et al. (2011). In fact, the potent
radioprotective property of Triphala, a mixture of three plants,
might actually be attributed to the presence of Emblica offici-
nalis (vide Table 1), which is also a major constituent of some
of the other Oriental rejuvenators (Chyavanaprasha, Septilin, etc.)
found to offer protection against radiation damage. Likewise, some
herbal products, like HemoHIM from Far-East countries, contain
rhizhomes of Angelica spp., a prospective source of radioprotec-
tants (vide Table 1), while Oligonol is composed of modified plant
phenolics. Therefore, these commercial formulations comprising
poly-herbal mixtures have been kept outside the purview of the
present article in order to focus on the search for new plants and
phytochemicals with prospective radiotherapeutic property, and
not included in our Tables.

MOLECULAR MECHANISM OF NATURAL
RADIOPROTECTORS/RADIOSENSITIZERS
Over the years, multi-modal therapy involving more than one
anticancer agent applied in combination has been found to be
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Table 1 |Traditional medicinal plants and/or their bioactive constituents with prospective radioprotective/radiosensitizing efficacy (2006–2011).

Plants (family) Radioprotective/radiosensitizing efficacy of extracts/fractions

Aegle marmelos (L.) Corr.

(Rutaceae)

Extracts protected mice against radiation-induced decline in hemoglobin, total leukocyte, and lymphocytes counts,

and the clonogenicity of hemopoietic progenitor cells; decreased lipid peroxidation accompanied by a significant ele-

vation in the GSH concentration in the mouse intestine; elevated the peripheral cell count as well as villus height

and crypt number accompanied by a decline in goblet and dead cells; hydroalcoholic leaf extract significantly reduced

micro nucleated polychromatic, normo chromatic erythrocytes, and polychromatic/normochromatic erythrocyte ratio

in γ-irradiated mice bone marrow cells (Baliga et al., 2010)

Aloe arborescens Mill. (Liliaceae) Leaf extract showed radioprotective efficacy (Bakuridze et al., 2009)

Alstonia scholaris L.

(Apocynaceae)

Hydro-alcoholic extract of bark exhibited radioprotective efficacy in γ-irradiated mice (7.5 Gy) through lowering of lipid

peroxidation with significant increase in glutathione levels in serum as well as in liver (Gupta et al., 2008); combination

treatment of bark extract with γ-radiation (2.5 Gy) exhibited decrease in lipid peroxidation and increase in GSH level;

protected against radiation-induced chromosomal damage and micronuclei induction in mice bone marrow (Jahan and

Goyal, 2010)

Angelica sinensis (Oliv.) Diels

(Apiaceae)

Root extract down-regulated hydroxyproline and Tgfb1 and provides protection in mice with radiation-induced pul-

monary fibrosis (Han et al., 2006); suppressedTNF-α andTGF-β1 expression in irradiated lung tissue in mice (Xie et al.,

2006)

Aphanamixis polystachya (Wall.)

(Meliaceae)

Ethyl acetate fraction of the stem bark reduced radiation-induced chromosome damage in mice through free radical

scavenging and reduction of lipid peroxidation activity (Jagetia and Venkatesha, 2006)

Azadirachta indica (L.) Adelb.

(Meliaceae)

Leaf extracts exhibited radiosensitizing effect by activating pro-apoptotic signals in neuroblastoma xenografts exposed

to single (10 Gy) or fractionated (2 Gy/day × 5 day) doses of radiation (Veeraraghavan et al., 2011)

Biophytum sensitivum (L.) DC.

(Oxalidaceae)

Methanol extract protected γ-radiation-induced hemopoietic damage through immunomodulation as well as sequential

induction of IL-1β, GM-CSF, and IFN-γ (Guruvayoorappan and Kuttan, 2008)

Boerhaavia diffusa L.

(Nyctaginaceae)

Whole-plant extract prevented γ-radiation-induced DNA damage in mice bone marrow(Manu et al., 2007)

Citrus sinensis (L.) Osbeck

(Rutaceae)

Potentially counteracted UV-B-induced damage in human keratinocytes (HaCaT), through NF-κB and AP-1 translocation

and procaspase-3 cleavage (Cimino et al., 2007)

Emblica officinalis L.

(Phyllanthaceae)

Extract demonstrated significant depletion in lipid peroxidation and elevation in glutathione and catalase levels before

γ-irradiation (5 Gy) to mice (Jindal et al., 2009); fruit extract inhibited UV-induced ROS and collagen damage in human

dermal fibroblast (Adil et al., 2010; Majeed et al., 2011)

Genista sessilifolia DC. and

Genista tinctoria L.

(Leguminosae)

Methanol extract of the aerial part inhibited UV light and nitric oxide-induced DNA damage on plasmid vector pBR322

and human melanoma (M14) cell growth (Rigano et al., 2009)

Grewia asiatica L. (Malvaceae) Post-treatment of fruit pulp extract inhibited γ-radiation-induced glutathione depletion and ameliorating lipid peroxida-

tion levels in mice (Sisodia et al., 2008; Sharma and Sisodia, 2009)

Isatis indigotica Fort.

(Brassicaceae)

Root exhibited anti-inflammatory ability to reduce the mucosal damage caused by radiation (You et al., 2009a); reduced

serumTNF-α, IL-1β, and IL-6 level along with restoration of leukocytopenia following whole body irradiation in mice (You

et al., 2009b)

Mentha piperita and Mentha

arvensis (Lamiaceae)

Protected against γ-radiation-induced hematopoietic damage in bone marrow of mice by significantly decreasing

micronucleus formation and increasing erythropoietin level (Samarth, 2007); aqueous extract showed radio-protecting

efficacy in testis, gastrointestinal and hemopoetic systems in mice through free radical scavenging, antioxidant, metal

chelating, anti-inflammatory, antimutagenic, and enhancement of the DNA repair processes (Baliga and Rao, 2010)

Moringa oleifera Lam.

(Moringaceae)

Aqueous ethanolic leaf extract protected against γ-radiation-induced liver damage in mice through inhibition of of

NF-κB translocation and lipid peroxidation, with increases in SOD, CAT, GSH, and FRAP (Sinha et al., 2011)

Olea europaea L. (Oleaceae) Prevented UV-B-induced skin damage in hairless mice by inhibiting the expression of matrix metalloproteinase MMP-2,

MMP-9, and MMP-13, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) in the skin; histolog-

ical evaluation showed suppression of Ki-67 and CD31-positive cells expression induced by irradiation (Kimura and

Sumiyoshi, 2009)

Panax ginseng L. (Araliaceae) Red ginseng showed photoprotective effect of against ultraviolet radiation-induced chronic skin damage in the hairless

mouse (Lee et al., 2009); radioprotective potential on human lymphocytes when applied at 90 min post-irradiation,

through scavenging free radicals and enhancement of intracellular total antioxidant capacity; inhibited radiation-induced

(7 Gy) apoptosis in gastrointestinal tract of small intestine by decreasing pro-apoptotic p53 and Bax

(Continued)
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Table 1 | Countinued

Plants (family) Radioprotective/radiosensitizing efficacy of extracts/fractions

as well as augmenting anti-apoptotic Bcl-2 following 24 h after irradiation; increase γ-ray-induced apoptotic cell death

in human lung cancer cells (NCI-H460, both in culture and in nude mice xenograft model) through intracellular ROS

generation, nuclear fragmentation, mitochondrial membrane potential loss, and activation of caspase-3; inhibited

micronuclei formation in human peripheral blood lymphocytes following 1–2 Gy radiation exposure (Lee et al., 2008b,

2010; Park et al., 2011)

Phyllanthus amarus Schum. and

Thonn. (Phyllanthaceae)

Found to protect the clastogenic effects of radiation as seen from decreased number of micronuclei and chromosomal

aberrations percentage (Harikumar and Kuttan, 2007)

Pothomorphe umbellate C. DC.

(Piperaceae)

Inhibited UV-B-induced hyperplasic response and increased p53-positive cells in hairless mouse epidermis (da Silva

et al., 2009)

Punica granatum Linn.

(Lythraceae)

Showed protective effects in UV-A and UV-B irradiated human skin fibroblasts (Pacheco-Palencia et al., 2008); fruit

extract inhibited UV-B radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis through suppressing

nuclear translocation of NF-κB, activation of IKKα, phosphorylation, and degradation of IκBα; pomegranate-derived

products, viz., POMx juice, POMx extract, and pomegranate oil (POMo) inhibited UV-B-induced (i) collagenase (MMP-

1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) matrilysin (MMP-7), (v) elastase (MMP-12), and (vi)

tropoelastin c-Fos and phosphorylation of c-Jun protein expression in reconstituted human skin (EpiDerm(TM) FT-200;

Afaq et al., 2009, 2010)

Rosmarinus officinalis L.

(Lamiaceae)

Extract inhibited γ-radiation (3 Gy) induced lipid peroxidation and elevated glutathione levels in irradiated mice (Jindal

et al., 2010)

Rubus spp.(Rosaceae) Inhibited UV-induced activation of NF-κB and AP-1 in cultured mouse epidermal cells (Huang et al., 2007); sensitized

human breast cancer cell line (MCF-7) to radiation by inhibiting radiation-induced activation of NF-κB, and NF-κB regu-

lated IAP1, IAP2, XIAP, and surviving activity, suppressed IR-inducedTNFα, IL-1α, and MnSOD levels (Madhusoodhanan

et al., 2010)

Syzygium cumini L. Skeels

(Myrtaceae)

Extract inhibited γ-radiation-induced DNA damage through scavenging of free radicals in cultured splenocytes of mice

(Jagetia et al., 2011)

Tinospora cordifolia (Thunb.)

Miers. (Ranunculaceae)

Combination treatment of dichloromethane extract with γ-radiation (1–4 Gy) declined viability of HeLa cells by

increasing lactate dehydrogenase and decreasing glutathione S-transferase activity (Rao and Rao, 2010b); prevented

radiation-induced testicular injury (Sharma et al., 2011)

Viscum album L. (Santalaceae) Reduced side effects of conventional radiotherapy in cancer (Kienle and Kiene, 2010)

Xylopia aethiopica (Dunal) A. Rich

(Anonaceae)

Combination treatment with Vit.C protected against γ-radiation-induced testicular damage in rats through antioxidant

activity (Adaramoye et al., 2010a); dried fruit extract attenuated serum alanine and aspartate aminotransferases level

in whole body irradiated rats (Adaramoye et al., 2011); methanol extract of fruit reduced γ-radiation-induced oxidative

stress in brain of adult male Wistar rats (Adaramoye et al., 2010b)

favorable in the management of cancer. The precise efficacy and
degree of tumor control exhibited by combination regimen, how-
ever, remains variable. Although the reasons for variability remain
unclear, discovery of additional novel drugs that synergize with
an existing radiation therapy would allow multiple combinations
to choose from, thereby increasing the likelihood of clinical suc-
cess. Recently, Edwards et al. (2011) has developed an interesting
Drosophila larvae model which could be used to screen and iden-
tify molecules that would act in conjunction with radiation therapy
(Edwards et al., 2011). On the whole, a number of phytochemi-
cals with anti-/pro-oxidant, or immunomodulatory activity hold
greater promise in pre-clinical/clinical trials. Emerging data also
demonstrated that many phytochemicals, especially camptothecin,
epigallocatechin gallate (EGCG), paclitaxel, etoposide, curcumin,
etc., have potent growth inhibitory and apoptosis inducing effects
on human as well as animal cancer cells by targeting multiple
cellular signaling pathways in vitro. Therefore, these compounds
could be useful in combination with conventional chemothera-
peutic agents/radiation for the treatment of cancer, and expected
to have lower toxicity but higher effectiveness. Also, recent in vivo

pre-clinical studies and clinical trials have provided increasing evi-
dence in support of multi-targeted therapies in combination with
natural products. A comprehensive view on the molecular mech-
anisms to rationalize the prospective role of such phytochemicals
acting on relevant signaling pathways has been given in Table 2.

SCAVENGING OF REACTIVE OXYGEN SPECIES
Natural products in conjunction with irradiation are likely to exert
the protective action through several mechanisms. Scavenging
of free radicals generated during radiolysis would be a credible
mode of action. Hence, naturally occurring polyphenolic com-
pounds and antioxidant vitamins, primarily retinoids, would be
the plausible candidates to offer radio-protection. It is a fact that
the chances of developing cancer could be minimized through
optimum nutritional supplementation by consuming a variety of
fruits and vegetables, some of which have displayed chemopre-
ventive activity by inhibiting tumorigenesis induced by chemical
carcinogens and other genotoxic agents (Loo, 2003).

However, clinical reports on application of plant extracts with
antioxidant property as adjuvants in cancer radiotherapy are still
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Table 2 | Phytochemicals with prospective radioprotective/radiosensitizing efficacy: reports from last 5 years study.

Compounds/plants (family) Radioprotective/radiosensitizing efficacy (reference)

Allicin/Allium sativum L. Gaertn.

(Alliaceae)

Down-regulated γ-ray-induced ICAM-1 expression via inhibition of both AP-1 activation and JNK pathway in human

umbilical vein endothelial cells (HUVECs; Son et al., 2006)

Betulinic acid/Ziziphus

mauritiana Lam. (Rhamnaceae)

Enhanced cellular toxicity with decreased clonogenic survival in combination with radiation (4 Gy) on redioresistant

head and neck squamous carcinoma cell line (Eder-Czembirek et al., 2010); induced cytotoxicity and radiosensitivity

in glioma cells under hypoxic conditions (Bache et al., 2011)

Camptothecin

(Irinotecan)/Camptotheca

acuminata Decne (Nyssaceae)

Concurrent chemoradiation with capecitabine and weekly irinotecan showed promising efficacy in preoperative treat-

ment for rectal cancer (Phase I and II study; (Klautke et al., 2006); preoperative radiotherapy and weekly irinotecan

in combination with protracted venous infusion of 5-FU found effective in advanced rectal cancer (Phase II study;

Navarro et al., 2006); irinotecan plus cisplatin with concurrent radiotherapy showed effectiveness for patients with

limited-disease small cell lung cancer (Phase II study; Jeong et al., 2006); preoperative chemotherapy with S-1 and

irinotecan sensitized radiation therapy in patients with locally advanced rectal cancer (Phase I/II study; Sato et al.,

2007; Shin et al., 2010); weekly irinotecan and cisplatin induced effectiveness of radical thoracic radiation in locally

advanced non-small cell lung carcinoma (Phase I study; Langer et al., 2007); combination of cetuximab, bevacizumab,

and irinotecan sensitized radiation therapy in patients with primary glioblastoma and prevented progression after

treatment (Phase II trial; Hasselbalch et al., 2010); topoisomerase I as possible target for radiosensitizing effect of

irinotecan in rectal cancer (Illum, 2011)

Crocetin (Trans sodium

crocetinate)/Crocus sativus

Linn. (Iridaceae)

Combination regimen with radiation enhanced the efficiency of radiotherapy by increased oxygen diffusion in the brain

and elevated the partial brain oxygen level in rat C6 glioma model (Sheehan et al., 2008); induced apoptosis through

inhibiting nucleic acid synthesis, and hindering growth factor signaling pathways (Gutheil et al., 2011)

Curcumin/Curcuma longa Linn.

(Zingiberaceae)

Protected γ-radiation-induced DNA damage and lipid peroxidation in cultured human lymphocytes (Srinivasan et al.,

2006); demonstrated protective effect on radiation-induced (50 Gy) cutaneous damage in mice characterized by down-

regulation of IL-1 IL-6, IL-18, TNF-α, lymphotoxin-β, and TGF-β in irradiated skin and muscle (Okunieff et al., 2006);

prevented radiation-induced incidence of thymic lymphoma in mice (Dange et al., 2007) and ileal mucosal damage in

rat (Akpolat et al., 2009) through antioxidant property; combination with visible light inhibits human epithelial carci-

noma A431 tumor growth in a xenograft model in mice through ERK1/2 and EGF-R inhibition leading to apoptosis (Dujic

et al., 2009); accelerated wound repair in excision wound of mice exposed to fractionated γ-radiation (Jagetia and

Rajanikant, 2011); significantly inhibited IR-induced NF-κB, telomerase and telomerase reverse transcriptase promoter

mRNA (TERT) activation in human neuroblastoma cells (Aravindan et al., 2011)

Diospyrin (Diospyrin

dimethylether)/Diospyros

montana Roxb. (Ebenaceae)

Enhanced radiation-induced cytotoxicity and apoptosis in human breast cancer cell line (MCF-7) through down-

regulation of Bcl-2 and COX-2 gene, and up-regulation of p53 and p21 (Kumar et al., 2007); showed enhancement

in cytotoxicity and apoptotic induction and decrease in clonogenic survival of human and mouse fibrosarcoma cells

by inhibiting radiation-induced NF-κB activation, generation of intracellular reactive oxygen species, caused significant

suppression of tumor growth in vivo, and restoration of liver enzyme activity to the “normal” level (Kumar et al., 2008)

β-Elemene/Curcuma wenyujin

Linn. (Zingiberaceae)

Combination treatment with 4 Gy X-ray irradiation enhanced single and double strand DNA break and inhibited DNA

repair system in human lung adenocarcinoma cell line (A549), induced apoptosis through up-regulation of p53 and

downregulation of Bcl-2 protein (Li et al., 2011)

Ellagic acid/Punica granatum

Linn. (Lythraceae)

Suppressed inflammation and photoageing associated with chronic UV-B exposure by diminishing IL-1β and IL-6

production, and blocked infiltration of macrophages in the integuments of SKH-1 hairless mice (Bae et al., 2010);

enhanced radiosensitivity by increased superoxide generation, upregulated p53 protein expression, decreased antiox-

idant enzyme level, enhanced capase-3 activity, increased intracellular calcium levels, phospholipase C, and a drop in

mitochondrial potential in HeLa cells (Bhosle et al., 2010)

Epigallocatechin-

gallates/Camellia sinensis L.

(Kuntze) (Theaceae)

Protected against UV-B-induced apoptosis via oxidative stress and JNK1/c-Jun pathway in retinal pigment epithelium

cells (Cao et al., 2012); protected liver tissue against the mobile phone-like radiofrequency-induced oxidative damage

by enhancing antioxidant enzyme activities (Ozgur et al., 2010); protected dendritic cells following UV-B irradiation by

modulating IL-10 and IL-12 level (Jin et al., 2009); exhibited radio-protection in mice following γ-radiation (Lee et al.,

2008a); combined treatment with low dose ionizing radiation, induced cells death in human brain endothelial cells

(McLaughlin et al., 2006)

Ferulic acid/Ubiquitous in

dietary plants and fruit seeds

Suppressive effect on UV-B radiation-induced matrix metalloproteinases MMP-2 and -9 expression in mouse skin,

mediated via the proteasome pathway (Staniforth et al., 2011)

Flavopiridol/Dysoxylum

binectariferum (Roxb.) Hook

(Meliaceae)/Amoora rohituka

(Meliaceae)

Increased radiation sensitivity of GL261 murine glioma model (Newcomb et al., 2006); improved radiation responses

of esophageal adenocarcinoma cell and xenografts by targeting cyclin-dependent kinases (Raju et al., 2006); combina-

tion treatment with radiation exhibited potential to conquer the radioresistance of human glioma cell line by inducing

genetic alteration of p53 or bcl-2 (Hara et al., 2008)

(Continued)
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Table 2 | Countinued

Compounds/plants (family) Radioprotective/radiosensitizing efficacy (reference)

Genistein; Daidzein/ – Soy

isoflavones and metabolites

from Glycine max Linn. (Merr.)

(Fabaceae)

Showed radiosensitization via inhibition of NF-κB, altered cyclin B and/or p21WAF1/Cip1 expression, and G2/M arrest

in prostate cancer cells; combination with radiation showed enhanced control on primary tumor growth in orthotopic

metastatic mouse model; increased cytotoxicity correlated with inhibition of Bcl-xL and survivin, and upregulation

of Bax and PARP cleavage in prostate cancer cell line; (Raffoul et al., 2006, 2007); sensitized apoptotic effect of

γ-irradiation in CaSki cervical cancer cells via increased expression of p53, p21, and Cdc2-tyr-15-p, supporting the

occurrence of G2/M arrest (Shin et al., 2008); showed radiosensitizing effect through cell growth inhibition by modulat-

ing APE1/Ref-1, NF-κB, and HIF-1α level in prostate cancer cell lines (Singh-Gupta et al., 2010); protected UV-B-induced

senescence-like characteristics in human dermal fibroblasts via maintenance of antioxidant enzyme activities and

modulation of mitochondrial oxidative stress through down-regulation of p66Shc-dependent signaling pathway (Wang

et al., 2010); prevented formation of excess radiation-induced centrosomes via p21 up-regulation in human U2OS and

mouse NIH3T3 cells (Shimada et al., 2011); mitigated radiation-induced lung injury in combination with EUK-207 in rat

model (Mahmood et al., 2011). 7,3′,4′-trihydroxyisoflavone, a major metabolite of daidzein, suppressed the incidence

and multiplicity of UV-B-induced tumors in hairless mouse skin, and inhibited UV-B-induced COX-2 expression through

the inhibition of NF-κB transcription activity in mouse skin epidermal JB6 P+cells (Lee et al., 2011)

Honokiol/Magnolia spp.

(Magnoliaceae)

Liposomal encapsulation of the honokiol showed radiosensitizing activity (5 Gy) in Lewis lung carcinoma cells (LL/2)

through induction of apoptosis and angiogenesis suppression (Hu et al., 2008); reduced UV-B-induced skin cancer

through caspase-3, caspase-8, caspase-9, poly (ADP-ribose) polymerase (PARP), and p53 activation leading to the

induction of DNA fragmentation and apoptosis (Chilampalli et al., 2010)

β-Lapachone/Tabebuia rosea

Bertol. (Bignoniaceae)

Synergistic interaction with radiation induce toxicity in DU-145 human prostate cancer cells in vitro through elevating

NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and by inhibiting sub-lethal radiation damage repair (Suzuki et al.,

2006); intravenous injection of Au-nanoparticle containing β-lapachone exhibited enhanced efficacy in mice bearing

xenograft human tumors (Jeong et al., 2009); suppressed radiation-induced (4 Gy) activation of NF-κB, bcl-2, gadd45β,

and cyclinD1 in A549 human lung cancer cell lines (Dong et al., 2010a); combination with IR in NQO1(+) prostate

cancer cells significantly elevated SSB level and γ-H2AX foci formation, caused poly(ADP-Ribose) polymerase-1

hyperactivation, and induction of μ-calpain-induced programmed cell death (Dong et al., 2010b)

Maytansine (Maytansinol

isobutyrate)/Maytenus spp.

(Celastraceae)

Enhanced the effect of radiation in Drosophila and in human cancer cells by microtubule depolymerization and p53

dependent pathway (Edwards et al., 2011)

Oleuropein/Olea europaea Linn.

(Oleaceae)

Prevented UV-B-induced skin damage in hairless mice by inhibiting the expression of matrix metalloproteinase

(MMP)-2, MMP-9, and MMP-13, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) in the

skin; histological evaluation showed suppression of Ki-67 and CD31-positive cells expression induced by irradiation

(Kimura and Sumiyoshi, 2009)

Plumbagin/Plumbago zeylanica

Linn. (Plumbaginaceae)

Showed radiosensitization effect through apoptosis in human cervical cancer cells (Nair et al., 2008)

Resveratrol/Vitis spp. (Vitaceae);

Vaccinium spp. (Ericaceae)

Showed protective effect on UV-A and UV-B-induced damage in HaCaT cells by enhancing SOD, GSH-Px activity,

reducing intracellular ROS generation and expression of caspase-3 and 8 proteins (Chen et al., 2006; Park and Lee,

2008); sensitized DU-145 to ionizing radiation by potentiating radiation-induced ceramide accumulation, through pro-

moting its de novo biosynthesis (Scarlatti et al., 2007); reduced radiation-induced chromosome aberration in mouse

bone marrow cells (Carsten et al., 2008); combination with γ-radiation inhibited NF-κB-dependent transcription, sup-

pressed cFLIP and Bcl-xL expression, activated MAPK- and ATM-Chk2-p53 pathways, upregulated TRAIL promoter

activity, and TRAIL surface expression in melanoma cell lines (Johnson et al., 2008); increased radiosensitivity and

induced apoptosis in CD133-positive cells derived from atypical teratoid/rhabdoid tumor (Kao et al., 2009); sensitized

A431 human epidermoid carcinoma cells to UV-B-induced cell death through disrupting NF-κB pathway by blocking

phosphorylation of serine 536 and degradation of IκBα; decreased the phosphorylation of tyrosine 701, inhibited

translocation of phospho-STAT1 to nucleus and suppressed metastatic LIMK1 protein (Roy et al., 2009); Suppressed

tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3

pathway (Yang et al., 2011); protected human keratinocytes HaCaT cells from UV-A-induced oxidative stress damage

by down-regulating Keap1 expression (Liu et al., 2011)

α-Santalol/Santalum album

Linn. (Santalaceae)

Prevented UV-B-induced skin cancer development by increasing in apoptosis proteins, caspase-3 and -8 levels and

tumor suppressor protein, p53 in CD-1, SENCAR, and SKH-1 mice (Arasada et al., 2008)

Silymarin/Silybum marianum

(L.) Gaertn. (Asteraceae)

Caused decrease in E2F2 and E2F3 accompanied by reduced levels of p53, cyclin-dependent kinases, cyclins, CDC25C,

mitogen activated protein kinases, Akt signaling, and subsequent inhibition of cell proliferation on skin, 15 and 25 weeks

(Continued)
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Compounds/plants (family) Radioprotective/radiosensitizing efficacy (reference)

after UV-B exposure (Gu et al., 2006); inhibited UV-B-induced photocarcinogenesis in mice through reduction of IL-10

and enhancement of IL-12 level (Meeran et al., 2006); protected A375-S2 cell against UV-induced apoptosis was par-

tially through SIRT1 pathway and modulation of the cell cycle distribution (Li et al., 2007); attenuated UV-A-induced

damage to human keratinocytes (Svobodová et al., 2007); inhibited UV-induced oxidative stress through targeting

infiltrating CD11b + cells in mouse skin (Katiyar et al., 2008); prevented X-ray induced formation of DNA single-strand

breaks (Fu et al., 2010; Vaid and Katiyar, 2010); inhibited UV-B radiation-induced DNA damage as demonstrated by

reducing cyclobutane pyrimidine dimmers formation and induction of nucleotide excision repair leading to reduced

apoptosis of normal human epidermal keratinocytes (Katiyar et al., 2011)

Tangeritin/(citrus fruits) Reduced UV-B-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking mitogen activated protein

kinase (MAPK) activation and reactive oxygen species generation (Yoon et al., 2011)

Withaferin A/Withania somnifera

L. (Dunal) (Solanaceae)

Augmented x-ray induced cell death in chicken B lymphocyte (Uma Devi et al., 2008); combination with fractionated

regimen of radiation showed delayed proliferation of melanoma (Kalthur and Pathirissery, 2010); increased the radiation-

induced apoptosis in Caki cells through ROS generation, down-regulation of Bcl-2, and Akt dephosphorylation (Yang

et al., 2011a); enhanced IR-induced apoptosis associated with PARP cleavage, caspase-3 activation, down-regulation

of anti-apoptotic protein Bcl-2 in human lymphoma U-937 cell line (Yang et al., 2011b)

Zingerone/Zingiber officinale

Roscoe (Zingiberaceae)

Radiomodifying and anticlastogenic effect on Swiss albino mice (Rao et al., 2011); antagonistic effects against radiation-

induced cytotoxicity, genotoxicity, apoptosis, and oxidative stress in Chinese hamster lung fibroblast cells (Rao and

Rao, 2010a); act as radioprotectant by significantly reducing micronuclei formation, DNA damage, generation of reac-

tive oxygen species and percentage of apoptotic cells induced by 2 Gy γ-radiation in human lymphocyte cells (Rao

et al., 2009)

sparse in literature. Apparently, there is an apprehension that the
antioxidants would protect not only the normal cells, but also
the tumors, from the attack of free radicals generated during the
course of treatment with ionizing radiation and anticancer agents.
The lack of strong experimental evidences to address this con-
cern resulted in poor enthusiasm from radiation oncologists to
recommend their patients to consume such antioxidant products
during the course of therapy. However, the pros and cons of this
aspect have been critically reviewed, based on in vitro and in vivo
experimentations (Prasad, 2005; Prasad and Cole, 2006).

In this context, hydrogen peroxide (H2O2) has been known
to play a crucial role in the proliferation of cancer cells. In fact,
many human cancers, like melanoma, neuroblastoma, colon car-
cinoma, and ovarian carcinoma, were found to constitutively
generate a high amount of H2O2 (Szatrowski and Nathan, 1991).
This indicated that the tumor cells would require a certain level
of oxidative stress for maintaining a balance to undergo either
proliferation or apoptotic death, and a minor fluctuation in the
concentration of ROS might be critical to the intracellular sig-
naling mechanism (Droge, 2002). The production of a larger
amount of H2O2 was demonstrated by transforming NIH3T3
cells with Ras oncogene to cancer cells (Benhar et al., 2001),
and a similar observation was noted in our laboratory when thy-
mus cells in mice were transformed to thymic lymphoma after
whole body radiation exposure (Pandey et al., unpublished data).
The elevated production of ROS in cancer cells might be routed
through mitochondrial electron transport chain, peroxisomes or
NAD(P)H oxidase pathways, but the involvement of some direct
mechanism of H2O2 generation may also be suggested. The con-
stitutive production of ROS caused sub-lethal DNA damage in
tumors, which was evidenced by a higher level of 8-hydroxy-2′-
deoxyguanosine, while the increase of 4-hydroxy-2-non-enal, the

lipid peroxidation product, indicated damage in cell membrane of
carcinoma tissues (Toyokuni et al., 1995; Kondo et al., 1999). The
cancer cells, in spite of having some amount of sub-lethal DNA
damage, are generally adapted to survive in such stress conditions,
and do not undergo cell cycle arrest or apoptosis (Elledge and Lee,
1995). In fact, at the basal level, the ROS would provide a stimu-
latory environment conducive to the proliferation of cancer cells,
and become somewhat vital to their survival, rather than being
merely useless cytotoxic products. Therefore, it may be hypoth-
esized that the phenolic compounds with antioxidant properties
could induce cell cycle arrest and apoptosis through scavenging
of H2O2, presumably by depriving the cancer cells of an essential
factor vital to their sustenance. It could also be speculated that a
relatively lower level of constitutive ROS in normal cells would
make them less vulnerable to the phenolic antioxidants (Simone
et al., 2007).

GENERATION OF REACTIVE OXYGEN SPECIES
Another category of phytochemicals showing antitumor activity
are those which would enhance the generation of ROS, instead of
scavenging the cellular free radicals. Such ROS-generators would
apparently sensitize cancer cells endowed with persistent oxida-
tive stress to undergo apoptotic death. We have already discussed
about the critical maintenance of constitutively produced ROS,
which is probably just below the threshold level required to induce
apoptosis in tumors, the basal level being much lower in case of
normal cells (Droge, 2002). Therefore, ROS-generating quinones
could presumably create the requisite imbalance to lead the tumors
cells, rather than the normal ones, to apoptotic death. Thus, the
pro-oxidant quinones like β-lapachone (Suzuki et al., 2006; Dong
et al., 2010a,b), plumbagin (Nair et al., 2008), and diospyrin
derivatives (Hazra et al., 2007; Kumar et al., 2007, 2008) have
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been found to induce apoptosis in tumor cells through DNA
damage, lipid peroxidation, mitochondrial membrane depolar-
ization, and related signaling events. Incidentally, a few other
anticancer plant products, such as paclitaxel, vinca alkaloids, and
maytansinol, have been found to enhance the effect of radiation
in human cancer cells through the involvement of microtubule
interference to inhibit the proliferation of tumor (Edwards et al.,
2011).

INDUCTION OF APOPTOTIC PATHWAY
Further, the phytochemicals could also interact directly with mol-
ecular pathways involving kinase networks, like mitogen activated
protein kinases (MAPK), phosphatidylinositol-3-kinase (PI-3K),
etc., thereby showing the potential to inhibit tumor growth in com-
bination with anticancer drugs and radiation therapy by inducing
programmed cell death or apoptosis (Garg et al., 2005).

Again, the higher level of ROS could result in the increase in pro-
tein tyrosine kinase (PTK)-mediated phosphorylation of epider-
mal growth factor receptor (EGF-R; Kamata et al., 2000), sequen-
tially activating the Ras- and MAPK-signaling pathways (Loo,
2003). Further, the over-activated MAPK would trigger expression
of transcription factors, like nuclear factor kappa B (NF-κB), acti-
vator protein-1 (AP-1), and c-myc (a proto-oncoprotein; Meyer
et al., 1994; Muller et al., 1997). It is to be noted that these tran-
scription factors by themselves are redox-sensitive (Meyer et al.,
1994; Muller et al., 1997; Loo, 2003), and may be regulated directly
by the higher level of ROS.

The molecular mechanism of anticancer property of plant-
derived polyphenolic compounds, such as EGCG, resveratrol,
quercetin, genistein, etc., has been primarily attributable to their
ability to scavenge the constitutively expressed endogenous redox
modulators (H2O2/OH.). Further studies revealed that EGCG
inhibited the phosphorylation of MAPK-enzymes, viz. ERK
(extracellular signal regulated kinases), JNK (c-Jun N-terminal
kinases), and p38-MAPK (p38 mitogen activated protein kinases),
activated by UV-B radiation in human epidermal keratinocytes
(Katiyar et al., 2001). Similar observation was obtained in UV-C-
irradiated HeLa cells, pretreated with resveratrol, a polyphenolic
constituent present in grapes and berries (Yu et al., 2001). Resver-
atrol was also found to check NF-κB activation induced by tumor
necrosis factor (TNF) in U-937, Jurkat, HeLa, and H4 glioma cells
in vitro (Manna et al., 2000). A few other plant phenolics, such as
quercetin and genistein, have been reported to initiate apoptosis
in pancreatic carcinoma cells, by inducing mitochondrial depolar-
ization, cytochrome c release, and activation of caspases (Mouria
et al., 2002).

In our laboratory, we are investigating the radiomodulating
potential of a diethtylether derivative (D7) of diospyrin, an anti-
tumor quinonoid plant-product, in human breast carcinoma
cells (MCF-7). It was observed that D7, in combination with
radiation, could increase the apoptosis in tumor cells through
down-regulation of the anti-apoptotic Bcl-2 and COX-2 gene
expression, and up-regulation of pro-apoptotic genes, like p53
and p21. The higher expression of PUMA (p53 upregulated mod-
ulator of apoptosis), a pro-apoptotic protein, was also observed
in the combination treatment. Further, the up-regulation of p21
expression in irradiated MCF-7 cells was found to be concomitant

with the cell cycle arrest in the G1 phase (Kumar et al., 2007).
Further studies in mouse and human fibrosarcoma cells (viz.,
Wehi164 and HT1080, respectively) showed marked enhance-
ment of cytotoxicity with decreased clonogenic survival follow-
ing treatment with D7 in combination with radiation. More-
over, increased radiosensitivity of tumor cells by D7 was found
to occur through inhibition of radiation-induced NF-κB activa-
tion with substantial generation of intracellular ROS, ultimately
leading to programmed cell death. Further, a combination reg-
imen of D7 with 5 Gy radiation administered in two fraction-
ated doses (2.5 Gy each) could cause a significant inhibition of
tumor growth and increased life span of experimental mice bring-
ing the liver enzyme activity to the normal level (Kumar et al.,
2008).

CONCLUSION
Cancer patients need to go through extensive treatment involv-
ing chemotherapy, surgical intervention, recurring exposure to
gamma-irradiation, or a combination therapy. Some tradition-
ally popular medicinal plants have recently gained attention for
their ability to modulate a number of signaling pathways that
could initiate and facilitate the proliferation of cancer. In many
cases, the potency of these compounds/formulations to sensi-
tize the cancer cells to radiotherapy could be corroborated with
the inhibition/activation of the relevant molecular markers. How-
ever, the literature citations on supporting clinical trials showing
similar observations are quite limited. Nevertheless, a number
of reports are available on antioxidants being able to protect
against radiation-induced oncogenic transformations in exper-
imental systems. Based on these information it has been pre-
sumed that supplementation of vitamins in a good measure,
and intake of health promoting plant products in the diet might
reduce the harmful side effects of standard therapeutic modali-
ties and enhance their selective toxicity toward malignant cells,
leading to an overall improvement in the efficacy of anticancer
treatment.

Furthermore, the underlying mechanism of survival and pro-
liferation in some types of cancer would reveal the inherent depen-
dence of these cells on their constitutive oxidative stress. This
mechanistic interpretation, in the light of the well-studied role
of plant-polyphenolics in scavenging cellular free radical species,
might resolve the prevailing dilemma on whether antioxidants
would provide the desirable relief, to some extent, to the normal
cells in preference to the tumor-bearing ones. Again, this hypoth-
esis would be relevant to the radiosensitizing effect exhibited by
a few ROS-generating antitumor agents as well. Thus, it is hoped
that future research would add up positively, and would bring
more of the aforesaid phytochemicals from “bench to bedside” of
the suffering humanity seeking relief from the awful maladies of
cancer.
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