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Endocannabinoids serve as retrograde signaling molecules at many synapses within
the CNS, particularly GABAergic and glutamatergic synapses. Synapses onto midbrain
dopamine (DA) neurons in the ventral tegmental area (VTA) make no exception to this rule.
In fact, the effects of cannabinoids on dopamine transmission as well as DA-related behav-
jors are generally exerted through the modulation of inhibitory and excitatory afferents
impinging onto DA neurons. Endocannabinoids, by regulating different forms of synaptic
plasticity in the VTA, provide a critical modulation of the DA neuron output and, ultimately, of
the systems driving and regulating motivated behaviors. Because DA cells exhibit diverse
states of activity, which crucially depend on their intrinsic properties and afferent drive, the
understanding of the role played by endocannabinoids in synaptic modulations is critical
for their overall functions. Particularly, endocannabinoids by selectively inhibiting afferent
activity may alter the functional states of DA neurons and potentiate the responsiveness
of the reward system to phasic DA.
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Survival of individuals and conservation of the species strictly
depend on the drive by which animals seek natural reinforcers
such as food, water, sex, and maternal care. Dopamine (DA) neu-
rons in the ventral tegmental area (VTA), lying centrally amidst
the limbic circuit and the basal ganglia, have adapted to organize
several aspects of motivated behaviors (Ungless, 2004; Fields et al.,
2007) and to provide the behavioral flexibility necessary for the
organism to adjust itself into a constantly changing environment.

To carry out this task, midbrain DA neurons exhibit diverse
states of activity that crucially depend on their intrinsic properties,
afferent drive, and retrograde messengers (reviewed in Marinelli
et al., 2006a; Sesack and Grace, 2010; Morikawa and Paladini,
2011).

In vivo, along with a regular, rhythmic discharge similar to that
observed in vitro (Grace and Onn, 1989; Khaliq and Bean, 2010),
spontaneously active DA neurons exhibit an irregular, single-spike
firing mode, and a bursting pattern. It is the switch between these
activity states that is believed to differentially regulate DA outputin
downstream structures, with single-spiking determining extracel-
lular, “tonic” DA levels and burst firing leading to transient synaptic
“phasic” DA levels (reviewed in Grace et al., 2007). Notably, “pha-
sic” DA release is thought to represent the behaviorally relevant
signal sent to postsynaptic targets to indicate reward-related cues
and facilitate goal-directed action (see Grace et al., 2007 for a
review and references therein).

Firing pattern of DA neurons is correlated with specific behav-
ioral stimuli: these cells fire in bursts and release high DA levels
especially when a reward is unexpected or larger than expected
(Schultz, 1998, 2002, 2006; Schultz and Dickinson, 2000). After
training, when reward delivery is reliably preceded by a sensory

cue, DA neurons fire in bursts in response to the conditioned stim-
ulus (Schultz, 1998). On the other hand, these cells pause their fir-
ing when no reward or punishment are delivered (Schultz, 1998).
Under this aspect, DA neurons have been postulated to encode
reward prediction error (Bayer and Glimcher, 2005; Schultz, 2006)
and DA to be a powerful learning signal, evolutionary adapted to
energize the organism toward natural reinforcers. Phasic depres-
sion of firing rate and DA release, on the other hand, can be
interpreted as a signal for reversal learning (Schultz, 1998; Rob-
bins and Arnsten, 2009; Kehagia et al., 2010), essential for the
animal to attain that degree of behavioral plasticity necessary in
an ever-changing environment. Deficits in reversal learning impair
the ability of the animal to devaluate reward-related cues when
they no longer predict reward and to avoid idle perseveration into
unproductive behaviors (Kehagia et al., 2010). This neural cir-
cuit can be hijacked by drugs of abuse, which are able to become
major reinforcers and overcome the natural ones. Additionally,
addicting drugs strongly impair reversal learning and maintain
perseveration of drug taking despite of negative and unpleasant
consequences of drug use (Dagher and Robbins, 2009).

This dynamic behaviorally driven regulation of DA neuron
activity must rely on efferent inputs arising from other brain
regions directly involved by sensory, motor, and cognitive infor-
mation. Hence, both burst firing and pauses depend on the
balance between excitatory and inhibitory inputs impinging on
DA neurons and interacting with the intrinsic pacemaker cur-
rents observed in vitro (Lobb et al., 2010; Morikawa and Paladini,
2011). Excitatory projections arise mainly from the glutamater-
gic prefrontal cortex and bed nucleus of the stria terminalis, and
the glutamatergic—cholinergic pedunculopontine and laterodorsal
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tegmental nuclei. Inhibitory inputs to the VTA arise from neigh-
boring GABAergic interneurons (Grace and Onn, 1989; Bayer and
Pickel, 1991; Omelchenko and Sesack, 2009) and from the basal
ganglia (Marinelli et al., 2006a; Sesack and Grace, 2010; Morikawa
and Paladini, 2011), but not from the nucleus accumbens, whose
GABA neurons target non-DA VTA neurons (Xia et al., 2011). A
major GABAergic inputs to DA neurons arises also from a region
located at the caudal tail of the VTA, termed rostromedial tegmen-
tal nucleus (RMTg). The RMTg has been recently discovered as an
important source of GABAergic projections to midbrain DA neu-
rons (Jhou et al., 2009; Kaufling et al., 2009; Lecca et al., 2011a,b;
Figure 1).

ENDOCANNABINOIDS AND SYNAPTIC PLASTICITY IN THE
VTA

How incoming inputs are integrated and reverberate into specific
firing patterns also depends on retrograde transmitters such as
endocannabinoids (Melis and Pistis, 2007).

Endocannabinoids are unconventional lipid neurotransmit-
ters/neuromodulators — synthesized on demand from membrane
phospholipids — whose functions include retrograde signaling
in the brain by modulating and/or mediating several types of
synaptic plasticity (Kano et al., 2009). The best characterized
endocannabinoids are anandamide (Devane et al., 1992) and
2-arachidonoylglycerol (2-AG; Mechoulam et al., 1995; Sug-
iura et al., 1995). Once released, they activate presynaptic type
1 cannabinoid receptors (CB1) and inhibit neurotransmitter
release influencing both short- and long-term forms of synaptic
plasticity.

Similarly to other neurons, DA neurons use endocannabinoids
as retrograde neurotransmitters (Melis and Pistis, 2007). These
molecules, with particular regard to 2-AG, and endocannabinoid-
like N-acylethanolamines (NAEs; see below), have been demon-
strated to be efficient means to dampen the activity of external
afferents and permit DA neurons to fine tune their own function
(Melis et al., 2004a,b, 2010; Melis and Pistis, 2007) to optimally
respond to behavioral stimuli.

Regarding endocannabinoid-mediated synaptic plasticity, the
best studied synapse in the VTA is the excitatory afferent aris-
ing from rostral/cortical regions. Hence, VTA DA neurons have
been shown to release endocannabinoids to decreased glu-
tamate release (Melis et al., 2004a,b, 2006; Marinelli et al.,
2006b; Haj-Dahmane and Shen, 2010; Kortleven et al., 2011).
Particularly, to date, the endocannabinoids that have been
identified as fine modulators of excitatory synaptic transmis-
sion within the VTA are mainly 2-AG and N-arachidonoyl-
dopamine (NADA; Melis et al., 2004a; Marinelli et al., 2006b;
Haj-Dahmane and Shen, 2010; Kortleven et al., 2011). Notably,
anandamide — though present within the midbrain (Marinelli
et al, 2003; Melis et al., 2006) — plays a role as endovanil-
loid on ionotropic transient receptor potential vanilloid type 1
(TRPV1; Marinelli et al., 2003) rather than as an endocannabi-
noid on CB1 (Melis et al., 2006). In contrast, the endocannabinoid
NADA, which can act depending on the conditions on either
CB1 or TRPV1 at both inhibitory and excitatory synapses, can
only be detected upon K'-induced depolarization (Marinelli
et al., 2006b), thus raising issues on its role under physiological
conditions.
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FIGURE 1 | The rostromedial tegmental nucleus (RMTg)-VTA pathway
in aversion and reward mechanisms: possible role of
endocannabinoids. (A) y-Aminobutyric (GABA) neurons in the RMTg
receive a major glutamatergic (GLU) input from lateral habenula (LHb),
show phasic activation after aversive stimuli and inhibit ventral tegmental
area (VTA) dopamine (DA) neurons. The inset displays oscilloscope traces
recorded from a DA neuron inhibited for ~ 100 ms following RMTg
stimulation. The graphs represent rate histograms recorded from RMTg and
DA neurons and show increase or decrease in firing rate, respectively,
following a painful stimulus (paw pinch). Rate histograms and oscilloscope
traces are adapted from Lecca et al. (2011a,b). We hypothesize that pauses
in DA neuron firing rate, which are known to encode reward omission and
punishment, might be mediated by the RMTg and regulated by
endocannabinoids (i.e., 2-arachidonoylglycerol, 2-AG) activating presynaptic
CB1 receptors. DA neurons receive also important glutamatergic afferents
arising from various brain regions. Glutamatergic terminals are also
endowed with presynaptic CB1 receptors. (B) Acute drug administration or
reinstatement of drug self-administration excite DA neurons and DA release
in terminal regions. On the other hand, addicting drugs also inhibit RMTg
neurons (Lecca et al., 2011a) and/or suppress RMTg-induced inhibition of
DA neurons (Lecca et al., 2011b), contributing to their excitation via a
disinhibition mechanism. The oscilloscope traces in the inset show that
RMTg-induced inhibition of the same DA neuron as in (A) is attenuated
following cannabinoid administration (from Lecca et al., 2011b). Hence, we
hypothesize that endocannabinoids might modulate the strength of these
inhibitory afferents via long- or short-term forms of synaptic plasticity (such
as depolarization-induced suppression of inhibition, DSI or long-term
depression of GABA afferents, LTDgaga, respectively). The picture is further
complicated, however, by the fact that endocannabinoids also modulate
glutamatergic afferents, inducing functionally opposite forms of synaptic
plasticity (such as depolarization-induced suppression of excitation, DSE or
long-term depression of glutamatergic afferents, LTD).
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Conversely, 2-AG appears as the key signaling molecule
released on demand by VTA DA neurons. Hence, 2-AG medi-
ates depolarization-induced suppression of excitation (Melis
et al., 2006), a form of short-term plasticity that might serve
to limit pathological excitation of VTA DA neurons, such as
under ischemic—reperfusion injury (Melis et al., 2006). Addi-
tionally, behaviorally relevant patterns of synaptic activity such
as a brief burst (2s, 5Hz) of excitatory synaptic activity onto
DA neurons activate mGluR1 and increase intracellular Ca?*
levels, thus leading to 2-AG release, which transiently and selec-
tively reduces excitatory inputs and DA neuron spike and burst
probability (Melis et al., 2004a; Pillolla et al., 2007). Hence, it
was suggested that 2-AG operates locally within the VTA as a
device for DA neurons to switch their firing pattern and activ-
ity in response to stimuli (Melis et al., 2004a). Consistently, 2-
AG synthetic enzyme sn-1-diacylglycerol lipase-a has been found
to be widely expressed in the VTA on DA neurons in prox-
imity of both glutamatergic and GABAergic synapses (Matyds
et al., 2008). Accordingly, different groups have shown that 2-
AG plays a role in diverse forms of long-term synaptic plas-
ticity expressed by VTA DA neurons (Pan et al., 2008a; Haj-
Dahmane and Shen, 2010; Kortleven et al., 2011). Remarkably,
2-AG mediates long-term depression (LTD; Haj-Dahmane and
Shen, 2010), and inhibits long-term potentiation (LTP; Kortleven
etal.,2011) at excitatory synapses, consistently with its role in short
forms of plasticity at these synapses. Additionally, 2-AG medi-
ates LTD at GABAergic synapses (LTDgapa; Pan et al., 2008a,b,
2011).

NEW ENDOCANNABINOID-LIKE PLAYERS IN THE VTA: OEA
AND PEA

Along with anandamide, the enzyme N-acylphosphatidylethanola
mine-hydrolyzing phospholipase D (NAPE-PLD) also generates
other NAEs, such as the anorectic and lipolytic oleoylethanolamide
(OEA) and the anti-inflammatory palmitoylethanolamide (PEA).
Although OEA and PEA are not endocannabinoids, but ligands
of peroxisome proliferator-activated receptors (PPAR), they are
considered endocannabinoid-related molecules (Pistis and Melis,
2010). In fact, they share with anandamide both the anabolic and
degradative pathway (Lambert and Di Marzo, 1999), and they also
compete with anandamide for its hydrolysis by the enzyme fatty
acid amide hydrolase (FAAH), thereby causing an indirect acti-
vation of other receptors and the so called “entourage effect” (De
Petrocellis et al., 2001; Di Marzo et al., 2001; Jonsson et al., 2001;
Smart et al., 2002).

Emerging evidence suggests that OEA and PEA exert their
actions in the VTA (Melis et al., 2008, 2010). Particularly, they
decrease spontaneous activity of VTA DA cells and the num-
ber of spontaneously active DA neurons through a rapid non-
genomic mechanism downstream to activation of type alpha-
PPAR (PPARa; Melis et al., 2010). In 2008, the discovery that
OEA and PEA block nicotine-induced excitation of VTA DA neu-
rons both in vivo and in vitro (Melis et al., 2008) shed light
into their physiological role as negative modulators on nico-
tinic acetylcholine receptors containing p2 subunits (f2x-nAChRs;
Melis et al., 2010). These effects are blocked by the tyrosine
kinase inhibitor genistein (Melis et al., 2008), thus suggesting

the phosphorylation of B2x-nAChRs as a plausible underlying
mechanism of NAE actions (Melis et al., 20105 Pistis and Melis,
2010).

Despite the interest, the potential physiological significance,
and the implications for NAE actions on VTA DA neurons, many
questions remain unanswered. First, OEA and PEA levels have
neither been measured in the VTA nor compared with other
related lipid molecules. Second, it is not known whether these
molecules are released on demand by VTA DA neurons during
physiological or pathological circumstances. Third, it is not clear
whether they help in controlling the state of B2x-nAChRs or
the number of functional surface expressed p2+-nAChRs. Since
NAEs are found in all mammalian tissues (Hansen et al., 2001;
Hansen and Diep, 2009), one could expect OEA and PEA to
be constitutively present in the VTA. Additionally, it could be
speculated that their synthesis and/or release occurs on demand
upon cholinergic receptor activation, given their role as impor-
tant negative modulators of B2x-nAChRs. In a similar fashion,
NAEs are produced by cortical neurons in primary cultures (Stella
and Piomelli, 2001). If so, under these conditions, in the VTA
acetylcholine and NAEs might control each other in a negative
feedback mechanism, where OEA and PEA negatively modu-
late B2%-nAChRs downstream to PPARa activation, and their
biosynthesis is increased by cholinergic agonists (Pistis and Melis,
2010).

Given that B2+-nAChRs play a crucial role in mediating
the switch from “basal” to “excited” states of VTA DA neu-
rons (Mameli-Engvall et al., 2006), we currently hypothesize that
engagement of PPARa by NAEs, by making DA neurons less sen-
sitive to external information, might translate into prevention of
an erroneous attribution of saliency to otherwise irrelevant stim-
uli. Thus, engagement of PPARa by NAEs may have protective
effects and confer VTA DA neurons with the exquisite resilience
from excitotoxicity, which — together with individual differences
in ion channel makeup — might grant them less vulnerability to
metabolic dysfunction.

ROLE OF ENDOCANNABINOID-MEDIATED SYNAPTIC
MODULATION ON DA NEURONS IN GOAL-DIRECTED
BEHAVIOR/REWARD SEEKING

Despite a great deal of research, how — and if — endocannabinoid-
mediated modulation of DA neurons translates into behavior is
still to be established. Among neurotransmitters/neuromodulators
involved in the different phases of compulsive seeking of nat-
ural or drug-induced reward, the endocannabinoid system has
gained particular attention. Indeed, pharmacological manipula-
tion of endocannabinoids can influence reward-seeking behav-
ior, but if the DA system is directly involved is less clear. For
example, blockade of CBI receptors with rimonabant inhibits
nicotine-, alcohol-, and cocaine-induced phasic DA release in
the ventral striatum measured with in vivo fast-scan voltamme-
try (Cheer et al., 2007). Earlier work by Cohen et al. (2002)
showed that rimonabant inhibits nicotine-induced DA release in
the nucleus accumbens, as measured by brain microdialysis, and
nicotine self-administration. Despite evidence on drug-induced
DA release, electrophysiological studies failed to demonstrate
effects of CB1 antagonists on drug-induced excitation of DA
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neurons (Melis et al., 2000, 2008), with the exception of alcohol
(Perra et al., 2005). Thus, it can be inferred that endocannabi-
noids modulate drug-induced DA release at the synaptic level,
without affecting firing rate of DA cells. This piece of evidence
is at odds with the important modulatory role of endocannabi-
noids on synaptic afferents to DA neurons. One explanation
is that endocannabinoids might be primarily involved in the
effects of chronic drug administration, by modulating multi-
ple long-term, rather than short-term, forms of synaptic plas-
ticity, i.e., facilitating LTDgaga (Pan et al.,, 2008a,b, 2011) or
LTD on DA neurons (Haj-Dahmane and Shen, 2010), or inhibit-
ing LTP (Kortleven et al., 2011). How these functional oppos-
ing effects of endocannabinoids on long-term synaptic plastic-
ity combine with each other, and, more importantly, in which
phase of the addiction process they are engaged remains to be
established.

One possibility is that a persistent LTP at excitatory synapses
onto DA cells such as that induced by cocaine (Chen et al., 2008)
would lead to 2-AG-mediated LTD at the same synapses to protect
DA cells from overexcitation. However, under these conditions,
2-AG rather mediates LTDgapa (Pan et al., 2008b), thus raising
questions on its own role. Hence, it seems unlikely that 2-AG would
act simultaneously at both inhibitory and excitatory synapses,
although most of these latter are equipped with the key mole-
cular players required for 2-AG signaling (Madtyds et al., 2008;
Kortleven et al., 2011). Alternatively, one can suggest that cocaine-
induced released 2-AG, by removing the inhibitory inputs, can
induce DA cells to burst (F. Georges, personal communication),
consistent with the disinhibition bursts produced by removal of
GABA (Lobb etal.,2010). With this in mind, one would expect that
only VTA DA neurons encoding strong reward salience may use 2-
AG to escape from GABAergic inhibition and enhance their burst
firing (Riegel and Lupica, 2005; Madtyas et al., 2008; Figure 1B).
Given that GABAergic afferents onto DA neurons arise from dif-
ferent districts, the precise distribution pattern of key molecular
players needed for 2-AG actions can provide the correct frame-
work to understand 2-AG contribution in the context of drug
addiction.

Among behaviors related to natural or drug-induced rein-
forcement, reinstatement (equivalent to relapse in humans) is
most sensitive to CB1 receptor activation/blockade. Indeed, fol-
lowing extinction of drug-seeking behaviors such as drug self-
administration, CB1 receptor antagonists have been reported
to reliably block cue-induced or drug-induced reinstatement of
drug-seeking behavior (Fattore et al., 2003, 2005, 2007, 2011;
Le Foll and Goldberg, 2005; Ward et al., 2009; Schindler et al.,
2011; Yu et al., 2011). Vice versa, CB1 agonists reinstate drug-
seeking behaviors (Justinova et al., 2008; Scherma et al., 2008;
Gamaleddin et al., 2012). One hypothesis is that supramaximal
stimulation of CB1 receptors, such as that attained by exoge-
nous cannabinoid agonists, might desensitize or occlude 2-AG-
mediated short- or long-term forms of synaptic plasticity pri-
marily on glutamatergic afferents to DA neurons (such as short-
lasting suppression of excitation or LTD) by which DA cells
might be sensitized to priming with drugs or with drug-associated
cues.

Despite the remarkable effect on reinstatement, consen-
sus is emerging in the literature on the lack of effect of
(endo)cannabinoids on extinction of learned appetitively moti-
vated tasks (Hernandez and Cheer, 2011). On the other hand,
endocannabinoid mechanisms are strongly engaged in extinc-
tion of negatively motivated behavior (Marsicano et al., 2002;
Lutz, 2007). These pieces of evidence lead us to theorize that
endocannabinoids might also participate in the modulation of
neural circuits underlying behavioral responses to aversive stim-
uli. Although amygdala and hippocampus play a major role in
aversion mechanisms, DA neurons or their afferents might be also
involved. Among afferents to DA neurons, the RMTg plays a piv-
otal role in processing aversive and appetitive stimuli (Jhou et al.,
2009). In fact, RMTg neurons are excited by noxious stimuli and
inhibited by rewarding stimuli (Jhou et al.,2009; Hong etal., 2011).
These cells form inhibitory synapses with DA neurons (Kaufling
et al., 2010; Balcita-Pedicino et al., 2011) and activation of the
RMTg inhibits DA neurons both in the rat (Lecca et al., 2011a,b)
and in the monkey (Hong et al., 2011). Pauses in DA neuron firing,
which encode lack of reward or punishment, might be mediated
by the RMTg (Figure 1A) and be regulated by endocannabinoids.
In support to this idea, cannabinoids were shown to depress fir-
ing rate of RMTg neurons by reducing the strength of excitatory
postsynaptic currents (Lecca et al., 2011a; Figure 1B). Moreover,
they depress inhibitory inputs on DA neurons arising from RMTg
stimulation (Lecca et al., 2011b). Although the expression of CB1
receptors either in the RMTg neurons’ cell body or terminals
remains to be demonstrated, electrophysiological evidence sup-
ports the notion that the endocannabinoid system might modulate
these afferents and finely adjust DA neuron responses to punish-
ment/aversion or reward omission (Figures 1A,B). Consistently,
cannabinoids disrupt reversal learning by conferring behavioral
inflexibility and increasing perseveration errors (Egerton et al.,
2005; Hill et al., 2006; Harte and Dow-Edwards, 2011; Sokolic et al.,
2011). On the other hand, RMTg terminals might be a major tar-
get for endocannabinoid-mediated short- and long-term forms of
synaptic plasticity (depolarization-induced suppression of inhibi-
tion, DSI, or LTDgaga, respectively). Hence, by depressing these
important inhibitory afferents, endocannabinoids might indi-
rectly excite DA neurons and/or sensitize them toward behavioral
or drug-related stimuli, this mechanism resulting into an enhanced
stimulus-evoked firing activity and DA release in terminal regions
(Figure 1B).

CONCLUDING REMARKS
Further studies on the knowledge of the anatomy, physiology, bio-
chemistry, and pharmacology of these circuits might contribute to
new therapeutic strategies for treatment of psychiatric disorders
characterized by a dysregulation of the endocannabinoid system
in the reward DA circuitry.

It appears, therefore, compelling to investigate whether diverse
sets of synapses, most likely arising from extrinsic sources, are
differently equipped/enriched with the discrete players of 2-AG
signaling machinery. One interesting possibility could be that in
the VTA, similarly to the amygdala (Yoshida et al., 2011), a unique
molecular convergence of 2-AG signaling molecules would occur
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at specific synapses, resulting in a targeted control of the excitabil-
ity of DA neurons. If this is the case, many of the unraveled issues
regarding (endo)cannabinoid-mediated effects on DA neurons
and the dependent behavior would be solved.
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