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BAY 41-2272 (BAY), a stimulator of soluble guanylyl cyclase, increases cyclic nucleotides
and inhibits proliferation of vascular smooth muscle cells (VSMCs). In this study, we
elucidated mechanisms of action of BAY in its regulation of vasodilator-stimulated phos-
phoprotein (VASP) with an emphasis on VSMC phosphodiesterases (PDEs). BAY alone
increased phosphorylation of VASPSer239 and VASPSer157, respective indicators of PKG and
PKA signaling. IBMX, a non-selective inhibitor of PDEs, had no effect on BAY-induced phos-
phorylation atVASPSer239 but inhibited phosphorylation atVASPSer157. Selective inhibitors of
PDE3 or PDE4 attenuated BAY-mediated increases at VASPSer239 and VASPSer157, whereas
PDE5 inhibition potentiated BAY-mediated increases only atVASPSer157. In comparison, 8Br-
cGMP increased phosphorylation at VASPSer239 and VASPSer157 which were not affected
by selective PDE inhibitors. In the presence of 8Br-cAMP, inhibition of either PDE4 or PDE5
decreased VASPSer239 phosphorylation and inhibition of PDE3 increased phosphorylation
at VASPSer239, while inhibition of PDE3 or PDE4 increased and PDE5 inhibition had no
effect on VASPSer157 phosphorylation. These findings demonstrate that BAY operates via
cAMP and cGMP along with regulation by PDEs to phosphorylate VASP in VSMCs and that
the mechanism of action of BAY in VSMCs is different from that of direct cyclic nucleotide
analogs with respect to VASP phosphorylation and the involvement of PDEs. Given a role
for VASP as a critical cytoskeletal protein, these findings provide evidence for BAY as a
regulator of VSMC growth and a potential therapeutic agent against vasculoproliferative
disorders.
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INTRODUCTION
Vascular smooth muscle cell (VSMC) growth is an integral process
in the pathophysiology of numerous cardiac and vascular dis-
orders; thus, approaches aimed at minimizing abnormal VSMC
growth are of significant clinical and therapeutic interest. Recent
advances in therapy has aimed to reduce vessel growth through tar-
geted gene delivery, use of drug-coated stents, and localized deliv-
ery of pharmacologic agents in the vascular wall. Cyclic guanosine
monophosphate (cGMP) and cyclic adenosine monophosphate
(cAMP) are second messengers involved in many cellular processes
including those associated with vascular growth (Indolfi et al.,
1997; Varenne et al., 1998). Cyclic nucleotide signaling is con-
sidered antiproliferative in cardiac and vascular tissues and has
been the target of numerous basic science and clinical studies (Feil
et al., 2005; Tulis, 2008). Both cAMP and cGMP are hydrolyzed

Abbreviations: BAY, BAY 41-2272; cAMP, cyclic adenosine monophosphate; cGMP,
cyclic guanosine monophosphate; CILO,cilostazol; DMSO,dimethyl sulfoxide; ERK,
extracellular-signal-regulated kinase; EPACs, exchange proteins activated by cAMP;
FBS, fetal bovine serum; GTP, guanosine triphosphate; IBMX, isobutylmethylx-
anthine; NO, nitric oxide; PDE, phosphodiesterase; PDE3, cGMP-inhibited PDE;
PDE4, cAMP-specific PDE; PDE5, GMP-specific PDE; pGC, particulate guany-
late cyclase; PKA, cAMP-dependent protein kinase; PKG, cGMP-dependent protein
kinase; ROL, rolipram; sGC, soluble guanylate cyclase; VSMC, vascular smooth
muscle cell; VAR, vardenafil; VASP, vasodilator-stimulated phosphoprotein; ZAP,
zaprinast.

by phosphodiesterases (PDEs) which catalyze hydrolysis to the 5′-
monophosphate in order to maintain steady state levels of cyclic
nucleotides (Bender and Beavo, 2006).

Phosphodiesterases represent a target for many current phar-
macotherapies and as such have major clinical appeal. The major
PDEs present in VSMCs are the cGMP-inhibited PDE (PDE3), the
cAMP-specific PDE (PDE4), and the major cGMP-hydrolyzing
enzyme PDE5 (Polson and Strada, 1996; Rose et al., 1997; Tilley
and Maurice, 2002; Aizawa et al., 2003; Rybalkin et al., 2003; Kass
et al., 2007a,b). Balloon angioplasty increases the expression and
activity of PDE3 and PDE4 in VSMCs (Zhao et al., 2008). Both
PDE3 and PDE4 contribute to the regulation of VSMC prolifera-
tion and in fact, cilostazol, a PDE3 inhibitor, has shown promise
in clinical trials for treatment of restenosis (Douglas et al., 2005).
Likewise, PDE5 and its inhibitors have gained considerable atten-
tion because of the role that they play in the vasculature. For
example, PDE5 inhibitors such as Viagra and Revatio are currently
in use for treatment of erectile dysfunction and pulmonary hyper-
tension, respectively (Boolell et al., 1996; Hemnes and Champion,
2006), clearly showing clinical importance of PDEs.

The nitric oxide (NO)–sGC–cGMP signaling pathway is of
major importance in the cardiovascular system where it regu-
lates normal functions such as VSMC relaxation and growth
(Ignarro et al., 1986; Lucas et al., 2000). Cardiovascular diseases
are often attributed to insufficiency in NO production due to
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endothelial dysfunction and associated attenuation of NO–sGC–
cGMP signaling (Challah et al., 1997; Freedman et al., 1998;
Cai and Harrison, 2000; Loscalzo, 2001). The molecular mech-
anisms of cGMP signaling are not well understood and studies
suggest that NO can both promote and inhibit pathological vas-
cular remodeling (Garg and Hassid, 1989; Rudic et al., 1998;
Kawashima et al., 2001; Ozaki et al., 2002; Sasaki et al., 2008).
Clinical use of the NO system is limited to indirect NO donors
which suffer complications including tolerance, tachyphylaxis, and
toxicity (Rindone and Sloane, 1992; Sydow et al., 2004; Mun-
zel et al., 2005). This has led to the development of synthetic,
NO-independent activators of sGC which directly stimulate the
enzyme and promote cGMP signaling without the deleterious
effects attributed to NO. Interestingly these agents can operate
via mechanisms either dependent or independent of substrate
heme (Ko et al., 1994; Stasch et al., 2001, 2002; Straub et al.,
2001). BAY 41-2272 (BAY), a novel NO-independent sGC stim-
ulator, is a parent drug of the heme-dependent class whose
therapeutic potential is just beginning to be highlighted (Boer-
rigter and Burnett, 2007; Mendelev et al., 2009; Roger et al.,
2010).

A target for cyclic nucleotides that may affect VSMC growth is
vasodilator-activated serum phosphoprotein (VASP), a cytoskele-
tal protein which has diverse effects on cell motility, migration, and
adhesion (Benz et al., 2009). VASP was originally characterized as
a substrate for the cyclic nucleotide-dependent protein kinases,
PKA, and PKG (Butt et al., 1994), with three distinct phospho-
rylation sites (Ser157, Ser239, Thr278) identified (Butt et al., 1994;
Haffner et al., 1995). Despite the conventional thought that phos-
phorylation of VASP at Ser239 and Ser157 occurs by PKG and PKA,
respectively, more recent studies suggest that there is crosstalk and
that all three sites can be cross-phosphorylated by PKA, PKG, PKC,
and the metabolic regulator AMP kinase (Chitaley et al., 2004;
Blume et al., 2007). The phosphorylation pattern of VASP is com-
plex and dynamic, and although VASP phosphorylation continues
to be used as a biochemical marker for activation of PKA and
PKG, its precise cellular and molecular functions remain to be
fully determined.

It was recently demonstrated that BAY increases VASP phos-
phorylation and attenuates vascular remodeling in the pulmonary
vasculature in a hypoxia-induced rat model (Deruelle et al., 2006;
Thorsen et al., 2010). In support, we recently demonstrated that
BAY increases cAMP, cGMP, VASP phosphorylation and inhibits
proliferation of rat A7R5 VSMCs (Mendelev et al., 2009), rat
primary VSMCs, and neointimal formation in the rat carotid
artery (Joshi et al., 2011). In the current study we sought to
investigate the influence of PDEs on VASP phosphorylation in
response to BAY using rat primary VSMCs. We hypothesized
that PDEs modulate BAY-induced increases in cGMP/cAMP and
phosphorylation of VASP. Results demonstrate that BAY operates
in primary VSMCs via indirect crosstalk with cyclic nucleotides
and through mechanisms involving selective VASP phosphory-
lation and PDE regulation. These functional attributes of BAY
add to its characterization and understanding of the molecular
basis of how BAY functions in VSMCs and add to its potential
as a pharmacologic candidate for the treatment of cardiovascular
disorders.

MATERIALS AND METHODS
RAT PRIMARY VSMC CULTURE
Following procedures established in our laboratory (Durante et al.,
1993; Liu et al., 2009; Mendelev et al., 2009), thoracic aorta VSMCs
were obtained from male Sprague-Dawley rats (100–125 g) and
cultured in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum (FBS) and Primocin (100 mg/L;
Invivogen) at 37˚C in 95% air/5% CO2. Cells were split and prop-
agated through passage 6. In general for each assay the “n” is equal
to three to five wells per treatment group done in triplicate. In each
figure legend the exact total number of wells for each experiment
is listed as “n” (i.e., n = 15 indicates five wells per plate with three
plates total used or vice versa). All studies abided by the guidelines
of the Institutional Animal Care and Use Committee and con-
formed to the Guide for the Care and Use of Laboratory Animals
(US National Institutes of Health, Publication No. 85-23, revised
1996).

CYCLIC NUCLEOTIDE ASSAYS
The content of cGMP and cAMP was determined using two sep-
arate enzyme immunoassay kits (Sigma, St. Louis, MO, USA).
In brief, VSMCs were pretreated with PDE inhibitors or vehi-
cle dimethyl sulfoxide (DMSO) or phosphate buffered saline
(PBS) for 30 min prior to stimulation with BAY (1 nM–10 μM,
Alexis Biochemicals, Farmingdale, NY, USA) for specific times
(≤60 min). Reactions were stopped with HCl and protein con-
centrations determined with a bovine serum albumin (Thermo
Scientific, Waltham, MA, USA) protein assay. Inhibitors used for
the cGMP/cAMP assays were: isobutylmethylxanthine (IBMX;
10 μM), a general PDE inhibitor (Calbiochem, San Diego, CA,
USA), and zaprinast (ZAP; 10 μM; MP Biochemicals) and var-
denafil (VAR; 50 nM; Toronto Research Chemicals, North York,
ON, Canada), selective PDE5 inhibitors. The concentrations of
inhibitors chosen were based on reported IC50 values and experi-
ments performed in other cell types (Rose et al., 1997; Bender and
Beavo, 2006; Keswani et al., 2009). In addition, inhibitors were
used at concentrations that, by themselves, do not increase base-
line levels of cyclic nucleotides. The vehicle for BAY, IBMX, and
ZAP was DMSO and the vehicle for VAR was PBS.

IN-CELL WESTERN
Phosphorylation of VASP was examined by use of an established
cell-based immunocytochemical assay for monitoring kinase sig-
naling pathways (Chen et al., 2005). Rat VSMCs were seeded
(∼20,000 cells/well) in 96 well plates and once adhered, pre-
treated with a PDE inhibitor or vehicle for 30 min after which
they were stimulated with BAY for 60 min. The inhibitors used
for In-Cell Westerns were cilostazol (CILO; 10 μM), a selective
PDE3 inhibitor (Sigma-Aldrich), rolipram (ROL; 10 μM), a selec-
tive PDE4 inhibitor (Tocris, Minneapolis, MN, USA), ZAP, VAR,
and IBMX. The vehicle for CILO and ROL was DMSO. After
incubations media was removed and cells were fixed with 4%
formalin in PBS for 20 min. Cells were washed and permeabi-
lized with PBS containing 0.1% Triton X-100, followed by 1×
PBS + 0.1% Tween-20. The cells were blocked with IR blocking
solution (Rockland, Immunochemicals, Gilbertsville, PA, USA)
for 3 h and then incubated with rabbit polyclonal anti-rat primary
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antibodies directed against VASP at phospho Ser239 (1:500; Cell
Signaling), VASP at phospho Ser157 (1:500; Cell Signaling) or α-
tubulin (1:500; Sigma) overnight at 4˚C. Cells were washed with
PBS + 0.1% Tween-20 followed by incubation with two secondary
antibodies: IRDye 800CW (1:500; Odyssey) and Alexa Fluor 680
for 1 h. Afterward, cells were washed with PBS containing 0.1%
Tween-20 followed by plain PBS. The plate was allowed to dry
overnight and scanned using the appropriate channels for detec-
tion with a Li-Cor Odyssey Imager (LI-COR Odyssey; LI-COR
Biosciences, Lincoln, NE, USA). The proteins were quantified by
fluorescence and normalized with respect to α-tubulin within
each well.

DATA ANALYSIS
Statistical significance between experiments was defined as
a P ≤ 0.05 and was determined using an analysis of vari-
ance (ANOVA). If a significant change occurred, a multiple
replicate Bonferroni or Tukey post hoc test was performed
to identify individual differences. Results were reported as
mean ± SEM.

RESULTS
THE EFFECT OF BAY-INDUCED INCREASES IN CYCLIC NUCLEOTIDES IN
RAT PRIMARY VSMCs
BAY 41-2272 increased the content of both cGMP and cAMP, with
an increase observed for cGMP at 100 nM after 15 min (Figure 1A)
and for cAMP at 1 nM after 5 min (Figure 1B). At 10 μM BAY
significantly elevated cGMP (Figure 2A) levels without marked
effects on cAMP (Figure 2B) after 60 min, yet IBMX, a non-
selective PDE inhibitor, failed to significantly potentiate these
effects. Interestingly, IBMX alone significantly increased cAMP
content under these conditions. Therefore, given the overall goal
of this study to evaluate PDE involvement in the anti-mitogenic
effects of BAY previously observed at 10 μM (Joshi et al., 2011),
for all subsequent experiments BAY was used at 10 μM.

THE EFFECT OF INHIBITION OF PDE5 ACTIVITY ON BAY-INDUCED
INCREASES IN CYCLIC NUCLEOTIDES IN RAT PRIMARY VSMCs
To shed light on a recent controversy about the inhibition of
PDE5 activity by BAY (Mullershausen et al., 2004) and in order to
determine the contribution of PDEs in regulating BAY-stimulated
cyclic nucleotide signaling, rat primary VSMCs (passage ≤ 6) were
treated individually with one of two chemically distinct selective
inhibitors of PDE5: zaprinast (ZAP), a PDE5 antagonist with mod-
erate potency (IC50 ∼ 1 μM), (Ballard et al., 1998; Bender and
Beavo, 2006; Lugnier, 2006), or vardenafil (VAR), a highly potent
inhibitor of PDE5 (IC50 ∼ 1 nM), (Bender and Beavo, 2006), prior
to stimulation with BAY. ZAP (10 μM) did not have a significant
effect on the levels of cGMP induced by BAY alone (Figure 3A),
whileVAR (50 nM) significantly potentiated the increases in cGMP
induced by BAY (Figure 3B). Similarly, ZAP had no effect on BAY-
induced cAMP yet VAR potentiated BAY-mediated increases in
cAMP (Figure 3C). Of note, the individual effects of ZAP or VAR
alone on cAMP and cGMP content were not different from that
of vehicle controls (data not shown).

EFFECT OF INHIBITORS OF sGC ON BAY-STIMULATED cGMP
Based on the recent findings for BAY in terms of its mecha-
nism of action and dependence on sGC and cGMP (Stasch et al.,
2001; Bawankule et al., 2005; Teixeira et al., 2006), we sought
to determine if BAY-induced increases in cGMP are via direct
stimulation of sGC. Primary VSMCs were incubated with two
chemically dissimilar inhibitors of sGC: NS 2028 (NS, 1 μM) or
ODQ (10 μM), prior to stimulation with BAY (10 μM; Garth-
waite et al., 1995; Morbidelli et al., 2010). Either agent alone had
no effect on cGMP or cAMP levels compared to vehicle con-
trols (data not shown); however, respective co-incubation of each
inhibitor with BAY completely attenuated the increase in cGMP
induced by BAY (Figure 4). Co-treatment of the sGC inhibitors
with BAY did not affect cAMP content relative to BAY alone (data
not shown).

FIGURE 1 | Effect of BAY 41-2272 (BAY) on increases in cyclic nucleotides.

(A) VSMCs were treated with BAY (100 nM, open circles) or vehicle (filled
circles) for 5, 15, and 30 min (n = 3). Values are the means ± SE. *Different

from control (P < 0.05). (B) VSMCs were treated with BAY (1 nM, open
circles) or vehicle (filled circles) for 5, 15, 30, and 60 min (n = 6). Values are the
means ± SE. *Different from control (P < 0.05).
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FIGURE 2 | (A) Effect of IBMX on BAY 41-2272 (BAY)-induced increases in
cGMP. VSMCs were pretreated with IBMX (10 μM) or vehicle for 30 min
prior to stimulation with BAY (10 μM) for 60 min (n = 15). Values are the
means ± SE. *Different from control (P < 0.05). (B) Effect of IBMX on

BAY-induced increases in cAMP. VSMCs were pretreated with IBMX
(10 μM) or vehicle for 30 min prior to stimulation with BAY (10 μM) for
60 min (n = 8). Values are the means ± SE. *Different from control
(P < 0.01).

EFFECT OF IBMX ON BAY-INDUCED VASP PHOSPHORYLATION
We recently reported that BAY increases phosphorylation of VASP
at both Ser sites (Joshi et al., 2011). Therefore, to determine
the effect of PDEs on BAY-induced differential VASP phospho-
rylation, primary VSMCs were stimulated with BAY (10 μM) in
the presence or absence of IBMX (10 μM). Treatment with BAY
alone significantly increased phosphorylation of both VASPSer239

(Figure 5A) and VASPSer157 (Figure 5B) compared to vehicle con-
trols. Pretreatment with IBMX in the presence of BAY had no effect
on VASPSer239 (Figure 5A) but inhibited VASPSer157 phosphory-
lation toward control levels (Figure 5B). Treatment with IBMX
alone significantly elevated VASPSer239 (Figure 6C) but did not
alter VASPSer157 phosphorylation compared to controls (data not
shown). Notably, none of the PDE inhibitors alone suppressed
VASP phosphorylation.

EFFECT OF SELECTIVE INHIBITORS OF PDEs ON BAY-INDUCED VASP
PHOSPHORYLATION
In order to determine specific PDEs involved in regulation of
VASP phosphorylation, primary VSMCs were incubated with
selective PDE inhibitors prior to stimulation with BAY (10 μM).
Incubation with either the PDE3 inhibitor, cilostazol (CILO;
10 μM), or the PDE4 inhibitor rolipram (ROL; 10 μM) inde-
pendently decreased BAY-mediated VASPSer239, whereas ZAP only
slightly (non-significantly) reduced BAY-mediated VASPSer239

(Figure 6A). In comparison, incubation with ZAP significantly
potentiated while CILO and ROL inhibited VASPSer157 induced
by BAY (Figure 6B). Importantly, inhibition of any PDE alone
(in the absence of BAY) increased VASPSer239 compared to vehicle
(Figure 6C) but had no effect on VASPSer157 (data not shown).
To further explore the role of PDE5 in VASP phosphorylation,
primary VSMCs were incubated with the potent PDE5 inhibitor
VAR (50 nM) prior to stimulation with BAY (10 μM). VAR had no

effect on BAY-induced VASPSer239 but potentiated the increase in
VASPSer157 (Figures 7A,B, respectively).

EFFECT OF INHIBITORS OF sGC ON VASP PHOSPHORYLATION
To determine if BAY-induced phosphorylation of VASP is depen-
dent on sGC, VSMCs were incubated with NS 2028 (1 μM) or
ODQ (10 μM) prior to stimulation with BAY (10 μM). Inhibi-
tion of sGC with either antagonist had no effect on BAY-mediated
VASP phosphorylation at either VASP site (data not shown).

EFFECT OF CYCLIC NUCLEOTIDE ANALOGS AND PDE INHIBITION ON
VASP PHOSPHORYLATION
In an effort to compare the mechanisms of BAY-induced phos-
phorylation of VASP to that elicited by direct cyclic nucleotide
analogs, VSMCs were incubated with either 8Br-cAMP (10 μM)
or 8Br-cGMP (10 μM). Compared to vehicle controls, either ana-
log increased phosphorylation of VASP at both VASPSer239 and
VASPSer157 with 8Br-cGMP (10 μM) being more efficacious at
both sites (Figures 8A,B, respectively). In order to determine if
inhibition of PDE activity would affect the phosphorylation of
VASP induced by these analogs,VSMCs were incubated with selec-
tive PDE inhibitors prior to addition of the analog. Incubation
with ZAP,CILO,or ROL (each 10 μM) had no effect on 8Br-cGMP-
induced VASP phosphorylation at either site (data not shown). In
comparison, inhibition of either PDE4 or 5 decreased phospho-
rylation induced by 8Br-cAMP at VASPSer239 while inhibition of
PDE3 increased the phosphorylation at VASPSer239 (Figure 9A).
On the contrary, ROL increased the phosphorylation induced by
8Br-cAMP at VASPSer157 while PDE5 inhibition had no effect
(Figure 9B).

DISCUSSION
Cyclic AMP and cGMP are important mediators that regulate
many physiological processes in cells in response to hormones and
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FIGURE 3 | (A) Effect of zaprinast (ZAP) on BAY 41-2272 (BAY)-induced
increases in cGMP. VSMCs were pretreated with ZAP (ZAP, 10 μM) or vehicle
for 30 min prior to stimulation with BAY (10 μM) for 60 min (n = 11). Values are
the means ± SE. *Different from control (P < 0.05). (B) Effect of vardenafil
(VAR) on BAY-induced increases in cGMP. VSMCs were pretreated with VAR
(50 nM) or vehicle for 30 min prior to stimulation with BAY (10 μM) for 60 min

(n = 7). Values are the means ± SE. *Different from control (P < 0.05);
† different from all other values (P < 0.05). (C) Effect of vardenafil (VAR) or
zaprinast (ZAP) on BAY-induced increases in cAMP. VSMCs were pretreated
with ZAP (10 μM, n = 11), VAR (50 nM, n = 7), or vehicle for 30 min prior to
stimulation with BAY (10 μM) for 60 min. Values are the means ± SE.
*Different from control (P < 0.01).

FIGURE 4 | Effect of NS 2028 (NS) or ODQ on BAY 41-2272

(BAY)-induced increases in cGMP. VSMCs were pretreated with NS
(1 μM), ODQ (10 μM), or vehicle for 30 min prior to stimulation with BAY
(10 μM) for 60 min (n = 3). Values are the means ± SE. *Different from all
other values (P < 0.01).

other stimuli (Beavo and Brunton, 2002; Rehmann et al., 2007).
Cyclic nucleotides exert their effects through protein kinases, cyclic
nucleotide-gated ion channels, PDEs, and guanine nucleotide
exchange factors (Vaandrager and de Jonge, 1996; Kaupp and
Seifert, 2001, 2002; Bos, 2003; Seino and Shibasaki, 2005; Craven
and Zagotta, 2006). It has been demonstrated in VSMCs that
increases in cyclic nucleotides are important for migration (Garg
and Hassid, 1989; Sarkar et al., 1996) and proliferation (Garg
and Hassid, 1989; Cornwell et al., 1994; Yu et al., 1997). Previ-
ously we showed that BAY 41-2272 (BAY), a potent stimulator
of sGC, increases both cGMP and cAMP and inhibits prolifera-
tion of rat A7R5 VSMCs, possibly through a VASP/PKA-specific
mechanism (Mendelev et al., 2009). Recently we reported in rat
primary VSMCs that BAY inhibits migration via cGMP-directed
PKG/VASPSer239 yet reduces proliferation through cGMP/PKA
signaling (Joshi et al., 2011). In the current study we investi-
gated the regulatory role of cyclic nucleotide-hydrolyzing PDEs on
VASP phosphorylation in response to BAY in rat primary VSMCs.
Results demonstrate that: (1) BAY increases content of both cAMP
and cGMP; (2) BAY induces site-specific phosphorylation of VASP;
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FIGURE 5 | (A) Effect of IBMX and BAY 41-2272 (BAY) on VASPSer239

phosphorylation. VSMCs were pretreated with IBMX (10 μM) or vehicle
control (DMSO) for 30 min prior to stimulation with BAY (10 μM) for
60 min (n = 5). Values are the means ± SE. *Different from vehicle
control (P < 0.05). (B) Effect of IBMX and BAY 41-2272 (BAY) on

VASPSer157 phosphorylation. VSMCs were pretreated with IBMX
(10 μM) or vehicle control (DMSO) for 30 min prior to stimulation with
BAY (10 μM) for 60 min, (n = 4). Values are the means ± SE. *Different
from vehicle control (P < 0.05); **different from vehicle control and
BAY (P < 0.05).

(3) PDEs differentially regulate BAY-induced VASP phosphoryla-
tion; (4) PDE5 regulates increases in cGMP induced by BAY; and
(5) the mechanisms of BAY-induced phosphorylation of VASP are
unique from that of direct cGMP/cAMP analogs. These results
characterize for the first time novel mechanisms of BAY in VSMCs
and provide important new information on the role of PDEs and
VASP in BAY-mediated growth protection.

In this study using primary VSMCs, BAY increased the levels
of both cAMP and cGMP; however, because BAY increases cyclic
nucleotide content at lower concentrations and different times this
must be considered when using agonists of cyclic nucleotide sig-
naling such as BAY in VSMCs. Results from PDE inhibitor studies
show that PDE5 regulates BAY-induced increases in cGMP. More-
over, the increases in cAMP may be secondary to the increases
in cGMP due to cGMP-mediated inhibition of PDE3 (Maurice
and Haslam, 1990). These findings suggest that cyclases and PDEs
present in VSMCs play critical roles in maintaining cAMP at a
steady state in the presence of elevated cGMP levels. This places
additional emphasis on the importance of tight regulation of cyclic
nucleotides within these cells due to involvement in numerous
and often redundant or reciprocal signaling pathways (Palmer and
Maurice, 2000; Raymond et al., 2007; Wilson et al., 2008).

It is important to note that the intracellular concentrations of
both cAMP and cGMP are never high simultaneously and that
their levels are regulated both temporally and spatially (Zaccolo
and Pozzan, 2002; Zaccolo and Movsesian, 2007; Nausch et al.,
2008). In this study, we have seen that cAMP is tightly regulated in
these cells as IBMX alone increased its levels drastically and BAY
reduced these effects. Furthermore, IBMX had no effect on the
increase in phosphorylation at Ser239 but inhibited the increase in
phosphorylation at Ser157, consistent with the effect of IBMX on
the cyclic nucleotide content.

It is well demonstrated that an increase in cyclic nucleotides
leads to phosphorylation of VASP at Ser157 and Ser239, suggesting

increases in the activities of the respective kinases PKA and
PKG (Butt et al., 1994; Haffner et al., 1995). Indeed, our own
data as well as several recent reports (Abel et al., 1995; Chita-
ley et al., 2004) show cross-phosphorylation of these reported
kinase-specific sites by cGMP and cAMP, suggesting promiscu-
ity of VASP phosphorylation by otherwise distinct kinases (Chen
et al., 2004). Investigation of specific PDE isoforms involved in
the regulation of VASP phosphorylation induced by BAY demon-
strated that inhibition of PDE3 or PDE4 reduced the increase
in phosphorylation at both Ser239 and Ser157. Conversely, inhi-
bition of PDE5 increased phosphorylation only at Ser157. These
data suggest that BAY-induced increases in cGMP and activation
of PKG occur within local intracellular pools and lend support to
the argument of compartmentalization of cyclic nucleotide signal-
ing pathways in VSMCs (Piggott et al., 2006; Nausch et al., 2008;
Baillie, 2009).

Regardless of the mechanisms involved, these findings show
that BAY can induce phosphorylation of both PKG and PKA sites
on VASP, providing additional evidence for crosstalk between the
cAMP/PKA and cGMP/PKG systems with regard to site-specific
VASP phosphorylation (see Figure 10). Using chemically dissim-
ilar inhibitors of sGC, we show that BAY operates to increase
cGMP through a mechanism dependent upon sGC. However, the
mechanisms for BAY-mediated increases in cAMP may be more
indirect, possibly via direct inhibition of PDE5 activity (Muller-
shausen et al., 2004) or through increases in cGMP which then
would inhibit PDE3 activity, thus increase the levels of cAMP and
PKA activity (Maurice and Haslam, 1990; Degerman et al., 1997;
Stasch et al., 2001). Alternatively, pharmacologic inhibition of sGC
had no effect on the ability of BAY to phosphorylate VASP at either
Ser157 or Ser239. Lack of an effect of inhibitors of sGC on VASP
could be due to a non-selective, cyclase-independent effect of BAY
or alternatively due to the increases in cAMP. The increases in
cAMP may lead to activation of the MAPK pathway which can
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FIGURE 6 | (A) Effect of inhibitors of PDEs on VASPSer239

phosphorylation. VSMCs treated with vehicle (DMSO), cilostazol (CILO,
10 μM), rolipram (ROL, 10 μM), or zaprinast (ZAP, 10 μM) for 30 min
(n = 5). Values are the means ± SE. *Different from vehicle control
(P < 0.05); **different from vehicle control and BAY (P < 0.05); † different
from all other values (P < 0.05). (B) Effect of inhibitors of PDEs on BAY
41-2272 (BAY)-induced VASPSer157 phosphorylation. VSMCs treated with
BAY (10 μM) in the absence or presence of cilostazol (CILO, 10 μM),

rolipram (ROL, 10 μM), or zaprinast (ZAP, 10 μM), (n = 5). Values are the
means ± SE. *Different from vehicle control (P < 0.01); † different from all
other values (P < 0.05); **different from vehicle control and BAY
(P < 0.05). (C) Effect of inhibitors of PDEs on BAY 41-2272 (BAY)-induced
VASPSer239 phosphorylation. VSMCs treated with BAY (10 μM) in the
absence or presence of cilostazol (CILO, 10 μM), rolipram (ROL, 10 μM),
or zaprinast (ZAP, 10 μM). Values are the means ± SE. *Different from
vehicle control (P < 0.01).

possibly lead to changes in VASP phosphorylation according to
the intracellular state of the cell. One other possible explanation is
that BAY activates some other unidentified kinase in this cell that
can phosphorylate VASP. BAY has also been shown to have effects
apart from NO such as inhibition of Ca2+ influx, stimulation of
the sodium pump, or inhibition of PDE5 (Mullershausen et al.,
2004; Bawankule et al., 2005; Teixeira et al., 2006). The latter is one
possible explanation for this finding because an inhibition of PDE5
would increase cGMP and thus lead to phosphorylation of VASP.
Thus, downstream substrate phosphorylation would not be solely
based on increases in cGMP associated with sGC, demonstrating

that crosstalk between the systems and phosphorylation occurs at
either VASP site depending on the acute and local condition of the
cells.

These conclusions are supported from experiments in which
direct cAMP or cGMP analogs were added to the cells, resulting
in non-selective increases in phosphorylation at both Ser239 and
Ser157. In these assays, 8Br-cGMP seems to be more effective at
this concentration as a stimulator of phosphorylation at either site
compared to 8Br-cAMP. Interestingly, in parallel studies inhibi-
tion of select PDEs did not affect phosphorylation of Ser157 or
Ser239 in the presence of 8Br-cGMP. However, in the presence of
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FIGURE 7 | (A) Effect of vardenafil (VAR) on BAY 41-2272
(BAY)-induced VASPSer239 phosphorylation. VSMCs were pretreated
with VAR (50 nM) or vehicle (DMSO) for 30 min prior to stimulation
with BAY (10 μM) for 60 min (n = 15). Values are the means ± SE.
*Different from vehicle control (P < 0.01). (B) Effect of vardenafil

(VAR) on BAY 41-2272 (BAY)-induced VASPSer157 phosphorylation.
VSMCs were pretreated with VAR (50 nM) or vehicle (DMSO) for
30 min prior to stimulation with BAY (10 μM) for 60 min (n = 11).
Values are the means ± SE. *Different from vehicle control (P < 0.05);
† different from all other values (P < 0.05).

FIGURE 8 | (A) Effect of 8Br-cAMP and 8Br-cGMP on VASPSer239

phosphorylation. VSMCs were treated with 8Br-cAMP (10 μM), 8Br-cGMP
(10 μM), or vehicle (PBS) for 30 min (n = 3). Values are the means ± SE.
*Different from vehicle control (P < 0.05); †different from all other values

(P < 0.01). (B) Effect of 8Br-cAMP and 8Br-cGMP on VASPSer157

phosphorylation. VSMCs were treated with 8Br-cAMP (10 μM), 8Br-cGMP
(10 μM), or vehicle for 30 min (n = 3). Values are the means ± SE. *Different
from vehicle control (P < 0.05); † different from all other values (P < 0.05).

8Br-cAMP, inhibition of PDE3 potentiated VASP phosphorylation
at both sites. It has been noted that cyclic nucleotide analogs are
less efficient at inhibition or activation of PDEs themselves (Belt-
man et al., 1995), which could explain some of the differences in
the results observed. Nonetheless, these findings confirm that the
mechanism by which BAY induces phosphorylation of VASP is
distinct from that of direct kinase activation via cyclic nucleotide
analogs. The fact that BAY-induced increases in cAMP work by
a dissimilar mechanism is further confirmed with the observed
phosphorylation at Ser157, where inhibition of PDE4 potentiates
and inhibition of PDE5 had no effect with 8Br-cAMP.

These data lend support to the concept that cGMP may be a
more potent signaling protein involved in the phosphorylation of

VASP in VSMCs. They also support the idea that cAMP is more
tightly regulated in these cells and that elevation in cAMP inhibits
the phosphorylation of VASP when it occurs simultaneously with
cGMP which may be important physiologically for cell function.
We can also conclude that the increases in cAMP in response
to BAY are secondary to the increase with cGMP. A schematic
representing this hypothesis is shown in Figure 10. The physio-
logical and potentially pathophysiological role of this feedback and
inherent mechanism(s) still needs to be explored in more detail.
Overall, it appears that PDEs differentially regulate BAY-induced
increases in VASP phosphorylation in VSMCs; however, the pre-
cise mechanisms of VASP phosphorylation by BAY remain to be
further elucidated.
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FIGURE 9 | (A) Effect of inhibitors of PDEs on 8Br-cAMP-induced VASPSer239

phosphorylation. VSMCs treated with 8Br-cAMP (10 μM) in the absence or
presence of cilostazol (CILO, 10 μM), rolipram (ROL, 10 μM), zaprinast (ZAP,
10 μM), or vardenafil (VAR, 50 nM), (n = 3). Values are the means ± SE.
*Different from vehicle control (P < 0.05); † different from all other values

(P < 0.05). (B) Effect of inhibitors of PDEs on 8Br-cAMP-induced VASPSer157

phosphorylation. VSMCs treated with 8Br-cAMP (10 μM) in the absence or
presence of cilostazol (CILO, 10 μM), rolipram (ROL, 10 μM), zaprinast (ZAP,
10 μM), or vardenafil (VAR, 50 nM), (n = 3). Values are the means ± SE.
*Different from vehicle control (P < 0.05).

FIGURE 10 | According to these data in primary VSMCs we propose

that BAY stimulates sGC and promotes synthesis of cGMP which

directly activates PKG and phosphorylates VASP pSer239 thus

inhibiting cell migration (Chen et al., 2004). Cyclic GMP can also inhibit
PDE3, thereby inhibiting degradation of cAMP and increasing the duration
of its signal. An increase in cAMP can lead to stimulation of PKA and
phosphorylation of VASP pSer157, resulting in proliferation of VSMCs (Chen

et al., 2004). Our data indicate that an increase in cAMP in the presence of
an increase in cGMP leads to negative regulation of VASP phosphorylation.
Additionally, cyclic AMP can also stimulate PKG directly and activate its
signaling pathway (Cornwell et al., 1994). These data also argue for
crosstalk among the kinases where PKA can phosphorylate pSer239 and
PKG pSer157. Lastly, PDE4 can regulate the increases in cAMP and
therefore regulate phosphorylation of VASP.

Several limitations of this study are worth discussion. We have
recently analyzed the concentration- and time-dependent effects
of BAY in rat A7R5 VSMCs (Mendelev et al., 2009) and rat primary
VSMCs (Joshi et al., 2011). These findings show growth-retarding
effects of BAY at 10 μM. In logical continuation, in the current
study all experiments were done at 10 μM BAY. A potential limi-
tation of this work could be that BAY exerts physiologic effects at

lower concentrations, supported by data (see Figure 1). Moreover,
feedback mechanisms involving kinases and PDEs can occur at
lower cyclic nucleotide concentrations. Nonetheless, the potent
in vitro effects presented here along with in vivo results observed
recently (Joshi et al., 2011) suggest bioactivity of BAY at 10 μM,
thus providing a pharmacologic target capable of reducing VSMC
growth along with a potential biologic mechanism. It should be
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noted that 10 μM BAY failed to exert noticeable toxicity in ear-
lier studies (Mendelev et al., 2009; Joshi et al., 2011). The PDE
inhibitors cilostazol, rolipram, vardenafil, and zaprinast are all
selective to the PDE at the concentrations used. Cilostazol is a
PDE3 inhibitor currently used in the treatment of intermittent
claudication (Liu et al., 2001). Rolipram inhibits all isoforms
of PDE4 and is highly selective (Schwabe et al., 1976; Lugnier
et al., 1986; Komas et al., 1989). VAR and ZAP are both selec-
tive for PDE5; however both can inhibit PDE6 at concentrations
higher than the IC50 (Lugnier, 2006). VAR is more potent than
ZAP for PDE5 and as far as PDE6 being present in VSMC the
role has yet to be investigated. The limitations of the use of a
pharmacological inhibitor are that they can have effects on other
pathways and PDEs are widely distributed throughout the cell
having effects on multiple pathways. Additionally the IC50 can
vary according to cell type and it can inhibit other PDEs as
well.

CONCLUSION
In conclusion, cGMP signaling is considered antiproliferative and
serves to protect the vasculature; however, the influence of selective
pharmacologic modulation of sGC on VSMC growth and vessel

remodeling remain unclear. Increases in cGMP exert physiologic
and pathophysiologic effects through multiple signaling pathways
including direct kinase activation, indirect crosstalk with cAMP, or
activation/inhibition of PDEs. In this study we demonstrate that
pharmacologic stimulation of sGC via BAY exerts its effects via
involvement of all three processes. These findings provide insight
into the precise mechanisms of action of BAY in VSM and show
that BAY operates through both cGMP and cAMP in these cells,
thus increasing our understanding of the potential role of VASP
and the sGC agonist BAY in cardiovascular disease.
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