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Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress
responses, and aging processes. Mammalia have seven Sirtuin isoforms, Sirt1–7, which
differ in their substrate specificities and subcellular localizations. The physiological func-
tions of Sirtuins make them interesting therapeutic targets, which has stimulated extensive
efforts on development of small molecule Sirtuin modulators. Yet, most Sirtuin inhibitors
show limited potency and/or isoform specificity, and the mechanism of Sirtuin activa-
tion by small molecules remains obscure. Accumulating information on Sirtuin substrates,
structures, and regulation mechanisms offer new opportunities for the challenging task to
develop potent and specific small molecule modulators for mammalian Sirtuins for in vivo
studies and therapeutic applications. We therefore recapitulate advances in structural and
mechanistic studies on substrate recognition and deacetylation by Sirtuins, and in the
characterization of compounds and molecular mechanisms regulating their activity. We
then discuss challenges and opportunities from these findings for Sirtuin-targeted drug
development efforts.
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THE SIRTUIN FAMILY OF NAD+-DEPENDENT PROTEIN
DEACETYLASES
Reversible lysine (de)acetylation was long assumed to be a post-
translational protein modification mainly found in histones. It is
now established to be widespread, however, with more than 6800
known acetylation sites in mammalian proteins, and thus rival-
ing phosphorylation in prevalence and importance (Norvell and
McMahon, 2010). In fact, acetylation appears to be more ancient
and acetylated lysines more conserved than phosphorylation sites,
and dominant in some processes such as regulation of mitochon-
drial metabolism (Weinert et al., 2011). The enzymes catalyzing
attachment and removal of this modification, protein acetyl trans-
ferases (PAT), and protein deacetylases (PDAC), are thus emerging
as drug targets for various indications. Among the four PDAC
classes (Xu et al., 2007), the Sirtuin family (class III) is unique in
using NAD+ as a co-substrate, rendering Sirtuins metabolic sen-
sors. Sirtuins were found to regulate metabolic pathways and stress
responses (Bell and Guarente, 2011; Cen et al., 2011), and they
contribute to some effects of calorie restriction (CR), in particular
lifespan extension (Guarente and Picard, 2005). Pharmacological
Sirtuin modulation has thus been identified as an attractive ther-
apeutic approach, e.g., for supporting treatment of diabetes and
prevention of malnutrition effects (Lavu et al., 2008; Haigis and
Sinclair, 2010).

Mammalia have seven Sirtuin isoforms, Sirt1–7, which dif-
fer in their substrate specificities and subcellular localizations
(Michan and Sinclair, 2007). Sirt1, 6, and 7 are nuclear enzymes
and modify, for example, substrates contributing to chromo-
some stability and transcription regulation (Michan and Sinclair,

2007; Haigis and Sinclair, 2010). Sirt3, 4, and 5 are located in
mitochondria – they are in fact the only deacetylases known in
this organelle – and appear to regulate metabolic enzymes and
stress response mechanisms (Gertz and Steegborn, 2010; Bell and
Guarente, 2011). Sirt2 is mainly cytosolic and was reported to
deacetylate tubulin and p300 (Black et al., 2008). Despite these
examples, the relevant Sirtuin substrates are unknown for many
Sirtuin-regulated processes and no or few substrate sites have been
described for most mammalian isoforms. Likewise, few selec-
tive and potent inhibitors for mammalian Sirtuin isoforms are
available, and their mode of action is largely unknown (Cen,
2010). Even more so, activation of Sirtuins using small mole-
cules has been reported, but the mechanism remains enigmatic,
hampering efforts to develop improved activators. We propose
that Sirtuin features such as different substrates/substrate specifici-
ties and their complex catalytic mechanism offer unique oppor-
tunities for drug development, and molecular and mechanistic
insights into substrate recognition, catalysis, and pharmacolog-
ical modulation will be essential steps toward exploiting this
potential.

ARCHITECTURE OF SIRTUINS AND CATALYTIC MECHANISM
All Sirtuins share a conserved catalytic core of ∼275 amino acids
that is flanked by N- and C-terminal extensions. The extensions
are variable in length and sequence, and they have been reported
to play various roles such as ensuring a proper cellular localization,
regulating the oligomerization state, and/or exerting autoregula-
tion mechanisms (Schwer et al., 2002; Zhao et al., 2003; Tennen
et al., 2010).
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Whereas other PDAC families activate a water molecule for
the hydrolysis reaction by using a zinc cofactor, the unique Sir-
tuin mechanism is based on the use of NAD+ as a co-substrate.
High-resolution structures of several Sirtuins, including human
Sirt2, 3, 5, and 6, in apo- or (co)substrate/inhibitor-bound forms
have been reported (for a review see Sanders et al., 2010) and have
helped to reveal their catalytic mechanism (Cen et al., 2011). The
catalytic core adopts an oval-shaped fold composed of two glob-
ular subdomains linked by four loops, which contribute to the
active site cleft between the subdomains (Figure 1A). The larger
domain consists of a Rossmann-fold typical for NAD+ binding
proteins and the smaller domain is formed by association of two
modules inserted in the Rossmann-fold domain: a zinc-binding
motif bearing the consensus sequence Cys-X2–4-Cys-X15–40-Cys-
X2–4-Cys, and an α-helical region showing the highest diversity
among family members. The relative orientations of the small and
the Rossmann-fold domains vary in known Sirtuin structures, but
these differences seem to be due to the presence or absence of
substrates. Both the acetylated lysine-containing polypeptide sub-
strates and the NAD+ co-substrate bind to the cleft at the interface
of the two domains (Figure 1A). The so-called “cofactor binding
loop” shows high flexibility and its conformation was shown to
evolve in close relation to the catalytic events (Sanders et al., 2010),
which comprise formation of a covalent 1′-O-alkylamidate inter-
mediate between the two substrates under nicotinamide release.
Subsequently, the intermediate is hydrolyzed to yield deacety-
lated polypeptide and 2′-O-acetyl-ADP-ribose (Cen et al., 2011).

Studies on different Sirtuin substrate/substrate analog complexes
indicate that the cofactor binding loop gets ordered upon sub-
strate binding and changes to a more closed conformation upon
acetyl transfer (see, e.g., Chang et al., 2002; Hoff et al., 2006),
with a suggested role of this loop-relocation in expelling the first
reaction product, nicotinamide. Binding of the acetyl-lysine sub-
strates was also shown to induce a significant reorientation of the
two domains relative to each other and to induce a closure of
the cleft as well as the correct positioning of conserved residues
for formation of the acetyl-lysine binding tunnel (Cosgrove et al.,
2006). These rearrangements highlight the dynamic structure of
this enzyme class. Furthermore, individual Sirtuins show specific
sequence preferences due to differences in the details of their pep-
tide binding groove shape and electrostatics (Cosgrove et al., 2006;
Sanders et al., 2010). Also, they recognize in general a wide variety
of substrate sequences, again indicating a high adaptability of this
enzyme class to its substrates. It is thus essential to obtain struc-
tures of different isoforms and enzyme states (such as different
ligand complexes) for obtaining a reliable picture of the dynam-
ics and preferred conformations of their binding pockets for drug
development.

PHYSIOLOGICAL AND PHARMACOLOGICAL REGULATION OF
SIRTUINS
Sirtuins are considered attractive therapeutic targets for metabolic
and aging-related diseases, which has stimulated extensive efforts
for development of Sirtuin-modulating small molecules (Lavu

FIGURE 1 | Overall structure and modulators of Sirtuins. (A) Structure of
human Sirt3 with bound AceCS2 (acetylCoA synthetase 2) peptide and NAD+

analog. The structure of Sirt3 (PDB entry 3glr) is shown as a cartoon model
with Rossmann-fold domain and Zinc-binding domain colored in blue and
green, respectively. The cofactor binding loop (magenta) is in a closed
conformation and binds a carba-NAD molecule (gray), which was added to the
model based on a superposition with the structure of an Hst2/carba-NAD
structure (1szc). The active site cleft also contains the peptide substrate
AceCS2 (yellow) with the acetylated lysine directly pointing to the active site.

(B) Chemical structures of known Sirtuin modulators. Compound screenings
identified the polyphenol resveratrol as an activator of human Sirt1 activity
against suitable substrates, and Ex527 as one of the most potent and
selective Sirt1 inhibitors. The naphtol compound cambinol was obtained from
structure–activity relationship studies on Sirtinol, one of the first Sirtuin
inhibitors identified. Suramin, a symmetric diarylurea containing multiple
anionic groups, is an inhibitor for several human Sirtuin isoforms. It is the only
inhibitor, besides substrate analogs, whose complex with a Sirtuin has been
described.
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et al., 2008; Haigis and Sinclair, 2010). Sirtuins are also special
targets because they are amenable to stimulation, besides inhi-
bition, through small molecules. Sirtuin activating compounds,
initially resveratrol-related polyphenols (Figure 1B) and subse-
quently other compound classes (Howitz et al., 2003; Milne et al.,
2007), can promote survival of human cells, extend lifespan in var-
ious species, and protect against insulin resistance (Guarente and
Picard, 2005). However, their mode of action remains enigmatic
and little is known about their effects on most Sirtuin isoforms.
Furthermore, their physiological effects might in part or mainly
rely on effects on other cellular targets, such as receptors or trans-
port proteins (Pacholec et al., 2010). A mechanistically understood
Sirtuin activator, in contrast, is isonicotinamide. Nicotinamide is
the first product of the Sirtuin catalyzed reaction, released from
NAD+ during formation of the alkyl imidate intermediate (see
above). Rebinding of nicotinamide to the Sirtuin/intermediate
complex can promote the reverse reaction to reform the sub-
strates, and thus inhibits the deacetylation reaction (Sauve, 2010).
This non-competitive mechanism is assumed to inhibit all Sir-
tuins, with K i values typically reported around 0.05–0.2 mM
(Sauve, 2010). Sirtuins thus appear to be affected by physiolog-
ical nicotinamide concentrations, assumed to be up to 0.1 mM,
and a role of nicotinamide as endogenous Sirtuin regulator is
supported by in vivo studies in yeast, flies, and mammalian cells
(Anderson et al., 2003; Sauve, 2010). Isonicotinamide can com-
pete with nicotinamide for binding but cannot initiate the reverse
reaction, thereby leading to apparent activation through relief
of nicotinamide inhibition (Sauve et al., 2005; Cen et al., 2011).
Assuming that all Sirtuins are equally inhibited by nicotinamide,
isonicotinamide would be a general Sirtuin “activator.” However,
data from our lab suggest that some Sirtuins show nicotinamide-
insensitive deacetylase activity (Fischer et al., unpublished), indi-
cating that nicotinamide and isonicotinamide employ isoform
discriminating binding sites or modulation mechanisms. Struc-
tural and further biochemical studies on these compounds and
mechanisms might enable the development of isoform selective
modulators.

Various pharmacological Sirtuin inhibitors have been
described, but few of them show high potencies, isoform selectiv-
ity, and favorable pharmacological properties (Cen, 2010). In fact,
for most compounds effects on only few Sirtuin isoforms have been
reported, and little is known about their inhibition mechanisms.
For example, cambinol (Figure 1B) inhibits Sirt1 and Sirt2 with
IC50 values of 50–60 μM, but has no significant effects on Sirt3 and
Sirt5 (Heltweg et al., 2006). Docking studies suggest that it occu-
pies parts of both substrate binding pockets, the one for NAD+
and the one for the polypeptide (Neugebauer et al., 2008). Such
a blocking of binding site areas for both substrates was crystallo-
graphically shown for suramin (Figure 1B), a huge naphthylurea
compound with antiproliferative and antiviral activity that inhibits
Sirt1, Sirt2, and Sirt5 – and possibly other, not yet tested isoforms –
with low micromolar potency (Schuetz et al., 2007; Trapp et al.,
2007). Despite this lack of specificity, the crystal structure of a
Sirt5/suramin complex (Schuetz et al., 2007) allows insights into
the binding details helpful for drug development efforts, and it was
used to rationalize structure–activity relationships for suramin
derivatives with improved potency (Trapp et al., 2007). However,

the Sirt5/suramin complex is the only published crystal struc-
ture of a Sirtuin complex with an inhibitor other than peptide
or NAD+ derivatives co-crystallized for mechanistic insights, and
even kinetic data to identify potential competition with one of the
Sirtuin substrates is lacking in most cases (Cen, 2010). Thus, to
better understand how available compounds interact with Sirtu-
ins and how improved compounds can be obtained, mechanistic
data and structural information on their complexes with Sirtuins
are of paramount importance.

OPPORTUNITIES FOR DRUG DEVELOPMENT FROM NEW
INSIGHTS INTO SIRTUIN SUBSTRATES AND REGULATION
MECHANISMS
The large body of biochemical and structural work on Sirtuins has
provided us with exciting insights in how Sirtuins recognize their
substrates and how they catalyze lysine deacetylation (Sanders
et al., 2010; Sauve, 2010). The differences between Sirtuin isoforms
in details of structure, physiological targets, and regulators should
enable identification of highly specific inhibitors, and possibly also
activators. An obvious requirement toward this goal is progress in
the identification of Sirtuin substrates, so that the proper Sirtuin
isoform(s) can be targeted for modulating a specific cell func-
tion. Furthermore, physiological Sirtuin substrates are needed for
meaningful modulation tests, as can be learned from the studies on
Sirtuin activation by resveratrol, which showed that effects can be
substrate-specific and thus that non-physiological substrates can
lead to artificial results (Kaeberlein et al., 2005; Cen et al., 2011).
These findings have led to heated discussions on the general pos-
sibility of Sirtuin activation against physiological substrates (Cen
et al., 2011), but rather should stimulate studies on the molecular
reasons for seemingly contradicting observations, which promise
outstanding opportunities for drug development. Understanding
the substrate-specific resveratrol effects offers the exiting possibil-
ity to develop modulators not only specific for one Sirtuin isoform,
but maybe even affecting only deacetylation of one or few of the
substrates of this isoform.

A general challenge for understanding Sirtuin interactions and
mechanisms lies in their complexity, with two substrates, one of
them a polypeptide that can vary in sequence and the second
one releasing the product nicotinamide, which also acts as a non-
competitive inhibitor. Some Sirtuins have even been proposed to
catalyze physiologically other reactions than deacetylation, such
as hydrolytic release of other organic acids or ADP-ribosylation
(Haigis et al., 2006; Zhu et al., 2012), but it remains to be
seen whether these activities are their dominant physiological
functions. However, the sequence variability of the polypeptide
substrate poses a challenge, because it means that many Sir-
tuin/substrate complexes with small differences in conformation
exist, whereas only few structures of Sirtuin complexes with phys-
iological substrate sequences have been solved. Thus, exploiting
the peptide binding pockets for inhibition so far only yielded pep-
tide mimetics and other lead compounds not yet suitable as drugs
(Huhtiniemi et al., 2011; Schlicker et al., 2011), and further studies
on peptide binding site differences and dynamics will be required
for efficient compound improvement. A major obstacle for fully
understanding Sirtuin/ligand interactions is the limited number
of Sirtuin complex structures, and that the available structures
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were solved with several different Sirtuins, packed through vari-
ous crystal lattice interactions. Comparing such complexes often
does not allow assigning differences in conformation to the dif-
ferent Sirtuin or to the different ligand, or even the different
crystal packing. Despite these limitations, using the available struc-
tural snapshots for rational drug discovery and for rationalizing
results from screening has revealed a number of promising Sir-
tuin inhibitors (Cen, 2010). Further mechanistic studies on these
compounds promise to boost Sirtuin inhibitor development by
enabling more sophisticated rational approaches. An especially
interesting compound should be Ex527 (Figure 1B), a potent
Sirt1 inhibitor (IC50 ∼0.1 μM) with two orders of magnitude
lower potency against Sirt2 and Sirt3 (Napper et al., 2005), and
no effect on Sirt5 and class I/II HDACs (Solomon et al., 2006).
Kinetic data suggest that it binds after nicotinamide release and
prevents product release, indicating that an interaction with a
reaction intermediate or product complex mediates specificity for
Sirtuins. Structural insights on Ex527 inhibition will thus support
development of Sirtuin-specific compounds and should reveal the
molecular basis of its isoform selectivity, enabling development of
similar compounds specific for other isoforms.

Molecular studies on enzyme inhibition have revealed many
attractive drug development approaches, such as selective zinc-

binding groups for carboanhydrase inhibition (Schlicker et al.,
2008b) or non-competitive chelators for adenylyl cyclase inhi-
bition (Steegborn et al., 2005; Schlicker et al., 2008b), and such
studies on Sirtuin modulators promise similar progress for these
exiting drug targets. Mechanistic studies on Sirtuins beyond the
basics of substrate recognition promise additional opportunities
for drug development. Many Sirtuins have regulatory regions out-
side the catalytic domain (Michan and Sinclair, 2007; Schlicker
et al., 2008a; Tennen et al., 2010), yet structural studies so far
mainly focused on the catalytic cores (Sanders et al., 2010). Also,
posttranslational modifications regulating Sirtuins are just emerg-
ing (Guo et al., 2010), and their mode of action is largely unknown.
Thus, although the accumulated knowledge on Sirtuins already
offers approaches for their modulation, further mechanistic stud-
ies on Sirtuin modulators and on physiological regulation mech-
anisms promise exciting insights into Sirtuin function and in
Sirtuin features exploitable for highly specific intervention with
drugs.
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