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A commentary on

Brain slice studies in the Research Topic 
“The link between brain energy homeo-
stasis and neuronal activity”

In “The link between brain energy homeo-
stasis and neuronal activity” two papers 
discuss the importance of optimum energy 
metabolism for neuronal spike activity in 
brain slices incubated in glucose-con-
taining media, with one demonstrating 
benefits of lactate supplementation. A 
third demonstrates effects of succinate 
and γ-hydroxybutyrate on ATP-mediated 
[Ca2+]

i
 gradients in astrocytes, and a fourth 

discusses whether lactate is the glycolytic 
end product and exerts neuroprotection. 
This commentary discusses the quantita-
tive importance of oxidative metabolism in 
astrocytes, importance of their [Ca2+]

i
, and 

role(s) of lactate.
Metabolic brain slice studies were initi-

ated by Warburg et al. (1924). During the 
1930s several such studies showed lactate 
release to incubation media and stimula-
tion of respiration by high K+ concentra-
tions, initially by ∼65% (Ashford and Dixon, 
1935; Dickens and Greville, 1935). Electrical 
stimulation acted similarly (McIlwain, 
1951, 1955). Glutamate caused neuronal 
depolarization (Gibson and McIlwain, 
1965), and slices displayed synaptic activity 
(Yamamoto and McIlwain, 1966). Hertz and 
Schou (1962) and Weiss et al. (1972), using 
Warburg equipment with rapidly oscil-
lating tissue chambers or an oxygen elec-
trode inserted into intensely aerated flasks, 
reported O

2
 uptake rates similar to Ivanov 

and Zilberter’s (2011) and Ca2+-dependence 
and procaine-inhibition of the K+-mediated 
stimulation. The center and both surfaces 
of slices showed marked cell swelling under 
all conditions, but especially at high extra-
cellular K+ concentrations (Møller et al., 
1974). Elevated K+ increased (Franck, 1970; 
Lund-Andersen and Hertz, 1970), and elec-
trical stimulation decreased (Cummins and 

McIlwain, 1961) intracellular K+ content. 
Electrical pulses evoked transition from a 
more oxidized to a more reduced phase in 
NAD(P)H and cytochromes, blockable by 
tetrodotoxin, whereas elevated extracellu-
lar K+ caused a more oxidized redox state 
(Cummins and Bull, 1971; Galeffi et al., 
2011). In 13C-NMR studies, using labeled 
glucose and the astrocyte-specific substrate 
acetate, Badar-Goffer et al. (1992) con-
cluded that the high K+-mediated increase 
in O

2
 consumption occurred in glial cells. 

This may reflect a normally occurring 
active astrocytic uptake of K+ released from 
 neurons (Somjen et al., 2008; Hertz, 2011) 
and depolarization-induced increase in 
[Ca2+]

i
, stimulating astrocytic metabolism. 

Electrical stimulation of brain slices also 
increase astrocytic [Ca2+]

i
 (Filosa et al., 

2004).
Recently, several groups have measured 

tricarboxylic acid (TCA) cycle activity in the 
living, functioning brain in humans and rats 
using 13C-NMR (reviewed by Hertz, 2011) 
and tabulated in Table 1. In awake rats total 
pyruvate fluxes after glycolytic conversion 
of glucose to pyruvate followed by pyruvate 
dehydrogenase (PDH-) mediated) entry 
into the TCA cycle (in both neurons and 
astrocytes) together with flux mediated by 
the astrocyte-specific pyruvate carboxylase 
(PC) amount to ∼1.67 μmol/min/g wet wt 
(Öz et al., 2004; Table 1). With a pyruvate/
O

2
 ratio of 3.0, this equals 300 μmol of 

O
2
/h/g wet wt, close to the upper limit cited 

by Ivanov and Zilberter (2011). As noted 
by them, ourselves, and Okada and Lipton 
(2007), this rate is substantially higher 
than that of oxygen uptake in brain slices. 
However, under anesthesia in vivo, respira-
tion becomes more comparable to that in 
brain slices (see Choi et al., 2002; Table 1). 
Thus, the enhanced rates of oxygen con-
sumption in slices during neuronal stimula-
tion shown by Ivanov and Zilberter (2011), 
discussed by Kann (2011), and quantitated 
by Galeffi et al. (2011), are functionally the 
most meaningful. Moreover, determina-

tion of average metabolic rates in neurons 
(PDH

n
) and astrocytes (PFH

g
 + PC) sepa-

rately (lower two lines of Table 1) shows 
that astrocytic O

2 
consumption equals one 

quarter of total brain energy metabolism 
in vivo, indicating that per volume astro-
cytes consume O

2
 at least at the same rate 

as neurons. Additional 13C-NMR studies in 
brain slices during different types of neu-
ronal activation would be useful to evaluate 
neuronal and astrocytic responses.

Astrocytes are the topic of the non-
metabolic study by Molnár et al. (2011) 
It describes astrocytic [Ca2+]

i 
responses 

to ATP and modulation of a subset of 
astrocytic ATP receptors by succinate and 
γ-aminobutyrate. Besides illustrating the 
high density of functioning ATP receptors, 
even in the young astrocytes studied, and 
the localization of the succinate-affected 
receptors to vascular-associated astrocyte 
processes, the study emphasizes impor-
tant effects of succinate beyond its role as a 
TCA cycle constituent. Succinate is present 
in serum and its concentration is increased 
in diabetes, which may be of considerable 
importance in diabetic nephropathy (Deen 
and Robben, 2011), and raises the possibil-
ity of involvement of succinate and astro-
cytes in diabetic effects on the brain. The 
Molnar paper is also of interest in connec-
tion with that by Zilberter (2011), and it 
supports that the roles of astrocytes in brain 
metabolism may be underestimated in the 
Venkateswaran et al. (2012) paper.

Observations in brain slices by Takagaki 
and Tsukada (1957) that lactate sustains 
similar rates of oxygen consumption as glu-
cose have been repeatedly confirmed. The 
Schurr and Gozal (2011) paper suggests 
important physiological (mitochondrial 
lactate oxidation) and pathological (neu-
roprotection) roles of lactate. However, 
most authors agree that lactate dehydro-
genase activity in mitochondria is unlikely 
(Sahlin et al., 2002; Yoshida et al., 2007), 
and lactate cannot prevent anoxic depolar-
ization in rat hippocampal slices, when gly-
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colysis is completely inhibited (Allen et al., 
2005). Techniques used during preparation 
of slices are important for  subsequent    
 metabolic effects of glucose and lactate 
(Dienel and Hertz, 2005; Okada and 
Lipton, 2007; Dienel, 2011). Lactate serves 
as a partial substrate for brain metabolism 
during intense exercise (when its blood 
concentration is increased), but this does 
not indicate any need for lactate in addi-
tion to glucose in brain function, including 
ongoing activity, since during rest there is 
a small lactate exit from brain (Quistorff 
et al., 2008). Nevertheless, if serum lac-
tate is increased, lactate is preferentially 
oxidized (van Hall et al., 2009). In brain 
slices the question is complex, because of 
simultaneous lactate release. Could simple 
replacement of this lactate restore opti-
mum glucose metabolism? Can results in 
astrocyte cultures (Sotelo-Hitschfeld et al., 
2012) be similarly explained?

In conclusion, a considerable part of 
oxidative glucose metabolism in brain is 
astrocytic, exogenous lactate is not a nec-
essary brain fuel in vivo, and past history 
of metabolic brain slice experiments may 
inspire future studies.
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