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Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neu-
ronal excitability and plasticity, and modulating glial cells. To elucidate the functional con-
sequences of chronic stress for the hippocampal network, we submitted adult rats to
daily restraint stress for 3 weeks (6 h/day). In acute hippocampal tissue slices of stressed
rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron
synapses were unchanged while long-term potentiation was markedly impaired. The spa-
tiotemporal propagation pattern of hypoxia-induced spreading depression episodes was
indistinguishable among control and stress slices. However, the duration of the extracel-
lular direct current potential shift was shortened after stress. Moreover, K+ fluxes early
during hypoxia were more intense, and the postsynaptic recoveries of interstitial K+ lev-
els and synaptic function were slower. Morphometric analysis of immunohistochemically
stained sections suggested hippocampal shrinkage in stressed rats, and the number of
cells that are immunoreactive for glial fibrillary acidic protein was increased in the CA1
subfield indicating activation of astrocytes. Western blots showed a marked downregula-
tion of the inwardly rectifying K+ channel Kir4.1 in stressed rats. Yet, resting membrane
potentials, input resistance, and K+-induced inward currents in CA1 astrocytes were indis-
tinguishable from controls. These data indicate an intensified interstitial K+ accumulation
during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a
reduced interstitial volume fraction rather than impaired glial K+ buffering. One may spec-
ulate that chronic stress aggravates hypoxia-induced pathophysiological processes in the
hippocampal network and that this has implications for the ischemic brain.
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INTRODUCTION
Repeated stressful experiences have a profound impact on neu-
ronal plasticity in the hippocampal formation (for review see
Fuchs et al., 2006; Popoli et al., 2012). Among the underlying
cellular changes, dendritic remodeling of hippocampal pyramidal
neurons has been documented after chronic stress exposure (Mag-
ariños et al., 1996, 1997; Kole et al., 2004), and the regression of the
geometrical length of apical dendrites of CA3 pyramidal neurons
is probably the most thoroughly investigated anatomical change
(Watanabe et al., 1992). Such alterations in dendritic morphology
directly affect neuronal functioning as a shortening of even a few
dendrites has been shown to enhance backpropagation of action
potentials (Golding et al., 2001; Schaefer et al., 2003). Further-
more, the stress-induced decrease in the apical dendritic length
of CA3 pyramidal neurons in rat hippocampus correlated with a
reduced membrane time constant and input resistance as well as
an increased subthreshold excitability (Kole et al., 2004).

Dendritic architecture is also closely correlated with the degree
of connectivity within neuronal networks. In hippocampal pyra-
midal neurons, extensive dendritic sprouting, and enhanced spine
density were observed when the number of axonal afferents was

increased (Kossel et al., 1997), whereas the loss of afferents induced
dendritic atrophy (Valverde, 1968; Benes et al., 1977; Deitch and
Rubel, 1984).

Also glutamatergic synaptic transmission has been found to be
affected markedly by stress. Various models of acute or chronic
stress as well as glucocorticoid treatment were reported to mod-
ify glutamate release and uptake, but also to exert an effect on
glutamate metabolism, as well as the expression and possibly
the subunit composition of the various glutamate receptors (for
review see Popoli et al., 2012). Especially these changes in the
function of glutamatergic synapses are considered crucial for
the remarkable impact of chronic stress on neuronal plasticity,
the reduction of long-term potentiation (LTP), and the associ-
ated impairment of various cognitive processes (Pavlides et al.,
2002).

In addition to neurons, also glial cells are affected by stress.
Chronic immobilization stress in rats increased glial fibrillary
acidic protein (GFAP) expression which indicates reactive gliosis
(Jang et al., 2008), whereas chronic social stress in male tree shrews
reduced both the number and soma volume of hippocampal
astrocytes (Czéh et al., 2006).
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This variety of morphological and molecular changes induced
by stress in neurons and glial cells reflects a remarkable remodel-
ing of neuronal networks which may include alterations in their
functioning and plasticity already under physiological conditions.
Hence, neuronal networks of chronically stressed subjects can be
expected to be more vulnerable to additional pathophysiological
events.

The hippocampus and especially the pyramidal neurons of the
CA1 subfield are among those parts of the brain being most vulner-
able to metabolic compromise such as anoxia/ischemia (Pulsinelli
et al., 1982; Schmidt-Kastner and Freund, 1991). Within just a few
minutes of oxygen (O2) shortage, neuronal function is massively
impaired bearing the risk of sustained and irreversible damage.
We therefore analyzed the impact of chronic restraint stress on the
responses of the hippocampal network to severe hypoxia.

Adult rats were exposed to an established chronic restraint
stress protocol and the outcome of such treatment on hippocam-
pal network function was analyzed under normoxic and hypoxic
conditions. Emphasis of our analyses was on the early network
responses to severe hypoxia (O2 withdrawal), i.e., the concerted
massive depolarizations of cellular elements that give rise to the
phenomenon of hypoxia-induced spreading depression (HSD).
This integrated network response is associated with a (tempo-
rary) loss of neuronal excitability and synaptic transmission, and
it represents an experimental model of, e.g., cerebral stroke (for
review see Gorji, 2001; Somjen, 2001; Lauritzen et al., 2011).
Electrophysiological analyses in acute hippocampal tissue slices,
complemented by optical imaging and immunolabeling, revealed
an intensified interstitial K+ accumulation during early hypoxia as
well as a delayed posthypoxic recovery, and a more severe impair-
ment of synaptic function in chronically stressed rats as compared
to controls.

MATERIALS AND METHODS
RESTRAINT STRESS
Adult male Sprague Dawley rats (Harlan-Winkelmann) weighing
between 250 and 300 g on arrival were housed in groups (n = 3)
in type II macrolon cages with food and water ad libitum under an
inverse light–dark cycle (lights off 7:00 AM–7:00 PM) at 21 ± 1˚C.
All animal experiments were performed in accordance with the
directive of November 24, 1986 of The Council of the European
Communities (86/609/ECC), including Position 6106/20 of May
26, 2010, and were approved by the Lower Saxony Federal State
Office for Consumer Protection and Food Safety, Germany.

After 2 weeks of habituation, animals were chronically exposed
to restraint stress according to an established paradigm (Magar-
iños and McEwen, 1995; Magariños et al., 1997). Chronic stress
consisted of immobilizing rats daily during their activity period
for 6 h, during 3 weeks. For restraint, animals were placed in well
ventilated plastic tubes in their home cages; during this time they
had no access to food and water (Figure 1A). On the day after
the last stress exposure brains were dissected and taken into the
experiments. Control rats were handled daily at the same time and
had no access to food and water during the daily restraint session,
but experienced no restraint stress.

Chronic restraint stress is known to reduce body weight
gain (Watanabe et al., 1992). Therefore, to confirm that the

stress procedure was effective, rats were weighed on the last
day of this treatment. As expected, body weight in the stressed
rats was significantly reduced by an average of 17.2% (con-
trol 375.8 ± 49.6 g, n = 35; stress 311.2 ± 27.2 g, n = 34). More-
over, the stress increased the relative adrenal weight (adrenal
weight in mg/100 g body weight) by 25.4% indicating hyperactiv-
ity of the hypothalamic–pituitary adrenal axis, which represents
a characteristic stress response (control 0.138 ± 0.018 g; stress
0.173 ± 0.013 g, n = 14 each).

PREPARATION
Acute hippocampal tissue slices were prepared from ether anes-
thetized rats. Following decapitation the brain was rapidly
removed from the skull and placed in chilled artificial cere-
brospinal fluid (ACSF) for 1–2 min. The two hemispheres were
separated, and 400 μm slices were cut using a vibroslicer (Camp-
den Instruments, 752M Vibroslice or Leica VT1000S). Slices were
then transferred either to a storage chamber (kept at room tem-
perature) or an interface recording chamber of the Oslo style and
left undisturbed for at least 90 min. The interface chamber was
kept at 35–36˚C, aerated with 95% O2–5% CO2 (400 ml/min),
and perfused with oxygenated ACSF (3–4 ml/min).

SOLUTIONS
Chemicals were obtained from Sigma-Aldrich unless otherwise
mentioned. ACSF had the following composition (in mM): 130
NaCl, 3.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 1.2 CaCl2, 1.2 MgSO4,
and 10 dextrose; aerated with 95% O2–5% CO2 to adjust pH to 7.4.

MICROELECTRODES
Single barreled glass microelectrodes for extracellular recordings
were pulled from thin-walled borosilicate glass (GC150TF-10,
Harvard Apparatus) using a horizontal puller (P-97, Sutter Instru-
ments). They were filled with ACSF and their tips were broken
to a final resistance of 5–10 MΩ. Patch-pipettes were made from
borosilicate glass capillaries (Biomedical Instruments) on a hori-
zontal pipette-puller (Zeitz-Instrumente) and filled with (in mM)
125 k-Gluconate, 1 CaCl2, 2 MgCl2, 4 Na2-ATP, 10 EGTA, 10
HEPES (pH adjusted to 7.2 with KOH). Electrode resistance
ranged from 4 to 7 MΩ.

Changes in the extracellular K+ concentration [K+]o were con-
tinuously monitored using double-barreled K+ selective micro-
electrodes of the twisted type. Two borosilicate glass capillaries –
one with and one without filament (GC150-15 and GC100F-15,
Harvard Apparatus) – were glued together with epoxy glue (for
details see Hepp and Müller, 2008; Fischer et al., 2009). Electrodes
were pulled on a vertical electrode puller (Narishige PE-2). First,
capillaries were pulled by 3–4 mm, while twisting the reference
barrel around the center capillary. In a second step capillaries
were then pulled apart. The ion-selective barrel was silanized by
HMDS vapors (hexamethyldisilazane, 98%, Fluka; 40˚C, 45 min
exposure), for protection from HMDS the reference barrel was
filled with distilled water. Subsequently electrodes were incubated
in the oven (200˚C, 2 h).

The tip of the K+-sensitive barrel was filled with the vali-
nomycin based K+ ion neutral carrier (Potassium Ionophore
I – Cocktail A, Fluka 60031) and backfilled with 150 mM
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FIGURE 1 | Chronic restraint stress leaves basal synaptic function intact

but impairs LTP. (A) Control and stressed rats were kept under an inverse
light–dark cycle. For a total duration of 21 days they were exposed to restraint
stress during their activity periods. (B) As indicated by the input–output
curves, basal synaptic transmission at the Schaffer collateral/CA1 pyramidal
neuron synapse was not affected by chronic stress.The averages of 16 control
and 15 stress slices are plotted, error bars represent standard deviations.
(C) PPF, recorded in the same set of slices, was not affected by chronic stress.
(D) Sample traces of fEPSPs recorded in control and stress slices. (E) In

stress slices, stable LTP could not be induced. The LTP-inducing stimulus was
delivered at time 0 (arrow mark) and evoked an indistinguishable PTP in both
groups. In stress slices, however, the amplitude of the fEPSPs then declined
to pre-stimulus baseline conditions in the course of the next 60 min (n = 5
control, n = 7 stress slices). For clarity, error bars were omitted for every
second data point. The bar plot summarizes the averaged fEPSP amplitudes
right after the 100 Hz stimulus (PTP) as well as in the time window of
50–60 min later (LTP). The number of slices analyzed is indicated at the bottom
of the bars; asterisks indicate statistically significant changes (**P < 0.01).
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KCl + 10 mM HEPES, pH 7.4. The reference barrel was filled with
150 mM NaCl + 10 mM HEPES, pH 7.4 (Müller and Somjen,
2000a). Tip resistances of the ion-selective and reference barrel
were 170–250 and 10–20 MΩ, respectively. Electrodes were cali-
brated before/after each experiment using standard solutions of
0, 1, 2, 5, 10, 20, 50, and 100 mM K+. Constant ionic strength
of these solutions was maintained by replacing Na+ by K+ and
vice versa. Average slope and detection limit of the K+ selective
electrodes were 54.9 ± 3.5 mV/decade K+ and 0.72 ± 0.53 mM K+
(n = 31), respectively. Ion-sensitive electrode signals were mon-
itored by a differential electrometer amplifier (FD 223, World
Precision Instruments) and digitized at sampling rates of 100 Hz
by a Digitizer 1322A acquisition system controlled by PClamp 9.0
software (Molecular Devices), that was also used for most other
electrophysiological recordings.

HYPOXIA-PROTOCOL AND ELECTRICAL RECORDINGS
Severe hypoxia was induced by switching the interface chamber’s
gas supply from carbogen (95% O2–5% CO2) to 95% N2–5%
CO2; during that time carbogen aeration of ACSF was contin-
ued. Upon O2 withdrawal, HSD was triggered within 2–3 min,
and to ensure complete reversibility, O2 was readmitted 25 s after
HSD onset [defined as the occurrence of the sudden direct current
(DC) potential deflection]. All signal amplitudes were measured
between the pre-hypoxia baseline and the maximal change. Only
rapid DC potential changes of at least −10 mV amplitude were
considered as HSD.

Field excitatory postsynaptic potentials (fEPSPs) were elicited
by 0.1 ms unipolar stimuli (Grass S88 stimulator with PSIU6
photoelectric stimulus isolation units, Grass Instruments) deliv-
ered via microwire electrodes made from bare stainless steel wire
(50 μm diameter,AM-Systems) and recorded as described in detail
earlier (Müller and Somjen, 1998; Hepp et al., 2005). Orthodromic
responses were elicited by stimulation of Schaffer collaterals and
recorded in stratum (st.) radiatum of the CA1 region, using a
locally constructed extracellular DC potential amplifier. Data were
sampled at 20 kHz.

For whole-cell recordings, slices were transferred to a custom-
built submersion-style recording chamber mounted to an upright
microscope (Axio Examiner.Z1, Zeiss) and superfused with ACSF
at room temperature. Astrocytes in st. radiatum were identified
by labeling with sulforhodamine 101 (SR101), a red fluorophore
serving as a selective marker for astrocytes in hippocampus and
neocortex (Nimmerjahn et al., 2004). The labeling protocol was
adapted from a previous report (Kafitz et al., 2008). Briefly, slices
were stained with SR101 (1 μM in ACSF, 34˚C, 20 min); after
washout with ACSF (10 min, 34˚C), they were kept at room tem-
perature until the recording. SR101 was excited by epifluorescence
illumination (HBO100 mercury lamp; Dualband GFP/mCherry
ET Filterset F56-019; AHF Analysentechnik). Since under con-
stant excitation SR101 bleaches quickly, astrocytes – once identi-
fied – were patched using transmitted light and differential Dodt
contrast (Dodt and Zieglgänsberger, 1994). Astroglial character
of the cells was confirmed by their current–voltage (IV)-curves.
For documentation fluorescence images of the recorded astro-
cytes were taken using a CCD camera (PCO; SensiCam) con-
trolled by ImageJ software (Rasband, W.S., ImageJ, U.S. National

Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/,
1997–2011).

Whole-cell voltage-clamp recordings were obtained with a Mul-
ticlamp 700A amplifier (Molecular Devices). Membrane currents
were low-pass filtered at 2 kHz and digitized at 10 kHz. Voltage step
protocols were performed with a Digidata 1440A interface and
pClamp10 software (Molecular Devices), continuous recordings
were done with a Powerlab/4S interface and Chart software (ADIn-
struments). Astrocytes were voltage clamped to −80 mV and the
IV-curve was measured every 30 s using voltage steps to holding
potentials ranging from −160 to +50 mV (10 mV increments).
For the measurement of membrane resistance (Ri) astrocytes were
hyperpolarized for 200 ms to −90 mV. To measure the K+ uptake
current an ACSF containing 50 mM K+ (Na+ replaced by K+) was
applied.

OPTICAL RECORDINGS
The characteristic intrinsic optical signal (IOS; increase in light
scattering) associated with HSD was monitored with a computer-
controlled imaging system (Polychrome II, Till Photonics) and
a CCD camera (Imago QE, PCO Imaging) mounted to a Zeiss
Axiotech microscope (Gerich et al., 2006). Slices were illuminated
by white light at an angle of ∼45˚; images were taken every 2 s
(15 ms exposure time) using a 5×, 0.13NA objective (Epiplan,
Zeiss). Changes in light reflectance of the tissue became obvious by
offline image subtraction, were referred to an image taken before
O2 withdrawal (Müller and Somjen, 1999), and are displayed in
a 256 gray-scale mode covering intensity changes of ±20%. Their
intensity and temporal profile was analyzed within a rectangular
region of interest in CA1 st. radiatum near the recording electrode.
The propagation velocity of HSD was calculated from the pro-
gression of the reflectance increase in CA1 st. radiatum (parallel
to st. pyramidale). The tissue area invaded by HSD was deter-
mined at the height of the reflectance increase. Those pixels were
counted whose brightness had increased by ≥5% and were referred
to the total hippocampal area. Images were processed with TILLvi-
sion4.0 (TILL Photonics) and MetaMorph6.1 (Universal Imaging
Corporation).

IMMUNOHISTOCHEMISTRY
For fixation of the brains, rats were deeply anesthetized and tran-
scardially perfused with 4% paraformaldehyde as described before
(Czéh et al., 2010). Coronal 40 μm brain sections were gener-
ated with a cryostat (Leica CM3050S; −1.80 to −6.04 mm from
Bregma; Paxinos and Watson, 1986).

Ten floating sections per brain were immunostained with either
anti-GFAP or Kir4.1 antibody. Sections were processed in parallel
to avoid variations in staining intensity. They were first washed in
phosphate buffered saline (PBS) and then incubated for 30 min
in 1% H2O2 in PBS to inactivate endogenous peroxidase activity.
All following washing steps consisted of three washes of 10 min
each in PBS. After washing, sections were incubated in 5% normal
horse serum (Vector Laboratories), in PBS containing 0.5% Tri-
ton X-100, for 1 h to block non-specific antibody binding. For
GFAP staining, sections were incubated overnight at 4˚C with
a mouse monoclonal anti-GFAP antibody (Sigma, clone G-A-5,
No. G3893; 1:5,000 dilution) in PBS. Following washing, sections
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were incubated with the secondary antibody, biotinylated horse
anti-mouse IgG (Biozol, BA-2001; 1:400 dilution) in PBS for 2 h.
To stain the K+ channel subunit Kir4.1, rabbit polyclonal anti-
body anti-Kir4.1 (Alomone labs, product No. APC-035) was used
at 1:2,000 dilution. Biotinylated goat anti-rabbit (Biozol, prod-
uct No. BA-1000, 1:400 dilution) served as secondary antibody
(incubation in PBS for 2 h). After washing, sections were incu-
bated in the ABC complex (ABC Kit, Vector Laboratories) in
PBS for 1.5 h. Finally, sections were incubated in 0.025% 3,3′-
diaminobenzidine (DAB, Peroxidase Substrate Kit, Vector Labora-
tories) with 0.01% H2O2, washed again, mounted on glass slides,
and left to dry overnight at 37˚C. The following day, they were
cleared in xylene and cover slipped using Eukitt mounting medium
(Kindler GmbH).

To determine changes in the size of the hippocampal formation
and the number of GFAP-positive cells in control and stressed rats,
images of the tissue sections were acquired using a digital micro-
scope (Nikon Coolscope; analysis software NIS-Elements AR 2.1).
Cell counts and the size of the hippocampal formation were deter-
mined with the cell-counter plugin of ImageJ and MetaMorph 6.1,
respectively.

WESTERN BLOT ANALYSIS
Eight rats per group were used for protein analysis. Immediately
after decapitation, crania were placed on ice and the brains were
quickly isolated. Hippocampi were dissected, transferred into liq-
uid nitrogen and stored at −80˚C. Hippocampi were homogenized
with a dounce homogenizer (tight pestle) in ice-cold homogeniza-
tion buffer (150 mM NaCl, 1 mM Tris/HCl, pH 8.0, 7% glycerol,
and 0.1% Triton X-100) containing protease inhibitors (Com-
plete Protease Inhibitor Cocktail Tablets, Roche Diagnostics). The
protein homogenates were centrifuged (5 min,13,000 rpm), super-
natants recovered, and aliquots stored at −80˚C. Protein concen-
trations were determined by Bio-Rad DC Protein assay (Bio-Rad
Laboratories).

For electrophoresis, hippocampal protein extracts were dena-
tured for 10 min at 70˚C in Laemmli buffer with dithiothreitol
(DTT) and chilled on ice for 5 min. After electrophoresis on a
12.5% sodium dodecyl sulfate (SDS) gel (under reducing con-
ditions), proteins were transferred to a nitrocellulose membrane
(Schleicher & Schuell) via semidry electroblotting, for 2 h at
1 mA/cm2 in transfer buffer containing 25 mM Tris–HCl, pH 8.3,
150 mM glycine, and 10% methanol. The membrane was blocked
for 1 h with 5% milk powder in PBS, and then incubated with
the anti-Kir4.1 antibody (dilution 1:400) over night at 4˚C. The
membrane was then washed with PBS-T (0.1% Tween-20 in PBS),
and incubated with goat anti-rabbit antibody, horseradish per-
oxidase (HRP) conjugated, dilution 1:7,500 (DakoCytomation,
product No. P 0448). After 1 h of incubation at room tempera-
ture, membranes were washed three times with PBS-T and three
times with PBS.

Bands were visualized by enhanced chemiluminescence (ECL;
SuperSignal West Pico Kit, product No. 34079, Thermo Scien-
tific) using Amersham Hyperfilm™ECL (GE Health Care Life
Sciences). Then, in order to use β-actin as internal loading con-
trol, nitrocellulose membranes were stripped in PBS with 2% SDS,
0.7% β-mercaptoethanol, for 2 h and incubated with a monoclonal

anti-β-actin antibody (Sigma, clone AC-15, product No. A 1978;
1:4,000 dilution; 30 min incubation), followed by goat anti-mouse
IgG, HRP coupled (Santa Cruz Biotechnology Inc., product No.
sc-2302) dilution 1:4,000, 1 h incubation. The relative optical den-
sity of the bands was quantified using ImageJ software. Intensity
of the Kir4.1 band was normalized to the β-actin band, and data
were presented as a percentage of the mean value from the control
group.

STATISTICS
Data were obtained from 69 rats, and since most electrophysiologi-
cal/IOS recordings did not last longer than ∼1.5 h, up to four slices
could be used from each brain. To ensure independence of obser-
vations, each experimental treatment was performed on at least
three different control and/or stressed rats. All numerical values
are represented as mean ± standard deviation. Significance of the
observed changes was tested using a two-tailed, unpaired Student’s
t -test and a significance level of 5% (unpaired observations). In the
case of paired observations (i.e., the effects of repeated hypoxia in a
single slice), a one-sample t -test was used to compare normalized
data against pretreatment control conditions, defined as unity or
as 100%. In the diagrams, significant changes are marked by aster-
isks (* P < 0.05; **P < 0.01; ***P < 0.001). Data processing and
statistical calculations were done with Excel (Microsoft) or Sigma
Stat 3.5 (Systat Software).

RESULTS
To define the outcome of chronic stress on the network function
of the hippocampal circuitry, we analyzed synaptic function and
plasticity as well as the responses to severe hypoxia in detailed
electrophysiological, optical, and molecular biological assays.

SYNAPTIC FUNCTION AND PLASTICITY
Synaptic function and plasticity were assessed by recording evoked
field potentials (fEPSPs) in st. radiatum of the CA1 subfield of
acute hippocampal tissue slices. As indicated by the input–output
curves there were no significant changes in neuronal excitabil-
ity and basal synaptic function at Schaffer collateral/CA1 neuron
synapses (Figure 1B). Also the paired-pulse facilitation (PPF), a
measure for synaptic short-term plasticity, revealed no differences
among control and stress slices (Figures 1C,D; control n = 16,
stress n = 15 slices).

It has been shown before that different stress treatments or
durations may suppress LTP in distinct hippocampal subfields
(Pavlides et al., 2002; Buwalda et al., 2005). In the present study,
induction of LTP by a single high-frequency stimulus (100 Hz,
1 s train, stimulation intensity adjusted to elicit half-maximum
responses) caused a clear post-tetanic potentiation (PTP) of fEPSP
amplitudes that was indistinguishable among control (n = 5) and
stress slices (n = 7; Figure 1E). Control slices showed stable LTP
with fEPSP amplitudes still being potentiated to 157.8 ± 27.0%
of control, in the time window of 50–60 min after the high-
frequency stimulation. In contrast, in stress slices stable LTP could
not be induced. The PTP slowly decayed and fEPSP amplitudes
recovered to pre-stimulus control conditions within the follow-
ing 60 min (Figure 1E), showing that chronic restraint stress
suppresses induction of LTP in the CA1 subfield.
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RESPONSES TO SEVERE HYPOXIA
Previous reports have shown that exposing hippocampal slices to
severe hypoxia triggers within a few minutes characteristic HSD
episodes. HSD represents a propagating massive depolarization
of neurons and glia that is synchronized in neighboring cells
and is detectable as a sudden negative shift of the extracellular
DC potential (Leão, 1947; Müller and Somjen, 2000a; Somjen,
2001).

We here show that in control slices, the DC potential shift
occurred within 1.8 ± 0.4 min of O2 withdrawal, reached an
amplitude of −16.9 ± 2.3 mV, and measured at the half-maximum
amplitude it lasted 52.8 ± 13.3 s (n = 15, Figures 2A and 3A). See
Figure 2B for a definition of these characteristic parameters of the

DC potential shift. In stress slices, HSD showed a similar time to
onset and DC potential amplitude, but its duration was signifi-
cantly shortened to 36.6 ± 11.7 s (n = 17, Figure 3A), i.e., by an
average of 30.7% as compared to controls.

In addition to the DC potential shift we also monitored changes
in the interstitial K+ concentration ([K+]o) during hypoxia, using
K+ selective microelectrodes. As defined in detail earlier (Somjen,
1979; Hansen, 1985; Müller and Somjen, 2000a), the characteristic
extracellular K+ changes during hypoxia and HSD show a typi-
cal profile consisting of (1) a linear increase early during hypoxia,
before HSD onset, (2) a rapid, massive rise to a well pronounced
peak as soon as HSD is triggered, and (3) a recovery upon reoxy-
genation which transiently undershoots the prehypoxic baseline

FIGURE 2 | Hypoxia-induced spreading depression episodes are not

markedly affected in stressed rats. (A) Recordings of the HSD-associated
negative deflection of the extracellular DC potential and the closely correlated
changes in [K+]o as monitored in st. radiatum of the CA1 subfield. Each slice
underwent three successive hypoxic episodes. O2 was resubmitted 25 s after
the onset of the rapid DC potential deflection. Hypoxic episodes were

separated by at least 20 min to ensure complete recovery. Note that stress
slices showed a more rapid and intense increase in [K+]o during early hypoxia
before HSD onset and a slower posthypoxic recovery of [K+]o. (B) Definition
of the analyzed characteristic parameters of the DC potential deflection and
the associated changes in [K+]o (ΔV amplitude of the DC shift, Δt time to
onset since O2 withdrawal, t 1/2 duration measured at the half amplitude level).
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FIGURE 3 | Statistical summary of the electrophysiological signs

of HSD during three consecutive episodes of hypoxia. (A) Summary
of the characteristic DC potential parameters in control slices, stress
slices and control slices treated with FAc (5 mM, >1.5 h). The DC
potential parameters time to onset and duration refer to the left hand
time axis, the amplitude refers to the right hand voltage axis.

(B) Summary of [K+]o at the distinct time points defined in Figure 2B.
The lower two diagrams show the slopes of the rise in [K+]o early
during hypoxia before HSD onset and of the posthypoxic recovery,
respectively. Asterisks indicate significantly different changes as
compared to the respective HSD episode in control slices (*P < 0.05,
**P < 0.01, ***P < 0.001).

level. These three distinct phases could also be identified clearly in
our present experiments (Figure 2).

In control slices, [K+]o started to increase at a rate of
6.2 ± 1.4 mM/min as soon as O2 was withdrawn. By the time HSD
was ignited, [K+]o had reached a threshold level of 6.2 ± 1.4 mM,
and then rapidly rose further to its peak of 70.5 ± 15.9 mM. Upon
reoxygenation, [K+]o recovered at a rate of 27.4 ± 10.7 mM/min
and transiently undershot the prehypoxic baseline, reaching a

nadir of 1.7 ± 0.5 mM (n = 15, Figures 2A and 3B). In stress slices,
the changes in [K+]o showed a similar profile, yet, the magnitude
of the changes significantly differed from controls. During the ini-
tial phase of hypoxia before HSD onset, [K+]o rose faster in stress
slices (8.7 ± 3.7 mM/min, n = 16) and reached a higher threshold
level of 11.6 ± 6.0 mM K+ by the time HSD was ignited. Further-
more, the posthypoxic recovery of [K+]o was significantly slowed
down in stress slices (20.2 ± 7.5 mM/min). The peak level during
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HSD and the K+ undershoot upon reoxygenation tended to be
somewhat more intense, but those differences did not reach the
level of significance (Figures 2A and 3B).

Since these recordings suggested a more intense response of
slices from stressed rats to O2 shortage, we also analyzed the effects
of repeated hypoxia by inducing three HSD episodes in every slice
(separated by recovery periods of 20 min). Again, in stress slices
the duration of the second and third HSD was shorter than in
controls. The slope of the initial K+ rise and the threshold level
before HSD onset became even more pronounced, the K+ peak
level during HSD was significantly higher than in control slices,
and the slope of the posthypoxic recovery remained less steep
(Figure 3).

The more intense K+ rises early during hypoxia and during
HSD as well as the slower posthypoxic recovery in stress slices may
indicate impaired glial K+ buffering. We therefore tested whether
a pretreatment of slices from control rats with the glial poison flu-
oroacetate (FAc) would mimic the stress-mediated effects. FAc is
taken up rather selectively by glial cells and, once metabolized into
fluorocitrate, blocks the citric acid cycle (Clarke et al., 1970; Has-
sel et al., 1992). In hippocampal slices, FAc treatment is known
to exert glia-specific effects such as gradual glial depolarization
while pronounced neuronal damage does not occur before 8 h of
treatment (Largo et al., 1996, 1997).

Fluoroacetate treatment of control slices (5 mM, >1.5 h) failed,
however, to mimic the alterations induced by chronic stress. No
significant changes in the characteristic HSD parameters occurred
during the first two HSD episodes. The third HSD in FAc treated
slices showed a reduced DC potential amplitude and occurred
slightly later as compared to control slices, possibly indicating a
reduced neuronal excitability and hence the onset of a FAc effect
on neuronal viability (Figure 3A). Pronounced alterations in the
HSD-related changes in [K+]o were not observed in FAc treated
slices either. Only the first HSD showed a moderate but signif-
icant increase in the threshold level before HSD onset, and the
undershoot of the prehypoxic K+ baseline during recovery was
less intense. The posthypoxic recovery of [K+]o was, however,
slowed down consistently (Figure 3B).

SPATIOTEMPORAL PROFILE OF HSD
The IOS was monitored to define the spatiotemporal profile
of HSD, i.e., its propagation within the hippocampal formation
(Figure 4A). The IOS is a multiphasic signal consisting of a mod-
erate initial decrease in tissue reflectance early during hypoxia,
before HSD onset, which is followed by a marked increase in tis-
sue reflectance as HSD occurs (Aitken et al., 1999; Andrew et al.,
1999; Müller and Somjen, 1999; Fayuk et al., 2002). Upon reoxy-
genation, tissue reflectance recovers and often, a second moderate
increase in tissue reflectance is observed (see e.g., arrow marks in
Figure 4B). In the present study, our emphasis was, however, on
the clear reflectance increase that coincides with the occurrence of
HSD, as it unequivocally identifies those tissue areas being invaded
by an HSD episode (Figure 4A).

In control slices, tissue reflectance increased by 11.2 ± 5.0%
(n = 16) as HSD was ignited (analyzed in CA1 st. radiatum). The
intensity and time course of the reflectance increase was very
similar in stress slices, even when HSD was induced repeatedly.

Only for the third HSD episode, somewhat less intense reflectance
changes were observed in stress slices (Figures 4B,C). In addi-
tion, clear differences occurred during the posthypoxic recovery.
In controls, a moderate secondary increase in tissue reflectance was
observed which was almost absent in stress slices (Figures 4B,D).
The propagation velocity of HSD averaged 8.2 ± 3.6 mm/min in
controls (first HSD, n = 16), and did not differ in stress slices,
nor was it affected by repeated hypoxia (Figure 4E). Also the
relative area of the hippocampal formation invaded by HSD,
i.e., the maximum spread of the reflectance increase at the
height of HSD (57.7 ± 15.2%, first HSD control slice, n = 16),
did not differ among the two groups during repeated hypoxia
(Figures 4A,F).

SYNAPTIC FUNCTION DURING HYPOXIA/REOXYGENATION
Next, we asked whether the time course of synaptic failure dur-
ing hypoxia or posthypoxic recovery differs between control and
stress slices. As part of the DC potential recordings, fEPSPs were
evoked every 20 s, and alterations in their amplitudes analyzed.
Upon O2 withdrawal, fEPSP amplitudes rapidly declined to 50%
of their original (prehypoxic) amplitude within 60 s of hypoxia,
and synaptic function was lost completely within 120 s. This time
course of synaptic failure was identical in control (n = 24) and
stress slices (n = 28; Figure 5). Clear differences became apparent,
however, during the posthypoxic recovery of synaptic function.
In controls, fEPSP amplitudes slowly recovered regaining 50%
responses within 6.7 min of reoxygenation. In contrast, in stress
slices recovery was markedly slower; on average, 50% fEPSP ampli-
tudes were reached only after 9.7 min of reoxygenation (see arrow
marks in Figure 5). Within the 20 min of recovery monitored,
synaptic responses then recovered to a stable plateau, and this
final degree of recovery also tended to be less complete in stress
slices (Figure 5).

STRESS MODULATES GFAP CONTENT AS WELL AS Kir EXPRESSION
Glial cells play a crucial role in the buffering of interstitial K+
during periods of increased neuronal activity as well as hypoxia
(Somjen, 1979; Swanson et al., 1997; Holthoff and Witte, 2000;
Kofuji and Newman, 2004). We therefore asked whether the more
intense changes in [K+]o during hypoxia and HSD and the slower
posthypoxic recovery could be due to a modification of glial cells
by chronic restraint stress.

Immunolabeling revealed an increased GFAP immunoreac-
tivity in hippocampal sections from stressed rats (Figure 6A).
A more detailed analysis in the CA1 subfield confirmed that in
sections of stressed rats, the relative optical density of GFAP
labeling was significantly increased by an average of 36.9% (st.
oriens) and 38.4% (st. radiatum), as compared to controls (con-
trol n = 12, stress n = 27; Figure 6A). Furthermore, counting
the number of reactive astrocytes revealed a significant increase
in the number of GFAP-positive cells within CA1 st. radiatum
of stressed rats (577 ± 87 cells/mm2) as compared to controls
(469 ± 81 cell/mm2; n = 12 sections each). At the same time, the
hippocampi of stressed rats were apparently smaller than those of
the controls. Comparing the areas of the hippocampal formation
in the sections (control n = 10, stress n = 13) indicated an average
area reduction by 13.1% in stressed rats.
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FIGURE 4 | Intrinsic optical signal analyses define the spatiotemporal

pattern of HSD propagation. (A) Subtraction images of the changes in
tissue reflectance visualizing the propagation of HSD within the hippocampal
subfield. Numbers report the time since occurrence of the first optical
changes (t = 0) and the last image shows the maximum spatial spread of
HSD. The reflectance changes are coded in a gray-scale covering a range of
±20% as referred to prehypoxic baseline. (B) Time course of the reflectance
changes in control and stress slices. Neither the kinetics nor the intensity of
the scattering increase reveal marked changes among the two groups.
Plotted are the averages of 16 control and 15 stress slices for the first,
second, and third hypoxic episode; for clarity, error bars were omitted.

(C) Quantification of the reflectance increase shows only a trend of a
somewhat reduced intensity at the height of HSD for stress slices, which
reaches the level of significance only for the third hypoxic episode. (D) During
posthypoxic recovery, control slices showed a moderate secondary
reflectance increase [see also arrow marks in (B)] which was absent in stress
slices. For clarity, error bars are shown for every 5th data point only; the
range of significant changes is marked. (E) The propagation velocity of the
HSD wave front does not differ in control and stress slices during the three
hypoxic episodes. (F) Normalized tissue invasion reports the maximum
spread of HSD within the hippocampal formation. Differences were not
observed among control and stress slices.

As earlier reports demonstrated that Kir channels contribute to
glial K+ uptake in spatial buffering (Neusch et al., 2006; Djukic
et al., 2007; Seifert et al., 2009; Chever et al., 2010), we screened

for an altered expression of this glial (astrocyte)-specific chan-
nel (Tang et al., 2009). Indeed, immunolabeling revealed a clearly
reduced Kir4.1 immunoreactivity in the CA1 subfield of stressed

www.frontiersin.org March 2012 | Volume 3 | Article 53 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Schnell et al. Stress intensifies hypoxic responses

FIGURE 5 | Hypoxia-induced failure of synaptic function and

posthypoxic recovery. Synaptic function is lost within 1–2 min upon O2

withdrawal (filled triangle mark) in control and stress slices. Upon
reoxygenation (open triangle mark), recovery of synaptic function is
slower in stress slices. The time points at which the fEPSPs regained
50% of their normoxic amplitudes are marked by the black arrows.

Furthermore, the final degree of recovery tended to be less complete in
stress (n = 28) than in control slices (n = 24; see gray arrows). Since the
semi-automated analysis of fEPSPs amplitudes detected noise peaks
within the traces, zero-amplitudes were not quite reached during
hypoxia. Nevertheless, in the raw traces, detectable fEPSPs were absent
upon stimulation.

FIGURE 6 | Quantification of GFAP and Kir4.1 expression.

(A) Immunolabeling of the astrocytic marker GFAP revealed an increased
GFAP immunoreactivity in the hippocampal CA1 subfield in sections from
stressed rats. Relative optical density of the sections was determined in st.
oriens and st. radiatum (bar plots on the right). In both layers, GFAP
immunoreactivity was more dense in stressed as compared to control rats.

The number of sections analyzed is reported (so st. oriens, sp st. pyramidale,
sr st. radiatum). (B) Immunolabeling also revealed a downregulation of Kir4.1
in stressed rats that was obvious in all layers of the CA1 subfield. (C) Western
blots confirmed the decreased Kir4.1 immunoreactivity, yielding a decreased
expression of Kir4.1 as compared to β-actin content in stressed rats (n = 8
hippocampi each group).

rats (Figure 6B). This downregulation of Kir4.1 protein was con-
firmed by Western blot analyses of whole hippocampi (n = 8 each
group, Figure 6C).

DOES STRESS IMPAIR GLIAL K+-BUFFERING?
Especially the changes in [K+]o during the early period of hypoxia
are considered to be shaped by glial K+ buffering. In view of the
confirmed downregulation of Kir4.1, we therefore addressed the
possibility that the rate and/or capacity of astroglial K+ uptake
might be attenuated in stressed rats and performed whole-cell
voltage-clamp recordings from CA1 astrocytes. For unequivocal

identification, astrocytes were labeled with SR101 (1 μM, 20 min
bulk loading of slices; Figure 7A). Against expectation, the rest-
ing membrane potential of astrocytes did not differ significantly
between control and stress slices (−66 ± 6.8 mV n = 14 and
−70.5 ± 7.6 mV n = 12, respectively; Figure 7B). The membrane
resistance (Ri), although quite variable, was not affected either
(control 72.7 ± 35.3 MΩ n = 14, stress 92.8 ± 98.7 MΩ n = 12;
Figure 7B). Neither did the IV-curve, which was determined by a
voltage step protocol, show any differences (Figures 7C,D).

To test for functional differences of K+ channels in astrocytes
of control and stressed rats, hippocampal slices were exposed to
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FIGURE 7 | Electrophysiological analyses of hippocampal glial cells.

(A) St. radiatum astrocytes were identified by labeling with the
astrocyte-specific fluorescent marker sulforhodamine101. (B) The resting
membrane potential (V m) and input resistance (R i ) of astrocytes did not differ

among control and stress slices. (C) Whole-cell current responses of
astrocytes to voltage steps from −80 mV holding potential to various test
potentials ranging from −160 to +50 mV in 10 mV increments (see insert).
(D) Summarized IV-curves of astrocytes from control and stress slices.

elevated K+ levels (50 mM; Figure 8). This treatment evokes a
K+-mediated inward current (I K) in astrocytes which apparently
requires Kir4.1 channels (Neusch et al., 2006). However, there were
no obvious differences in the K+-evoked I K currents in astrocytes
of control and stress slices, with amplitudes averaging –1.6 ± 0.8
and −2.5 ± 1.6 nA, respectively. Furthermore, there was no change
in the K+-induced increase of the inward current (ΔI−160) that
was elicited by a voltage step from −80 to −160 mV (control
−2.8 ± 1.7 nA, stress –3.8 ± 2.4 nA; Figure 8).

DISCUSSION
Chronic restraint stress was induced following an established
protocol. The confirmed reduced body weight gain and the
increased relative adrenal weight indicate hyperactivity of the
hypothalamus–pituitary adrenal axis and thus confirm that the
stress procedure was effective (Watanabe et al., 1992). In a mul-
tiparametric approach we have analyzed the consequences of
chronic stress on the hippocampal network functioning. In slices
from stressed animals we analyzed the responses to severe hypoxia,
and detected clear differences as compared to control animals.
In stressed rats, changes in the interstitial K+ levels during the
early phase of hypoxia were more intense, the HSD-associated
DC potential shift was shortened, the postsynaptic recovery of the
interstitial K+ level was slower, and synaptic function was impaired
more severely. Furthermore, immunolabeling revealed pro-
nounced changes in glial cells, i.e., an increased number of GFAP-
positive astrocytes and a reduced expression of Kir4.1 channels.

IMPACT ON SYNAPTIC AND NETWORK FUNCTION
In stress slices, basal synaptic function was intact. Also PPF, a
measure of short-term plasticity due to presynaptically altered

FIGURE 8 | Quantification of K+ fluxes in astrocytes. (A) Voltage-clamp
recordings of st. radiatum astrocytes (V hold = −80 mV) that were repetitively
subjected to defined voltage step protocols (see Figure 7C). Application of
50 mM K+ elicited an inward current (IK, see arrows) of similar amplitude in
astrocytes from control and stress slices. (B) Statistical comparison of the
50 mM K+-mediated inward current (IK) and potentiation of that current by
hyperpolarizing voltage steps from −80 to −160 mV [ΔI−160; see arrow
marks in (A)].

transmitter release (Kuhnt and Voronin, 1994) was unchanged,
which is in line with earlier observations after acute restraint stress
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(Shors and Thompson, 1992). In addition, the stress-induced inhi-
bition of hippocampal LTP is in agreement with previous reports
(Pavlides et al., 2002). We found that induction of LTP caused
an indistinguishable immediate PTP in control and stress slices,
but about 10 min after initiation, this potentiation slowly faded in
stress slices so that an induction and maintenance of stable LTP
did not occur. Therefore, in terms of synaptic plasticity, chronic
restraint stress can be assumed to target primarily postsynaptic
processes. Whether a more pronounced interstitial K+ accumu-
lation has also occurred in response to the LTP-inducing high-
frequency stimulus cannot be decided, as [K+]o was not recorded
during these experiments.

The impact of stress and the associated increase in corticos-
teroid levels on synaptic function and plasticity is quite hetero-
geneous. It depends on the very brain region with its particular
synapses/neuropil, and especially the type of stress that is applied
as well as on the stress duration (Pavlides et al., 2002). For exam-
ple, a suppression of LTP within st. radiatum of the CA1 subfield
was reported in response to acute stress while leaving basal synap-
tic function and PPF intact (Shors and Thompson, 1992; Fujikawa
et al., 1996). Also corticosterone treatment or activation of specific
glucocorticoid receptors dose-dependently dampened LTP in the
CA1 region (Kerr et al., 1994). An inverted-U shape relationship
between peripheral corticosterone levels and hippocampal primed
burst potentiation was detected in rats whose glucocorticoid levels
were modulated by adrenalectomy and exogenous corticosterone,
respectively (Diamond et al., 1992). However, whereas acute stress
or low corticosteroids may even facilitate and improve synaptic
plasticity, there is a general agreement that chronic stress mediates
suppressive effects (Bodnoff et al., 1995; Pavlides et al., 2002). Our
present findings support this view as the chronic restraint stress
suppressed LTP in the CA1 subfield.

To some degree, the neuronal functioning was probably altered
because of stress-induced changes in the neuronal architecture.
Chronic restraint stress reduces the length of apical dendrites in
the CA3 subfield which may also affect CA1 neurons, although
no such morphological alterations were detected in CA1 itself
(see Watanabe et al., 1992). However, the Schaffer collateral
mediated input to the CA1 subfield is dependent on the acti-
vation of NMDA receptors (Collingridge and Bliss, 1995). In
earlier studies it was suggested that the suppression of synap-
tic plasticity by adrenal steroids and stress includes changes in
NMDA receptors (Fujikawa et al., 1996; Pavlides et al., 2002).
This may be related to high extracellular glutamate levels in
the hippocampus induced by stress or glucocorticoid treatment
(Lowy et al., 1993; Moghaddam et al., 1994). Chronic stress
has been shown to affect the clearance of extracellular gluta-
mate (for review see Popoli et al., 2012). Acute restraint stress
enhanced both glutamate release and uptake in hippocampal
synaptosomes (Gilad et al., 1990), and the NMDA receptor sub-
unit NR1 was found to be upregulated in rat hippocampus upon
restraint stress (Jang et al., 2008). Altogether, such changes in
the glutamatergic system could lead to altered NMDA receptor
functioning and hence to an impairment of LTP. Furthermore,
altered NMDA receptor function could have well contributed to
the observed changes in the HSD-associated DC potential shift
(see below).

Another interesting observation is the delayed recovery of
synaptic function in stress slices upon reoxygenation. A variety
of mechanisms contributes to the synaptic failure during hypoxia,
including inhibition of presynaptic voltage-gated Ca2+ channels
(Young and Somjen, 1992) as well as activation of various pre- and
post-synaptic ATP- and Ca2+-sensitive or adenosine-mediated K+
conductances (Luhmann and Heinemann, 1992; Zhu and Krnje-
vic, 1997; Nowicky and Duchen, 1998). Only if O2 is restored in
time, synaptic function eventually recovers once the massively dis-
turbed ionic homeostasis and resting membrane potentials have
been largely normalized. The delayed posthypoxic recovery of
synaptic function in stress slices suggests that this normalization
of membrane potentials and ionic distribution took somewhat
longer. Of course a more detailed interpretation would require
intracellular recordings from individual neurons, but the observed
slower posthypoxic recovery of [K+]o in stress slices provides
strong evidence for a delayed reinstatement of neuronal rest-
ing membrane potentials and hence a plausible cause for the
postponed recovery of synaptic function.

CHRONIC STRESS INDUCES GLIAL CHANGES
Several stress-induced changes in glia may exert crucial effects
on network function. The increase in the number of GFAP
immunoreactive astrocytes is in line with previous findings indi-
cating a reactive gliosis, accompanied by an increase in glial volume
and hence a reduction of interstitial space (Jang et al., 2008). The
present increase in the number of GFAP-positive cells strongly sug-
gests that such a reduction of interstitial volume has also occurred
within the hippocampal formation in our study. This view is fur-
ther supported by the finding that the size of the hippocampus of
stressed rats appeared smaller than that of the controls.

MODULATION OF HSD AND ITS SPATIOTEMPORAL PROPAGATION
PATTERN
High-frequency stimulation induces epileptic afterdischarges in
the CA3 subfield in acutely stressed and less regularly also in
chronically stressed rats (Pavlides et al., 2002). A similar hyper-
excitability in CA1 neurons as a result of chronic stress can be
excluded. In our experiments, fEPSPs did not show clear signs of
hyperexcitability such as multiple population spikes or afterdis-
charges, and the input–output curve was not shifted to the left.
Also, an increase in neuronal excitability should have hastened the
occurrence of HSD, as neuronal excitability is one of the key para-
meters defining the susceptibility of brain tissue to the generation
of HSD (Aitken et al., 1991; Müller, 2000; Müller and Somjen,
2000b). Furthermore, IOS monitoring confirmed a comparable
spatiotemporal profile of HSD in the hippocampal formation of
control and stress slices.

It has been reported that stress stimulates the production of
nitric oxide via activation of the inducible nitric oxide synthase and
it was proposed that this may result in neurodegenerative changes
within the hippocampal formation (Jang et al., 2008). However,
clear evidence for the loss of neurons was never obtained. We
subjected the rats to daily restraint stress according to a protocol
that is widely used to study chronic stress effects on the brain.
This daily immobilization induces a kind of psychological stress
leading to various morphological/biochemical changes in neurons,
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e.g., the retraction of hippocampal pyramidal neuron dendrites.
Yet, despite the popular view that psychological stress induces
neuronal death in the hippocampus this phenomenon was never
observed under controlled experimental conditions (Fuchs et al.,
2004). Instead, several of the stress-induced changes in the brain,
e.g., the retraction of hippocampal dendrites and the reduced
neurogenesis rate in dentate gyrus, are reversible, at least when
the animals are treated with antidepressant drugs (McEwen et al.,
2002). Moreover, in another established chronic stress model, the
male tree shrew, the exact quantification of hippocampal neurons
confirmed that there was no neuron loss (Vollmann-Honsdorf
et al., 1997). Instead, chronic (psychological) stress may even
reduce apoptosis in certain hippocampal regions (Lucassen et al.,
2001).

Neither do our data show any obvious signs of neurodegener-
ation. Basal synaptic function (fEPSPs) and short-term plasticity
(PPF and PTP) were intact, and the time to onset of HSD and its
spatiotemporal propagation pattern were unchanged. Since HSD
is generated and propagates in healthy brain tissue (gray mat-
ter) only, the largely unaltered electrophysiological and optical
characteristics of HSD further argue against neurodegeneration.
Accordingly, the present findings showing that stress changes hip-
pocampal neurons in their capacity to react to hypoxia is in line
with the view that stress per se has profound effects on neu-
ronal physiology but does not kill brain cells (see also Fuchs and
Flügge, 2011). Of course, this interpretation does not exclude that
an in vivo hypoxic or toxic insult could have stronger degen-
erating effects on neurons in stressed subjects as compared to
controls.

The shortened duration of the DC potential shift is an inter-
esting observation which could be explained by an improved
synchronization of the underlying neuronal/glial depolarizations,
possibly as a cause of the faster K+ accumulation which should
render neurons more excitable. Another plausible explanation
might be based on the fact that also the shape of the DC poten-
tial shift was altered. Under control conditions, the profile of the
DC shift often showed the characteristic “inverted saddle” shape
with an initial nadir followed by a second negative peak (e.g.,
Figure 2B). It is well known that these two negative peaks are based
on the contribution of different types of ionotropic glutamate
receptors, with NMDA receptor-mediated currents contributing
markedly to the second peak (Marrannes et al., 1988; Herreras
and Somjen, 1993; Krüger et al., 1999). Due to the above men-
tioned effects of chronic stress on NMDA receptor function and
dendritic complexity, a reduced availability of functional NMDA
receptors would be a plausible explanation for the characteristic
alterations in the DC potential profile and hence the shorting of
its duration.

A reduced complexity of dendritic structures is also a
likely explanation for the observed depression of the secondary
reflectance increase in stress slices upon reoxygenation, because
these late components of the IOS are considered to arise – at
least in part – from alterations in dendritic morphology such
as beading and swelling (Andrew et al., 1999; Müller and Mané,
2010). Any other alterations in the time course of the IOS were
not observed, and cannot be expected. The shortening of the DC
potential shift in stress slices was only moderate and the IOS would

only be affected by pronounced changes in HSD duration, such as
a markedly delayed reoxygenation (Gerich et al., 2006).

MODULATION OF HYPOXIC K+ FLUXES
Early during hypoxia, [K+]o rose at a higher rate and reached a
higher level before HSD was ignited. The K+ peak at the height
of HSD also became intensified in stressed rats, at least when
HSD was induced repeatedly, and the posthypoxic recovery of
[K+]o occurred more slowly. These more pronounced changes in
[K+]o could be based on three different causes or any combina-
tion thereof: (1) more intense release of K+ from stress neurons,
(2) limited degree of K+ buffering by stress glial cells, and (3) a
reduced interstitial volume in stressed rats.

Clear signs of hyperexcitability were absent in stressed rats, and
the time course of synaptic failure was indistinguishable among
control and stress slices. Furthermore, the early hyperpolariza-
tion of hippocampal CA1 neurons during hypoxia is already quite
pronounced and drives the membrane potential close to the K+
equilibrium potential (Hansen et al., 1982; Fujimura et al., 1997;
Müller and Somjen, 2000a). Therefore, a more pronounced release
of K+ from hippocampal neurons is rather unlikely.

An interesting aspect is a modulation of glial K+ uptake, espe-
cially in view of the altered GFAP expression indicating reactive
gliosis and the downregulation of Kir4.1 protein. Based on find-
ings in Kir4.1 knock-out mice, we expected that the strongly
reduced expression of Kir4.1 in stressed rats would result in a more
depolarized astroglial resting membrane potential and decreased
K+-induced inward currents in astrocytes (Neusch et al., 2006;
Djukic et al., 2007). However, astrocytes from stressed rats did not
show any of those changes reported for Kir4.1 deficient mice. It is
well possible that in stressed rats, the remaining Kir4.1 protein, in
concert with other K+ channels (Seifert et al., 2009), was able to
maintain the resting membrane potential and K+ uptake capabil-
ity of the astrocytes. Also, compensatory alterations by other types
of K+ channels may have occurred, masking the partial Kir4.1 loss.
For example, in reactive gliosis, upregulation of astroglial TreK-1
passive K+ channels was reported (Wang et al., 2012), preventing
an observation of those changes in passive membrane properties
found in other disease models with GFAP upregulation (Bordey
et al., 2001; Anderova et al., 2004). Accordingly, the situation in
stressed rats rather resembles those conditions found in heterozy-
gous Kir4.1+/− mice, in which neither resting membrane potential
nor K+ uptake were affected (Neusch et al., 2006; Papadopoulos
et al., 2008).

Since controlled whole-cell recordings from unlabeled astro-
cytes in slices of adult rats are almost impossible, we used SR101
to specifically label astrocytes (Kafitz et al., 2008). This labeling
procedure might have biased our selection of cells to a distinct
subpopulation of astroglial cells because in juvenile rat hippocam-
pus (after P15), SR101 labels preferentially the passive type of
astrocyte but not necessarily also the complex type (Kafitz et al.,
2008). In a conditional, glia-specific Kir4.1 knock-out mouse,
however, in particular the complex type of astrocyte shows a pro-
nounced reduction of Kir-mediated inward currents (Djukic et al.,
2007).

Nevertheless, activation of astroglia (indicated by enhanced
GFAP levels) suggests an increased degree of ramification and

www.frontiersin.org March 2012 | Volume 3 | Article 53 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Schnell et al. Stress intensifies hypoxic responses

formation of glial processes. This could result in a restriction of
the interstitial volume – especially in view of the increased number
of GFAP-positive cells and the reduced size of the hippocampal
formation detected in stressed rats. Thus the K+ being released
from neurons during the early phase of hypoxia would enter
a more restricted interstitial volume, thereby rising at a faster
rate and reaching higher levels, both of which was seen in the
[K+]o recordings. The diffusional limitations arising from the
restricted interstitial volume could also explain why the posthy-
poxic recovery of the massive K+ rise was slowed down in
stressed rats.

Based on the available data, and in view of the unchanged
electrophysiological properties of hippocampal astrocytes the

alterations in extracellular K+ accumulation and postsynaptic
recovery are probably due to a restriction of the interstitial vol-
ume in the hippocampus of stressed rats rather than caused by an
impaired glial K+ uptake. Nevertheless, together with the delayed
posthypoxic recovery of synaptic function, this confirms a more
severe impact of O2 shortage in neuronal networks that had been
exposed to chronic stress.
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