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In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a
voltage sensor domain. This conformational change of the protein is transmitted to the pore
domain and eventually leads to pore opening. However, the voltage sensor domain may
interact with two distinct gates in the pore domain: the activation gate (A-gate), involving
the cytoplasmic S6 bundle crossing, and the pore gate (P-gate), located externally in the
selectivity filter. How the voltage sensor moves and how tightly it interacts with these two
gates on its way to adopt a relaxed conformation when the membrane is depolarized may
critically determine the mode of Kv channel inactivation. In certain Kv channels, voltage
sensor movement leads to a tight interaction with the P-gate, which may cause confor
mational changes that render the selectivity filter non-conductive (“P/C-type inactivation”).
Other Kv channels may preferably undergo inactivation from pre-open closed-states during
voltage sensor movement, because the voltage sensor temporarily uncouples from the
A-gate. For this behavior, known as “preferential” closed-state inactivation, we introduce
the term "A/C-type inactivation” Mechanistically, P/C- and A/C-type inactivation represent

two forms of “voltage sensor inactivation.”
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INTRODUCTION

Voltage-gated potassium (Kv) channels control excitability and
discharge behavior of nerve and muscle cells (Hille, 2001). Kv
channel activation may occur in response to strong membrane
depolarization, which occurs when action potentials are gener-
ated. In this case, the voltage-dependent activation of a potas-
sium conductance critically determines repolarization and after-
hyperpolarization (Hodgkin and Huxley, 1952). Alternatively, Kv
channels may be activated by subthreshold depolarization, and
the resultant potassium conductance may prevent or delay action
potential firing (Connor and Stevens, 1971). Notably, many Kv
channels undergo inactivation when the membrane is depolar-
ized, meaning that they adopt a non-conducting conformation,
which is different from the resting state, and from which the chan-
nels can only recover when the membrane is re- or hyperpolarized
(Hille, 2001). Whenever such inactivation occurs, the influence
of potassium flow on the membrane potential is only transient
and provided with refractoriness, which may be of physiologi-
cal relevance: For instance, the transient nature of a potassium
conductance in ventricular cardiomyocytes supports the spike-
and-dome morphology of the action potential (Greenstein et al.,
2000); in the nervous system brief inactivation of a subthresh-
old operating dendritic potassium conductance at postsynaptic
sites, which normally suppresses dendritic excitation, may lead to
local dendritic spike amplification (Hoffman et al., 1997; Magee
and Johnston, 1997); and the slow and incomplete recovery of a
presynaptic potassium conductance from inactivation may lead
to frequency-dependent spike broadening, thereby enhancing cal-
cium entry and transmitter release (Jackson et al., 1991). These
are only a few examples showing that Kv channel inactivation may
serve electrical signaling on the cellular level. Due to its critical role

in cell physiology, the kinetics, voltage dependence, and structure-
function relationships of Kv channel inactivation have been the
focus of intense research for decades.

Three main mechanisms have been identified so far that may
lead to the inactivation of Kv channels (Kurata and Fedida, 2006;
Bihring and Covarrubias, 2011). (1) When the cloning of Kv chan-
nel genes made detailed structure-function analyses possible, the
first inactivation mechanism to be identified was “N-type inactiva-
tion”; the name refers to the part of the channel protein involved:
A tethered N-terminal inactivation domain of the channel protein
plugs the open pore according to a ball-and-chain mechanism
(Hoshi et al., 1990); N-type inactivation is usually very fast (on
the time scale of few milliseconds). (2) Next, it was recognized
that more C-terminal portions of the channel protein also play
an important role in Kv channel inactivation. The fact that the
pore domain is involved in this mechanism led to the term “P/C-
type inactivation”: Conformational changes at the external pore
entrance near the selectivity filter (the P-gate) impair channel
conductivity (Hoshi et al., 1991; Yellen et al., 1994). Like N-type
inactivation, P/C-type inactivation has been classically viewed as
an open state inactivation mechanism, however, P/C-type inacti-
vation may also occur from closed-states (see below). (3) Finally,
some Kv channels preferably inactivate from closed-states and not
from the open state. Although the existence of such “preferential”
closed-state inactivation (CSI) was recognized early on, the struc-
tural determinants involved have remained a mystery for a long
time. It is now thought that temporary uncoupling of the voltage
sensor from the S6 activation gate (A-gate) underlies preferen-
tial CSI (Barghaan and Bihring, 2009); P/C-type inactivation; and
preferential CSI represent slower processes (usually on the time
scale of tens to hundreds of milliseconds).

www.frontiersin.org

May 2012 | Volume 3 | Article 100 | 1


http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/about
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/10.3389/fphar.2012.00100/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RobertB�hring&UID=40746
mailto:r.baehring@{\penalty -\@M }uke.uni-hamburg.de
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive

Bahring et al.

\oltage sensor inactivation

Fast N-type inactivation can be abolished by genetic or enzy-
matic removal of the N-terminal inactivation domain, and experi-
mental application of the isolated inactivation peptide can restore
inactivation (Hoshi et al., 1990; Zagotta et al., 1990). N-type
inactivation may also be conferred to non- or slowly inactivat-
ing channels by their association with auxiliary f-subunits which
for their part possess an N-terminal inactivation domain (Rettig
et al., 1994; Wallner et al., 1999; Jerng et al., 2009). By contrast,
the slower P/C-type inactivation and preferential CSI are more
intrinsic to the channel. P/C-type inactivation can be prevented
by external TEA, elevated external potassium concentrations and
by a threonine to valine mutation at the external pore entrance
(Choi et al., 1991; Lopez-Barneo et al., 1993). Preferential CSI is
critically influenced by mutations located on the internal side of
the pore; i.e., the S4-S5 linker and the S6 activation gate (Jerng
etal., 1999; Barghaan and Bihring, 2009). Notably, both P/C-type
inactivation and preferential CSI of Kv channels critically depend
on conformational changes of the voltage sensor domain (Kurata
and Fedida, 2006; Bihring and Covarrubias, 2011). Due to the fact
that the voltage sensor is instrumental in both mechanisms, P/C-
type inactivation and preferential CSI may be seen as two forms of
“voltage sensor inactivation”. Here we provide a brief overview of
work, that has demonstrated and mechanistically examined pref-
erential CSI and P/C-type inactivation in the Shaker-related Kv
channel subfamilies Kv1-Kv4.

FORMAL DESCRIPTION OF Kv CHANNEL INACTIVATION

A mechanistic understanding of ion channel function requires the
definition of different states which the protein complex may adopt.
The formal description is then usually followed by the assignment
of structural correlates based on experimental evidence. The basic
features of Kv channel gating, including voltage-dependent acti-
vation, pore opening and channel inactivation, may be formally
described by the simplified scheme shown in Figure 1A (Scheme
1). When the membrane is depolarized (AV) the channels go from
aresting state (Cgr), via an activated but still closed-state (C*), to an
open state (O). The channels may inactivate either from C* (CSI)
to adopt a closed-inactivated state (Ic) or from the open state to
reach one of two different but interconnected open-inactivated
states (I or Ip,c), representing the mechanisms of N-type and
P/C-type inactivation, respectively. N-type inactivation is thought
to favor entry into the P/C-type inactivated state (In,p/c) due to
the prevention of ion flux and the resultant ion deprivation of the
pore (Baukrowitz and Yellen, 1995). Scheme 1 does not account
for the tetrameric arrangement which allows cooperativity of Kv
channel gating. Also, Scheme 1 assumes that P/C-type inactiva-
tion requires channel opening, which represents a classical view
but may not be appropriate. A more sophisticated kinetic scheme,
suitable for global kinetic modeling (Kaulin et al., 2008), is shown
in Figure 1B (Scheme 2). Here, during activation the channels
go from a resting state (Cr), via several partially activated closed-
states (C;—Cy4) and an opening-permissive pre-open closed-state
(Cs), to an open state (O). The channels can inactivate from the
partially activated and pre-open closed-states to adopt either one
of the states Ar — A5 (these transitions represent preferential CSI),
or the channels may adopt one of the inactivated states Pr — Pg
(these transitions represent P/C-type inactivation). Translated into
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FIGURE 1 | Formal description of Kv channel gating. (A) Scheme 1:
Simplified gating scheme which represents a classical view of inactivation
from open and closed-states (Cg, resting state; C*, activated but still
closed-state; O, open state; Iy, N-type inactivated state; lpc, P/C-type
inactivated state; Iy pc, N-type and P/C-type inactivated state; Ic,
closed-inactivated state). The voltage-sensitive transition is indicated (AV).
(B) Scheme 2: Extended gating scheme adopted from Kaulin et al. (2008),
which accounts for the activation pathway of a tetrameric channel
accompanied by two inactivation pathways based on different mechanisms
(C, closed-states; A, inactivated states involving the A-gate; P, inactivated
states involving the P-gate; suffix R means “resting,” suffixes 1-4 represent
number of subunits in this state, suffix 5 denotes states which precede a
concerted opening step; O, open state). The voltage-sensitive transitions
are indicated (AV). Collectively, A-states represent preferential closed-state
inactivation (CSI) or "A/C-type inactivation”; P-states represent P/C-type
inactivation, P,—P5s from closed-states, P from the open state.

structural terms (see also Figure 2), the majority of transitions
from left to right in Scheme 2 are associated with conformational
changes of the voltage sensor (AV, Figure 1B). When the voltage
sensor has adopted an activated conformation in all four sub-
units (states C;—Cy) the channel goes to an opening-permissive
conformation (Cs) from which it can undergo a concerted open-
ing step (O). However, voltage sensor movement may also induce
different forms of inactivation, as it either leads to an uncou-
pling from the A-gate (A-states) or to a tight interaction with the
P-gate, thereby causing conformational changes in the selectiv-
ity filter which reduce conductivity (P-states). These structural
determinants will be discussed in more detail. Notably, Scheme
2 allows P/C-type inactivation from both open and closed-states
(see below). Similar to previously suggested models accounting
for parallel pathways of P/C-type inactivation and preferential
CSI (Klemic et al., 2001; Kurata et al., 2005), Scheme 2 does not
account for N-type inactivation (Figure 1B), because it was origi-
nally developed for channels in which this form of inactivation
plays a negligible role (Kaulin et al.,, 2008). Also, in the more
detailed discussion of preferential CSI and P/C-type inactivation
as two forms of voltage sensor inactivation below, we shall leave
N-type inactivation unconsidered. We will first discuss indications
and the mechanistic basis of preferential CSI in Kv channels, and

Frontiers in Pharmacology | Pharmacology of lon Channels and Channelopathies

May 2012 | Volume 3 | Article 100 | 2


http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive

Bahring et al.

\oltage sensor inactivation

A Resting voltage sensor

Channel closed

C Relaxed D
voltage sensor

P/C-type inactivation
of open channel

FIGURE 2 | Models of voltage-dependent activation and voltage sensor
inactivation in Kv channels. Cartoons illustrate putative conformations a
single Kv channel a-subunit may adopt in a subtype-specific manner when the
membrane encounters prolonged depolarization. (A) Resting state; the
voltage sensor is in its resting position (down) and the channel is closed
(S1-S6, transmembrane segments; P-gate, pore gate with selectivity filter;
A-gate, activation gate represented by the distal S6 segment, which is
involved in the bundle crossing in the tetramer). (B) Open conducting state;
the voltage sensor is activated (up) and the channel is open (green arrow

NS
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voltage sensor

o
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B Activated voltage sensor
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denotes putative opening motion of the A-gate). (C) Open but non-conducting
state; the voltage sensor has adopted a relaxed conformation (blue) which
tightly interacts with the P-gate rendering the selectivity filter non-conducting
(red). (D) Closed-inactivated state with the A-gate uncoupled (red); the
voltage sensor has adopted a relaxed conformation (blue), and the A-gate is
closed (A/C-type inactivation). (E) Closed-inactivated state with the P-gate in
its non-conductive conformation (red); the voltage sensor has adopted a
relaxed conformation (blue), the A-gate is still coupled to the voltage sensor
but the channel has not opened (P/C-type inactivation of a closed channel).

then consider P/C-type inactivation as an alternative reflection of
voltage sensor inactivation based on differences in the crosstalk
between voltage sensor domain and pore domain.

INDICATIONS OF PREFERENTIAL CSI IN Kv CHANNELS

The first indication of a cumulative form of inactivation in Kv
channels, which may involve pre-open closed-states, came from
recordings done on molluscan neurons (Aldrich, 1981). In this
study Aldrich noticed that, after a voltage pulse, the maximum cur-
rent obtained with a second pulse was less than the current at the
end of the first pulse. This finding indicated that, instead of recov-
ery from inactivation, even more inactivation must have occurred
during the interpulse interval at a negative voltage. Accordingly,
Kv channels which preferentially inactivate from closed rather than
open states show faster and stronger inactivation in response to a
series of test pulses rather than to one long pulse. Furthermore, at
steady-state Kv channels with preferential CSI show pronounced
inactivation at intermediate voltages and less inactivation at more
positive voltages where the open probability is increased. Such
behavior produces U-shaped inactivation curves, which led to
the term “U-type inactivation,” with no reference to the struc-
tures involved. Kv2.1 (Klemic et al., 1998) and Kv3.1 channels
(Klemic et al., 2001) undergo strong cumulative inactivation with

repeated brief voltage pulses, and the inactivation curves of these
channels exhibit a U-type profile, indicative of preferential CSI.
U-type features of steady-state inactivation curves as an indica-
tion of preferential CSI have also been observed for N-terminally
truncated Shaker channels (ShA; Klemic et al., 2001) and a natu-
rally occurring Kv1.5 N-terminal deletion mutant (Kv1.5AN209;
Klemic et al., 2001; Kurata et al., 2001; Kurata et al., 2002; Kurata
et al., 2005).

Computer modeling of non-Shaker A-type potassium currents
in neurons from Drosophila (Solc and Aldrich, 1990) and of the
transient outward current (Iy,) in ferret ventricular myocytes
(Campbell et al., 1993) suggested that inactivation coupled to
the voltage-dependent activation pathway of the underlying chan-
nels is necessary to reproduce the experimentally observed gating
behavior (Ic-state in Scheme 1, A-states in Scheme 2, Figure 1).
Moreover, it was observed that prepulse inactivation of the ferret
I, occurred at voltages where no opening was detectable (Camp-
bell etal., 1993). The pioneering study by Campbell and coworkers
and the fact that I, is mainly mediated by members of the Kv4 sub-
family of Kv channels (Dixon et al., 1996), led to a focusing on Kv4
channels to learn more about the mechanism of preferential CSI.
It is also important in this context that P/C-type mechanisms play
a negligible role in Kv4 channel inactivation, as external TEA does
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not influence (Jerng and Covarrubias, 1997) and high external
potassium concentrations accelerate macroscopic current decay
(Jerng and Covarrubias, 1997; Kirichok et al., 1998; Bihring et al.,
2001; Shahidullah and Covarrubias, 2003; Kaulin et al., 2008).
Notably, the homologous position where a threonine to valine
mutation eliminates P/C-type inactivation in ShakerB channels
(T449V; Lopez-Barneo et al., 1993), is already occupied by valine
in Kv4 channels.

Just like native I,, recombinant Kv4 channels in heterolo-
gous expression systems show the typical discrepancy between
the voltage dependencies of macroscopic inactivation and acti-
vation, resulting in almost no overlap of the corresponding curves
and a minimal conductance window (Jerng et al., 1999; Bihring
et al.,, 2001; Patel et al., 2004; Dougherty et al., 2008; Kaulin et al,,
2008; Barghaan and Bihring, 2009). This is a strong indication of
preferential CSI as an intrinsic property of Kv4 channels. Notably,
however, the inactivation curves of Kv4 channels do not show U-
type features. But this is due to the fact that, even at strongly
depolarized membrane voltages, which favor channel opening,
occupancy of the open state is only transient in Kv4 channels and
they rather tend to close and accumulate in closed-inactivated
states (Jerng et al., 1999; Bihring et al., 2001; Barghaan et al., 2008;
Kaulin et al., 2008). Thus, these channels exhibit preferential CSI
at all relevant voltages. This assertion is based on the finding that
the closing step plays a critical role in Kv4 channel inactivation.
Experimentally this has been tested by the use of different perme-
ant ions (high and identical concentrations of one ion species on
either side of the membrane): Rubidium ions, which have a longer
residency time in the pore than potassium ions not only slow Kv4
deactivation tail currents following brief activation pulses but also
macroscopic inactivation during prolonged pulses (Bihring et al.,
2001; Shahidullah and Covarrubias, 2003; Barghaan et al., 2008).
Also, point mutations, which cause a slowing of deactivation tail
current decay, at the same time slow macroscopic inactivation
in Kv4 channels (Jerng et al., 1999). Any open state inactiva-
tion mechanism would be favored and macroscopic current decay
accelerated when channel closing is delayed. Also, recovery from
open-inactivated states is usually accompanied by re-opening tail
currents before the channels close. The complete absence of such
re-opening tail currents when the membrane potential is repo-
larized after a prolonged voltage pulse sufficiently depolarized to
open Kv4 channels (Bihring et al., 2001), also reflects their final
accumulation in closed-inactivated states at all relevant voltages.

MECHANISM OF CSI IN Kv4 CHANNELS
Recent studies have now shed light on what might happen mecha-
nistically during CSIin Kv4 channels. In one study, mutational and
thermodynamic analyses of putative coupling domains between
the voltage sensor and the A-gate were correlated with CSI kinet-
ics and steady-state inactivation in Kv4.2 channels (Barghaan
and Bdhring, 2009); in another study a detailed electrophysio-
logical analysis of gating charge movement was performed and
the results correlated with Kv4.2 channel inactivation (Dougherty
et al., 2008).

Previous findings had already given a hint on the structural cor-
relates that might be responsible for the finding that Kv channels
can stay closed despite voltage sensor movement. For instance, in

N-terminally truncated and L3821 point-mutated ShakerB chan-
nels enhanced CSI had been observed relative to wild-type (Ayer
and Sigworth, 1997). The L382I mutation lies at the S4 end of
the S4-S5 linker. Notably, the S4-S5 linker is critically involved
in the coupling of the voltage sensor to the A-gate in Kv channels
(Lu et al., 2002; Yifrach and MacKinnon, 2002; Long et al., 2005).
A physical model of CSI has been suggested (Shin et al., 2004;
Barghaan and Bihring, 2009), in which S4-S5 linker residues may
fail to make tight contact with their S6 counterparts. Barghaan
and Bdhring (2009) directly tested this hypothesis by applying
scanning mutagenesis and double-mutant cycle analysis to the
Kv4.2 54-S5 linker and the distal S6 segment. Such double-mutant
cycle analysis has previously identified pairs of amino acids within
these two domains, which, by direct coupling, mediate the voltage-
dependent opening of the A-gate in ShakerB channels (Yifrach and
MacKinnon, 2002). In corresponding Kv4.2 single- and double-
mutants, these sites were tested for their involvement in CSI
by applying prepulse inactivation protocols. The results of these
experiments suggested that pairs of amino acids, one in the $4-S5
linker and the other one in the distal S6 segment, not only interact
with each other to open the A-gate, but are dynamic interaction
partners in Kv4 channel CSI (Barghaan and Bihring, 2009). It
was concluded that Kv4 channel CSI is based on the temporary
uncoupling of the voltage sensor from the A-gate.

In voltage-dependent ion channels the movement of gating
charge can be influenced by inactivation, as first characterized for
voltage-dependent sodium channels (Armstrong and Bezanilla,
1977). In the absence of inactivation gating charges located in
S4 may freely move across the membrane electric field (see
Figures 2A,B), which can be detected as outward and inward
gating currents (Armstrong and Bezanilla, 1973). However, if the
return of the voltage sensor to its resting conformation is impeded
and slowed (“gating charge immobilization”) the detection of gat-
ing currents may be constricted or impossible (“loss of gating
charge”). This may be the case if the voltage sensor adopts a stable
(“relaxed”) conformation in response to a prolonged depolariza-
tion (see Figures 2C-E). In Kv channels gating charge immobiliza-
tion has been shown previously for both N-type (Bezanilla et al.,
1991; Perozo et al., 1992; Roux et al., 1998) and P/C-type inacti-
vation (Fedida et al., 1996; Olcese et al., 1997). Dougherty et al.
(2008) tested whether gating charge immobilization also occurs
in Kv4.2 channels known to preferentially undergo CSI. If the
dynamic uncoupling model of CSI is correct and conformational
changes of the voltage sensor represent the proximate cause of Kv4
channel CSI, electrophysiological manifestations of inactivation
and gating charge immobilization should share the same volt-
age dependence and kinetics. The experiments by Dougherty et al.
(2008) revealed profound gating charge immobilization over a nar-
row range of negative membrane potentials where CSI is expected
to occur. Moreover, the kinetics of the loss of gating charge at
positive and recovery of gating charge at negative voltages were
identical to the kinetics of ionic current decay and macroscopic
recovery from inactivation, respectively. These results showed that
the loss of gating charge and the onset of inactivation reflect the
same molecular mechanism, and they strongly suggested that the
voltage sensor is directly involved in the mechanism of Kv4 channel
CSI. The results also explained why CSI is critically influenced
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by neutralizing positive charges (Skerritt and Campbell, 2007,
2009) or introducing non-native positive charges (Skerritt and
Campbell, 2008) in the Kv4.3 S4 segment.

Obviously, CSI in Kv4 channels corresponds to the failure of
the voltage sensors to actively open the A-gate. It is not known
to date whether uncoupling allows the voltage sensor to adopt its
relaxed conformation, or whether this slow conformational change
of the voltage sensor actually causes uncoupling. Optical record-
ing techniques, including voltage-clamp fluorimetry, may help to
elucidate structural rearrangements during Kv4 channel CSI not
accessible by electrophysiological measurements, thereby clarify-
ing the cause-and-effect relationships of voltage sensor relaxation
and A-gate uncoupling.

P/C- AND A/C-TYPE INACTIVATION: TWO VARIATIONS OF
VOLTAGE SENSOR — PORE DOMAIN CROSSTALK
P/C-type inactivation involves conformational changes at the P-
gate (Pardo et al., 1992; De Biasi et al., 1993; Lopez-Barneo
et al.,, 1993; Kurata and Fedida, 2006) including the selectivity
filter (Ogielska et al., 1995; Panyi et al., 1995; Liu et al., 1996;
Kiss and Korn, 1998; Yellen, 1998; Zhou et al., 2001; Kurata and
Fedida, 2006; Ahern et al., 2009). Electrostatic interactions involv-
ing H-bonds between the pore helix and the selectivity filter have
been shown to promote these conformational changes (Cordero-
Morales et al., 2006, 2007). Notably, gating charge immobilization
(see above) has also been observed for P/C-type inactivation
(Olcese et al., 1997; Loots and Isacoff, 1998; Larsson and Elinder,
2000; Wang and Fedida, 2001), suggesting that the voltage sensor
may also adopt a stable relaxed conformation during prolonged
depolarizations (Olcese et al., 1997). These older observations for
P/C-type inactivation are highly similar to the more recent findings
for Kv4.2 (Dougherty et al., 2008), a channel in which P/C-type
inactivation is known to play a minor role (Kaulin et al., 2008).
Based on the results discussed above, a picture is beginning
to evolve where the crosstalk between the voltage sensor domain
and the pore domain, which is essential for Kv channel activation,
also represents the structural framework for different manifesta-
tions of Kv channel inactivation. The voltage sensor domain has
been shown to be able to directly communicate with two distinct
gates in the pore domain: the P-gate in the selectivity filter and
the A-gate involving the S6 bundle crossing (Figure 2A; Loots
and Isacoff, 2000; Elinder et al., 2001; Lu et al., 2002; Lainé et al.,
2003; Webster et al., 2004; Soler-Llavina et al., 2006; Barghaan and
Bihring, 2009). When the membrane is depolarized the voltage
sensor domain may adopt at least two distinct sets of conforma-
tions: First, it moves quickly and makes tight contact with the
A-gate to open it (Figure 2B). Then, if the depolarization is sus-
tained, the voltage sensor slowly adopts a more stable (relaxed)
conformation (Figures 2C,D). The nature of the relaxed confor-
mation depends on Kv channel subtype: In some Kv channels the
voltage sensor may encounter favorable strong interactions with
the P-gate stabilizing it in its non-conducting conformation (Loots
and Isacoff, 2000; Elinder et al., 2001; Figure 2C). This mechanism
corresponds to P/C-type inactivation as discussed above. Other
Kv channels may have P-gates that are not permissive to inactiva-
tion, and thus, no inactivation (other than N-type, if a respective
inactivation domain is present) will occur (Figure 2B). However,

in some Kv channels with non-inactivating P-gates the voltage sen-
sor domain may interact poorly with the A-gate. In these channels
the voltage sensor also starts to move quickly, reaching for the A-
gate, but the contact may fail or be short-lived due to a “slippery”
A-gate. Nevertheless, the voltage sensor of these channels slowly
drifts toward a relaxed conformation (Figure 2D). This corre-
sponds to the preferential CSI mechanism discussed above for Kv4
channels. It may also apply to Kv channels with prominent U-type
features of inactivation, like Kv2.1 and Kv3.1.

Although P/C-type inactivation is classically viewed as an open
channel inactivation mechanism (see Figures 1A and 2C), recent
work has shown that the P-gate may also undergo inactivation
when the channel is still closed. Claydon et al. (2007, 2008)
have performed electrophysiological measurements combined
with voltage-clamp fluorimetry to examine whether ShakerIR
(N-type inactivation removed) channels may undergo P/C-type
inactivation also from closed-states. Acidic pH, which promotes
rearrangements at the P-gate, and the Shaker ILT triple-mutant
(Smith-Maxwell et al., 1998), which segregates channel open-
ing from voltage-dependent activation by shifting the respective
curves apart, were exploited in this study. Conformational changes
were inferred by fluorescence changes reported by fluorophores
placed on the extracellular S3—-S4 loop and an external pore site.
The observed signals strongly indicated that the conformational
changes involved in P/C-type inactivation also occur when the
channels are far from opening (see Figures 1B and 2E). Thus, we
encounter amechanism of CSI, which is of the P/C-type and totally
different from the one discussed above for Kv4 channels. Accord-
ingly, we introduce the term “A/C-type inactivation” to describe the
mechanism of preferential CSI found in Kv4 channels, with a direct
reference to the structures involved: A/C-type inactivation is non-
N-type (i.e., C-type) and involves uncoupling of the voltage sensor
from the A-gate. Currently there is no experimental evidence for
the simultaneous occurrence of A/C- and P/C-type inactivation in
one channel. Notably, however, an elegant study by Kurata et al.
(2005) has shown previously that P/C-type and U-type inacti-
vation can co-exist in Kv1.5 channels. It is currently unknown
whether an A/C-type or a P/C-type mechanism is responsible for
these U-type features.

“INTOXICATION" OF VOLTAGE SENSOR INACTIVATION

What tools do we have, other than, or in addition to, electrophysi-
ological recordings and voltage-clamp fluorimetry combined with
mutational analysis, to study voltage sensor inactivation? Target-
ing the structures involved with pharmacological tools may be a
promising strategy. Intriguingly, gating modifier toxins isolated
from tarantula spiders have been shown to act especially on Kv
channels known to exhibit preferential CSI (A/C-type inactiva-
tion) including Kv2.1 and Kv4 channels (Swartz and MacKinnon,
1995; Sanguinetti et al., 1997; Diochot et al., 1999; Escoubas
et al., 2002; Ebbinghaus et al., 2004). The action of Hanatoxin
on Kv2.1/drk1 channels has been mechanistically studied in great
detail by Swartz and coworkers: The toxin directly interacts with
the voltage sensor, even when it is in the resting (down) confor-
mation; it stabilizes the resting conformation of the voltage sen-
sor, thereby accelerating channel closure and shifting the voltage
dependence of activation to more positive potentials (Swartz and
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MacKinnon, 1997a,b; Lee et al., 2003). Based on these findings,
it would be of considerable interest to know what the tarantula
toxins do to voltage sensor inactivation? As to that, it has been
found that the toxins more specific for Kv4 channels, including
Heteropoda toxins, cause a slowing of macroscopic inactivation,
an acceleration of recovery from inactivation and a shift of steady-
state inactivation curves to more positive potentials (Sanguinetti
etal., 1997; Diochot et al., 1999; Escoubas et al., 2002; Ebbinghaus
et al., 2004; DeSimone et al., 2009, 2011). These findings are in
accordance with a prevention of the relaxed conformation of the
voltage sensor because it is stabilized in its resting conformation.
Notably, the bacterial KvAP channel, the crystal structure of which
has been solved (Lee et al., 2005), also shows clear indications of
preferential CSI (Schmidt et al., 2009). As proposed earlier for
HCN and Kv4 channels (Shin et al., 2004; Dougherty et al., 2008;
Kaulin et al., 2008; Barghaan and Bihring, 2009), an A/C-type
inactivation mechanism has been considered in the case of KvAP
(Schmidt et al., 2009). Like Kv2.1 and Kv4 channels, KvAP can be
modulated by a voltage sensor toxin (VSTx1) via a membrane-
access mechanism and direct binding to the voltage sensor (Lee
and MacKinnon, 2004; Ruta and MacKinnon, 2004). However,
VSTx1 favors the inactivated state of KvAP, probably by binding
to the activated and/or relaxed (up) conformation of the voltage
sensor. Thus, although gating modifier toxins appear to be valu-
able tools for further investigations of voltage sensor inactivation,

the questions to be answered first are: Do gating modifier tox-
ins differ in their mode of action, or does the effect of gating
modifier toxins critically depend on Kv channel subtype, or both?
Doubtlessly, crystallization of a Kv channel in the absence and
presence of a ligand that influences the likelihood of an A/C- or
P/C-type inactivated state would significantly advance structural
analysis of voltage sensor inactivation.

CONCLUDING REMARKS

The purpose of this review was to focus on intrinsic mechanisms
of inactivation in Kv channels that involve conformational changes
of the voltage sensor (i.e., voltage sensor inactivation). In particu-
lar, we pointed out that subtype-specific variations in the crosstalk
between voltage sensor domain and pore domain play a decisive
role for the mode of Kv channel inactivation. Furthermore, in
order to up-date current nomenclature of inactivation mecha-
nisms in a useful manner, we introduced the term “A/C-type inac-
tivation.” Based on the finding that P/C-type inactivation can also
occur from closed-states, the term “CSI” for a dynamic coupling
between voltage sensor and A-gate seems no longer appropriate.

ACKNOWLEDGMENTS

Our research on Kv channel gating mechanisms is supported by
grant Ba 2055/1-2 from the Deutsche Forschungsgemeinschaft to
Robert Bihring.

REFERENCES

Ahern, C. A., Eastwood, A. L.,
Dougherty, D. A., and Horn, R.
(2009). An electrostatic interaction
between TEA and an introduced
pore aromatic drives spring-in-
the-door inactivation in Shaker
potassium channels. J. Gen. Physiol.
134, 461-469.

Aldrich, R. W. (1981). Inactivation
of voltage-gated delayed potas-
sium current in molluscan neurons.
A kinetic model. Biophys. J. 36,
519-532.

Armstrong, C. M., and Bezanilla, E
(1973). Currents related to move-
ment of the gating particles of
the sodium channels. Nature 242,
459-461.

Armstrong, C. M., and Bezanilla, F.
(1977). Inactivation of the sodium
channel. II. Gating current experi-
ments. J. Gen. Physiol. 70, 567-590.

Ayer, R. K. Jr., and Sigworth, E. J. (1997).
Enhanced closed-state inactivation
in a mutant Shaker K* channel. J.
Membr. Biol. 157, 215-230.

Bihring, R., Boland, L. M., Vargh-
ese, A., Gebauer, M., and Pongs,
0. (2001). Kinetic analysis of open-
and closed-state inactivation transi-
tions in human Kv4.2 A-type potas-
sium channels. J. Physiol. (Lond.)
535, 65-81.

Bihring, R., and Covarrubias, M.
(2011). Mechanisms of closed-state
inactivation in voltage-gated ion

channels. J. Physiol. (Lond.) 589,
461-479.

Barghaan, J., and Bihring, R. (2009).
Dynamic coupling of voltage sen-
sor and gate involved in closed-state
inactivation of Kv4.2 channels. J.
Gen. Physiol. 133, 205-224.

Barghaan, J., Tozakidou, M., Ehmke,
H., and Bihring, R. (2008). Role of
N-terminal domain and accessory
subunits in controlling deactivation-
inactivation coupling of Kv4.2 chan-
nels. Biophys. J. 94, 1276-1294.

Baukrowitz, T., and Yellen, G. (1995).
Modulation of K* current by fre-
quency and external [K*]: a tale of
two inactivation mechanisms. Neu-
ron 15, 951-960.

Bezanilla, E, Perozo, E., Papazian, D.
M., and Stefani, E. (1991). Molecular
basis of gating charge immobiliza-
tion in Shaker potassium channels.
Science 254, 679—683.

Campbell, D. L., Rasmusson, R. L., Qu,
Y., and Strauss, H. C. (1993). The
calcium-independent transient out-
ward potassium current in isolated
ferret right ventricular myocytes. L.
Basic characterization and kinetic

analysis. J. Gen. Physiol. 101,
571-601.
Choi, K. L., Aldrich, R. W.,, and

Yellen, G. (1991). Tetraethylammo-
nium blockade distinguishes two
inactivation mechanisms in voltage-
activated K* channels. Proc. Natl.
Acad. Sci. U.S.A. 88, 5092-5095.

Claydon, T. W,, Kehl, S. J., and Fedida,
D. (2008). Closed-state inactiva-
tion induced in KV1 channels by
extracellular acidification. Channels
(Austin) 2, 139-142.

Claydon, T. W,, Vaid, M., Rezazadeh, S.,
Kwan, D. C., Kehl, S. J., and Fedida,
D. (2007). A direct demonstration of
closed-state inactivation of K* chan-
nels at low pH. J. Gen. Physiol. 129,
437-455.

Connor, J. A., and Stevens, C. E. (1971).
Prediction of repetitive firing behav-
iour from voltage clamp data on
an isolated neuron soma. J. Physiol.
(Lond.) 213, 31-53.

Cordero-Morales, J. E, Cuello, L. G.,
Zhao, Y., Jogini, V., Cortes, D. M.,
Roux, B., and Perozo, E. (2006).
Molecular determinants of gating
at the potassium-channel selectiv-
ity filter. Nat. Struct. Mol. Biol. 13,
311-318.

Cordero-Morales, J. E,, Jogini, V., Lewis,
A., Vasquez, V., Cortes, D. M., Roux,
B., and Perozo, E. (2007). Mol-
ecular driving forces determining
potassium channel slow inactiva-
tion. Nat. Struct. Mol. Biol. 14,
1062-1069.

De Biasi, M., Hartmann, H. A., Drewe,
J. A., Taglialatela, M., Brown, A. M.,
and Kirsch, G. E. (1993). Inactiva-
tion determined by a single site in K*
pores. Pfliigers Arch. 422, 354-363.

DeSimone, C. V., Lu, Y., Bondarenko, V.
E., and Morales, M. J. (2009). S3b

amino acid substitutions and ancil-
lary subunits alter the affinity of Het-
eropoda venatoria toxin 2 for Kv4.3.
Mol. Pharmacol. 76, 125—133.

DeSimone, C. V., Zarayskiy, V. V., Bon-
darenko, V. E., and Morales, M. J.
(2011). Heteropoda toxin 2 interac-
tion with Kv4.3 and Kv4.1 reveals dif-
ferences in gating modification. Mol.
Pharmacol. 80, 345-355.

Diochot, S., Drici, M. D., Moinier, D.,
Fink, M., and Lazdunski, M. (1999).
Effects of phrixotoxins on the Kv4
family of potassium channels and
implications for the role of Itol in
cardiac electrogenesis. Br. J. Pharma-
col. 126, 251-263.

Dixon, J. E., Shi, W.,, Wang, H. S,
McDonald, C., Yu, H., Wymore, R.
S., Cohen, I. S., and McKinnon, D.
(1996). Role of the Kv4.3 Kt channel
in ventricular muscle. A molecular
correlate for the transient outward
current. Circ. Res. 79, 659—-668.

Dougherty, K., De Santiago-Castillo, J.
A.,and Covarrubias, M. (2008). Gat-
ing charge immobilization in Kv4.2
channels: the basis of closed-state
inactivation. J. Gen. Physiol. 131,
257-273.

Ebbinghaus, J., Legros, C., Nolting, A.,
Guette, C., Celerier, M. L., Pongs,
0., and Bihring, R. (2004). Modu-
lation of Kv4.2 channels by a pep-
tide isolated from the venom of the
giant bird-eating tarantula Thera-
phosa leblondi. Toxicon 43, 923-932.

Frontiers in Pharmacology | Pharmacology of lon Channels and Channelopathies

May 2012 | Volume 3 | Article 100 | 6


http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive

Bahring et al.

\oltage sensor inactivation

Elinder, E., Minnikko, R., and Larsson,
H. P. (2001). S4 charges move close
to residues in the pore domain dur-
ing activation in a K channel. J. Gen.
Physiol. 118, 1-10.

Escoubas, P., Diochot, S., Celerier, M.
L., Nakajima, T., and Lazdunski,
M. (2002). Novel tarantula toxins
for subtypes of voltage-dependent
potassium channels in the Kv2 and
Kv4 subfamilies. Mol. Pharmacol. 62,
48-57.

Fedida, D., Bouchard, R., and Chen, E.
S. (1996). Slow gating charge immo-
bilization in the human potassium
channel Kv1.5 and its prevention by
4-aminopyridine. J. Physiol. (Lond.)
494, 377-387.

Greenstein, J. L., Wu, R., Po, S,
Tomaselli, G. F, and Winslow, R.
L. (2000). Role of the calcium-
independent transient outward cur-
rent Itol in shaping action potential
morphology and duration. Circ. Res.
87,1026-1033.

Hille, B. (2001). Ion Channels of
Excitable Membranes. Sunderland,
MA: Sinauer Associates, Inc.

Hodgkin, A. L.,and Huxley, A. F. (1952).
A quantitative description of mem-
brane current and its application to
conduction and excitation in nerve.
J. Physiol. (Lond.) 117, 500-544.

Hoffman, D. A., Magee, J. C., Colbert,
C. M., and Johnston, D. (1997). K*
channel regulation of signal prop-
agation in dendrites of hippocam-
pal pyramidal neurons. Nature 387,
869-875.

Hoshi, T., Zagotta, W. N., and Aldrich,
R. W. (1990). Biophysical and mole-
cular mechanisms of Shaker potas-
sium channel inactivation. Science
250, 533-538.

Hoshi, T., Zagotta, W. N., and Aldrich,
R. W. (1991). Two types of inactiva-
tion in Shaker K* channels: effects of
alterations in the carboxy-terminal
region. Neuron 7, 547-556.

Jackson, M. B., Konnerth, A.,
and Augustine, G. J. (1991).
Action potential broadening and
frequency-dependent facilitation of
calcium signals in pituitary nerve
terminals. Proc. Natl. Acad. Sci.
U.S.A. 88,380-384.

Jerng, H. H., and Covarrubias, M.
(1997). K*
mediated by the concerted action of
the cytoplasmic N- and C-terminal
domains. Biophys. J. 72, 163-174.

Jerng, H. H., Dougherty, K., Covarru-
bias, M., and Pfaffinger, P. J. (2009).
A novel N-terminal motif of dipep-
tidyl peptidase-like proteins pro-
duces rapid inactivation of KV4.2
channels by a pore-blocking mecha-
nism. Channels (Austin) 3, 448-461.

channel inactivation

Jerng, H. H., Shahidullah, M., and
Covarrubias, M. (1999). Inactiva-
tion gating of Kv4 potassium chan-
nels: molecular interactions involv-
ing the inner vestibule of the pore. J.
Gen. Physiol. 113, 641-660.

Kaulin, Y. A., De Santiago-Castillo, J.
A., Rocha, C. A, and Covarru-
bias, M. (2008). Mechanism of the
modulation of Kv4:KChIP-1 chan-
nels by external K*. Biophys. J. 94,
1241-1251.

Kirichok, Y. V., Nikolaev, A. V., and
Krishtal, O. A. (1998). [K*]out
accelerates inactivation of Shal-
channels responsible for A-current
in rat CA1 neurons. Neuroreport 9,
625-629.

Kiss, L., and Korn, S. J. (1998). Modu-
lation of C-type inactivation by K*
at the potassium channel selectivity
filter. Biophys. J. 74, 1840-1849.

Klemic, K. G., Kirsch, G. E., and Jones,
S. W. (2001). U-type inactivation of
Kv3.1 and Shaker potassium chan-
nels. Biophys. J. 81, 814-826.

Klemic, K. G., Shieh, C. C., Kirsch, G.
E., and Jones, S. W. (1998). Inacti-
vation of Kv2.1 potassium channels.
Biophys. J. 74, 1779-1789.

Kurata, H. T., Doerksen, K. W., Eld-
strom, J. R., Rezazadeh, S., and
Fedida, D. (2005). Separation of
P/C- and U-type inactivation path-
ways in Kv1.5 potassium channels. J.
Physiol. (Lond.) 568, 31-46.

Kurata, H. T., and Fedida, D. (2006). A
structural interpretation of voltage-
gated potassium channel inactiva-
tion. Prog. Biophys. Mol. Biol. 92,
185-208.

Kurata, H. T., Soon, G. S., Eldstrom,
J. R, Lu, G. W,, Steele, D. F, and
Fedida, D. (2002). Amino-terminal
determinants of U-type inactivation
of voltage-gated K* channels. J. Biol.
Chem. 277,29045-29053.

Kurata, H. T., Soon, G. S., and Fedida, D.
(2001). Altered state dependence of
C-type inactivation in the long and
short forms of human Kv1.5. J. Gen.
Physiol. 118, 315-332.

Lainé, M., Lin, M. C., Bannister, J. P, Sil-
verman, W. R., Mock, A. F,, Roux, B.,
and Papazian, D. M. (2003). Atomic
proximity between S4 segment and
pore domain in Shaker potassium
channels. Neuron 39, 467—-481.

Larsson, H. P, and Elinder, F. (2000).
A conserved glutamate is important
for slow inactivation in K* channels.
Neuron 27, 573-583.

Lee, H. C., Wang, J. M., and Swartz, K.
J. (2003). Interaction between extra-
cellular Hanatoxin and the resting
conformation of the voltage-sensor
paddle in Kv channels. Neuron 40,
527-536.

Lee, S. Y., Lee, A., Chen, J., and MacK-
innon, R. (2005). Structure of the
KvAP voltage-dependent K* chan-
nel and its dependence on the lipid
membrane. Proc. Natl. Acad. Sci.
U.S.A. 102, 15441-15446.

Lee, S. Y., and MacKinnon, R. (2004). A
membrane-access mechanism of ion
channel inhibition by voltage sensor
toxins from spider venom. Nature
430, 232-235.

Liu, Y., Jurman, M. E., and Yellen, G.
(1996). Dynamic rearrangement of
the outer mouth of a K* channel
during gating. Neuron 16, 859-867.

Long, S. B., Campbell, E. B., and MacK-
innon, R. (2005). Voltage sensor of
Kv1.2: structural basis of electro-
mechanical coupling. Science 309,
903-908.

Loots, E., and Isacoff, E. Y. (1998). Pro-
tein rearrangements underlying slow
inactivation of the Shaker K* chan-
nel. J. Gen. Physiol. 112, 377-389.

Loots, E., and Isacoff, E. Y. (2000). Mol-
ecular coupling of S4 to a K* chan-
nel’s slow inactivation gate. J. Gen.
Physiol. 116, 623-636.

Lopez-Barneo, J., Hoshi, T., Heinemann,
S. H., and Aldrich, R. W. (1993).
Effects of external cations and muta-
tions in the pore region on C-
type inactivation of Shaker potas-
sium channels. Receptors Channels 1,
61-71.

Lu,Z.,Klem,A. M.,and Ramu,Y. (2002).
Coupling between voltage sensors
and activation gate in voltage-gated
K* channels. J. Gen. Physiol. 120,
663—676.

Magee, J. C., and Johnston, D. (1997).
A synaptically controlled, associa-
tive signal for Hebbian plasticity in
hippocampal neurons. Science 275,
209-213.

Ogielska, E. M., Zagotta, W. N., Hoshi,
T., Heinemann, S. H., Haab, J., and
Aldrich, R. W. (1995). Cooperative
subunit interactions in C-type inac-
tivation of K channels. Biophys. J. 69,
2449-2457.

Olcese, R., Latorre, R., Toro, L,
Bezanilla, F., and Stefani, E. (1997).
Correlation between charge move-
ment and ionic current during slow
inactivation in Shaker K* channels.
J. Gen. Physiol. 110, 579-589.

Panyi, G., Sheng, Z., and Deutsch, C.
(1995). C-type inactivation of a
voltage-gated K" channel occurs by
a cooperative mechanism. Biophys. J.
69, 896-903.

Pardo, L. A., Heinemann, S. H., Terlau,
H., Ludewig, U., Lorra, C., Pongs, O.,
and Stithmer, W. (1992). Extracellu-
lar K* specifically modulates a rat
brain K* channel. Proc. Natl. Acad.
Sci. U.S.A. 89, 2466—-2470.

Patel, S. P., Parai, R., and Campbell,
D. L. (2004). Regulation of Kv4.3
voltage-dependent gating kinetics by
KChIP2 isoforms. J. Physiol. (Lond.)
557,19-41.

Perozo, E., Papazian, D. M., Stefani, E.,
and Bezanilla, E (1992). Gating cur-
rents in Shaker K* channels. Impli-
cations for activation and inactiva-
tion models. Biophys. J. 62,160-171.

Rettig, J., Heinemann, S. H., Wun-
der, F, Lorra, C., Parcej, D. N,
Dolly, J. O., and Pongs, O. (1994).
Inactivation properties of voltage-
gated K* channels altered by pres-
ence of B-subunit. Nature 369,
289-294.

Roux, M. J., Olcese, R., Toro, L.,
Bezanilla, F.,, and Stefani, E. (1998).
Fast inactivation in Shaker K* chan-
nels. Properties of ionic and gat-
ing currents. J. Gen. Physiol. 111,
625-638.

Ruta, V., and MacKinnon, R. (2004).
Localization of the voltage-sensor
toxin receptor on KVAP. Biochemistry
43,10071-10079.

Sanguinetti, M. C., Johnson, J. H., Ham-
merland, L. G., Kelbaugh, P. R., Volk-
mann, R. A., Saccomano, N. A., and
Mueller, A. L. (1997). Heteropoda
toxins: peptides isolated from spi-
der venom that block Kv4.2 potas-
sium channels. Mol. Pharmacol. 51,
491-498.

Schmidt, D., Cross, S. R., and MacK-
innon, R. (2009). A gating model
for the archeal voltage-dependent
K* channel KvAP in DPhPC and
POPE:POPG decane lipid bilayers. J.
Mol. Biol. 390, 902-912.

Shahidullah, M., and Covarrubias, M.
(2003). The link between ion perme-
ation and inactivation gating of Kv4
potassium channels. Biophys. J. 84,
928-941.

Shin, K. S., Maertens, C., Proenza,
C., Rothberg, B. S., and Yellen, G.
(2004). Inactivation in HCN chan-
nels results from reclosure of the
activation gate: desensitization to
voltage. Neuron 41, 737-744.

Skerritt, M. R., and Campbell, D. L.
(2007). Role of S4 positively charged
residues in the regulation of Kv4.3
inactivation and recovery. Am. J.
Physiol. Cell Physiol. 293, C906—
C914.

Skerritt, M. R., and Campbell, D.
L. (2008). Non-native R1 substi-
tution in the S4 domain uniquely
alters Kv4.3 channel gating. PLoS
ONE 3, e3773. doi:10.1371/jour-
nal.pone.0003773

Skerritt, M. R., and Campbell, D. L.
(2009). Contribution of electrosta-
tic and structural properties of Kv4.3
S4 arginine residues to the regulation

www.frontiersin.org

May 2012 | Volume 3 | Article 100 | 7


http://dx.doi.org/10.1371/journal.pone.0003773
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive

Bahring et al.

\oltage sensor inactivation

of channel gating. Biochim. Biophys.
Acta 1788, 458—469.

Smith-Maxwell, C. J., Ledwell, J. L., and
Aldrich, R. W. (1998). Uncharged
S4 residues and cooperativity in
voltage-dependent potassium chan-
nel activation. J. Gen. Physiol. 111,
421-439.

Solc, C. K., and Aldrich, R. W. (1990).
Gating of single non-Shaker A-
type potassium channels in larval
Drosophila neurons. J. Gen. Physiol.
96, 135-165.

Soler-Llavina, G. J., Chang, T. H., and
Swartz, K. J. (2006). Functional
interactions at the interface between
voltage-sensing and pore domains in
the Shaker Kv channel. Neuron 52,
623-634.

Swartz, K. J.,and MacKinnon, R. (1995).
An inhibitor of the Kv2.1 potassium
channel isolated from the venom
of a Chilean tarantula. Neuron 15,
941-949.

Swartz, K. J.,, and MacKinnon, R.
(1997a). Hanatoxin modifies the

gating of a voltage-dependent K*
channel through multiple binding
sites. Neuron 18, 665—673.

Swartz, K. J, and MacKinnon, R.
(1997b). Mapping the receptor site
for hanatoxin, a gating modifier
of voltage- dependent K* channels.
Neuron 18, 675—682.

Wallner, M., Meera, P.,, and Toro, L.
(1999). Molecular basis of fast inac-
tivation in voltage and Ca®"-activa
ted K* channels: a transmembrane
p-subunit homolog. Proc. Natl.
Acad. Sci. U.S.A. 96, 4137-4142.

Wang, Z., and Fedida, D. (2001). Gating
charge immobilization caused by the
transition between inactivated states
in the Kv1.5 channel. Biophys. J. 81,
2614-2627.

Webster, S. M., Del Camino, D., Dekker,
J.P.,and Yellen, G. (2004). Intracellu-
lar gate opening in Shaker K* chan-
nels defined by high-affinity metal
bridges. Nature 428, 864—868.

Yellen, G. (1998). The moving
parts  of  voltage-gated  ion

channels.
239-295.

Yellen, G., Sodickson, D., Chen, T.Y.,and
Jurman, M. E. (1994). An engineered
cysteine in the external mouth of
a K' channel allows inactivation
to be modulated by metal binding.
Biophys. J. 66, 1068-1075.

Yifrach, O., and MacKinnon, R. (2002).
Energetics of pore opening in a
voltage-gated K* channel. Cell 111,
231-239.

Zagotta, W.N., Hoshi, T.,and Aldrich, R.
W. (1990). Restoration of inactiva-
tion in mutants of Shaker potassium
channels by a peptide derived from
ShB. Science 250, 568-571.

Zhou, Y., Morais-Cabral, J. H., Kauf-
man, A., and MacKinnon, R. (2001).
Chemistry of ion coordination and
hydration revealed by a K* channel-
Fab complex at 2.0 A resolution.
Nature 414, 43—48.

Q. Rev. Biophys. 31,

Conflict of Interest Statement: The
authors declare that the research was

conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 16 March 2012; accepted: 04
May 2012; published online: 23 May
2012.

Citation: Bihring R, Barghaan J, West-
ermeier R and Wollberg J (2012) Volt-
age sensor inactivation in potassium
channels. Front. Pharmacol. 3:100. doi:
10.3389/fphar.2012.00100

This article was submitted to Frontiers
in Pharmacology of Ion Channels and
Channelopathies, a specialty of Frontiers
in Pharmacology.

Copyright © 2012 Bihring, Barghaan,
Westermeier and Wollberg. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

Frontiers in Pharmacology | Pharmacology of lon Channels and Channelopathies

May 2012 | Volume 3 | Article 100 | 8


http://dx.doi.org/10.3389/fphar.2012.00100
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive

	Voltage sensor inactivation in potassium channels
	Introduction
	Formal description of Kv channel inactivation
	Indications of preferential CSI in Kv channels
	Mechanism of CSI in Kv4 channels
	P/C- and A/C-type inactivation: two variations of voltage sensor – pore domain crosstalk
	"Intoxication" of voltage sensor inactivation
	Concluding remarks
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


