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NaV channels play a crucial role in neuronal and muscle excitability. Using whole-cell record-
ings we studied effects of low extracellular pH on the biophysical properties of NaV1.2,
NaV1.4, and NaV1.5, expressed in cultured mammalian cells. Low pH produced different
effects on different channel subtypes. Whereas NaV1.4 exhibited very low sensitivity to
acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on
gating in NaV1.2 and NaV1.5 were profound. In NaV1.2 low pH reduced apparent valence of
steady-state fast inactivation, shifted the τ(V ) to depolarizing potentials and decreased chan-
nels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low
pH delayed open-state inactivation in NaV1.5, right-shifted the voltage-dependence of win-
dow current, and increased channel availability during onset to slow and UDI.These results
suggest that protons affect channel availability in an isoform-specific manner. A computer
model incorporating these results demonstrates their effects on membrane excitability.

Keywords: gating, activation, fast inactivation, slow inactivation, patch-clamp, sodium channels

INTRODUCTION
Extracellular pH is a major factor that controls activity of many
physiological processes. Under normal physiological conditions,
pH is maintained at approximately 7.4. Previous studies in vivo
and in situ demonstrated that pathological conditions, such as
hypoxia and/or ischemia considerably decrease extracellular pH.
During focal ischemia in rabbit brain, extracellular pH drops
to as low as 6.0 (Meyer, 1990). Physical exercise of medium-to-
maximum intensity may decrease pH in human skeletal muscle to
6.4 (Hermansen and Osnes, 1972). Myocardial ischemia, includ-
ing regional and global ischemia, can lower pH from 7.4 to 6.13
(Maruki et al., 1993). Acidification decreases peak conductance of
voltage-gated sodium channels (NaV) by two mechanisms; pro-
tonation of outer vestibule carboxylates (Mozhayeva et al., 1984;
Khan et al., 2002, 2006) and depolarizing the voltage-dependence
of gating by surface charge screening (Hille, 1968; Benitah et al.,
1997). Unlike neuronal (NaV1.2) and skeletal muscle (NaV1.4)
subtypes, the cardiac sodium channel subtype (NaV1.5) may
exhibit persistent Na currents (I NaP) in response to low extracellu-
lar pH, which is considered to be a predisposing factor for cardiac
arrhythmias (Amin et al., 2010). The I NaP induced by low pH in
only NaV1.5 raises a question regarding the possible specificity of
pH effects on different NaV subtypes.

In this study we report differential effects of low pH on kinetic
properties of fast, slow, and UDI in NaV1.2, NaV1.4, and NaV1.5
channels. Using whole-cell patch-clamp recordings, we found that
low pH modified properties of NaV1.2 inactivation resulting in
decreased maximum availability during prolonged depolarization
trains. Under similar conditions, NaV1.5 demonstrated enhanced
maximum availability. NaV1.4 was relatively unaffected by low
pH. Using computer modeling, we found that low pH produces
opposing effects on action potential (AP) generation: inhibitory
for neuronal APs and excitatory for cardiac APs.

Some of these data have been presented previously in abstract
form (Vilin and Ruben, 2010).

MATERIALS AND METHODS
Chinese hamster ovary (CHO) cells stably expressing the rat
NaV1.2 channel (a gift from W. A. Catterall) were grown in fil-
tered sterile DMEM (Gibco) with glutamine, supplemented with
2 g/L NaCHO3, 100 units/ml penicillin, 0.01 mg/ml streptomycin,
50 mg/ml G418 at pH 7.4, 5% FBS and maintained in a humid-
ified environment at 37˚C with 5% CO2. Human Embryonic
Kidney (HEK293; Cedarlanes) were transiently transfected with
DNA encoding NaV1.4 and NaV1.5 α-subunits using the Poly-
Fect kit (Qiagen). Channel expression was confirmed with EGFP.
HEK293 cells were maintained under the same conditions with the
exclusion of G418 from media. Twenty-four hours prior to electro-
physiology experiments, cells were dissociated with 0.25% trypsin-
EDTA (Gibco) and then plated on sterile cover slips at a density
conducive to patch-clamp experiments. Whole-cell recordings
were performed in a chamber containing (in mM): 140 NaCl, 4
KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, pH 7.4, using pipettes fabricated
with a P-1000 puller using borosilicate glass (Sutter Instruments,
CA, USA), dipped in dental wax to reduce capacitance, then ther-
mally polished to a resistance of 1.1–1.2 MΩ. Pipettes were filled
with intracellular solution, containing (in mM): 120 CsF, 20 CsCl,
10 NaCl, 10 HEPES, pH 7.4.

All recordings were made using an EPC-9 patch-clamp ampli-
fier (HEKA, Lambrecht, Germany) digitized at 20 kHz via an ITC-
16 interface (Instrutech, Great Neck, NY, USA). Voltage clamping
and data acquisition was controlled and low-pass-filtered (5 kHz)
using PatchMaster/FitMaster software (HEKA Elektronik, Lam-
brecht, Germany) running on Apple iMac. Leak subtraction was
performed automatically by software using a P/4 procedure fol-
lowing the test pulse. Leak subtraction was performed off-line in
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slow inactivation experiments. Bath solution was maintained at
22.0 + 0.2˚C using a Peltier device controlled by an HCC-100A
temperature controller (Dagan, Minneapolis, MN, USA). Giga-
seals were allowed to stabilize in the on-cell configuration for
1 min prior to establishing the whole-cell configuration. All data
were acquired >5 min after attaining the whole-cell configuration.
Holding potential between protocols was −60 mV.

Fitting and graphing were done using FitMaster software
(HEKA Elektronik,Lambrecht,Germany) and Igor Pro (Wavemet-
rics, Lake Oswego, OR, USA) with statistical information derived
using InStat (Graphpad Software Inc., San Diego, CA, USA). All
data acquisition programs were run on an Apple iMac computer
(Apple Computer, Cupertino, CA, USA).

Conductance [G(V )] curves were calculated from the equation:

G = Imax

Vm − ENa
(1)

where G is conductance, I max represents peak test pulse current,
V m is the test pulse voltage, and ENa is the measured equilibrium
potential. The midpoint and apparent valence of activation were
derived by fitting the G(V ) curves with a Boltzmann equation:

G

Gmax
= 1

1 + (
exp

(−ze0
(
VM − V1/2

))
/kT

) (2)

where the normalized conductance G/Gmax is derived from Eq. 1,
V M is the test potential, z is the apparent valence, e0 is the ele-
mentary charge, V 1/2 is the midpoint voltage, k is the Boltzmann
constant, and T is temperature in ˚K.

Descriptions of test pulse inactivation rates given as time
constants (t ) were derived using monoexponential or double
exponential fits with following the equations:

I (t ) = Offset + a1 exp

(−t

t

)
(3)

I (t ) = Offset + a1 exp

(−t

t1

)
+ a2 exp

(−t

t2

)
(4)

where I (t ) is current amplitude as function of time, Offset is the
amplitude plateau (asymptote), a1 and a2 are the components for
the corresponding time constants (τ) τ1 and τ2 is the time constant
(in s or ms). Steady-state FI (SS-FI) probability between activated
and non-inactivated states were fit using the Boltzmann equation:

I

Imax
= 1

1 + exp
(−ze0

(
VM − V1/2

)
kT

) (5)

where I max is the maximum normalized current amplitude, z is
apparent valence, e0 is the elementary charge, V m is the prepulse
potential, V 1/2 is the midpoint voltage of the SS-FI curve, k is the
Boltzmann constant, and T is absolute temperature. Steady-state
slow inactivation (SS-SI) curves were fit with the following mod-
ified Boltzmann equation that takes into account changes in the
steady-state probability of slow inactivation:

I

Imax
= I1 − I2[

1 + exp
(−ze0

(
Vm − V1/2

)
/kT

)] + I2
(6)

where I /I max is the maximum probability, I 1 and I 2 are maxi-
mum and minimum values in the fit, respectively, z is apparent
valence, e0 is the elementary charge, V m is the prepulse potential,
V 1/2 is the midpoint voltage of the SS-SI curve, k is the Boltzmann
constant, and T is degrees Kelvin.

Window current areas were analyzed by converting activation
and inactivation curves to percents (Wang et al., 1996) and calcu-
lating the area under both curves by integration using MS Excel;
the position of area peak was estimated in Igor Pro.

The descriptions of first-order, two-state reaction kinetics were
derived by fitting τ vs. voltage curves according to the following
equation:

τ(Vm) = 1

kf + kb
, (7)

where τ(V m) represents the time constant of progression to equi-
librium as a function of membrane potential; k f is the rate of the
forward reaction (not inactivated:inactivated), and kb is the rate
of the backward reaction (inactivated:not inactivated).

kf = Aexp + e(1 − d)
(
Vm − V1/2

)
kT

(8)

kb = Aexp − ed
(
Vm − V1/2

)
kT

(9)

where A = 1/2 rate at V 0, e = total reaction valence (in electronic
charge); d = fractional barrier distance; V m = membrane poten-
tial (in mV); V 1/2 = midpoint potential (in mV); k = Boltzmann
constant, and T = temperature in degrees Kelvin.

NEURONAL ACTION POTENTIAL MODEL
The neuronal AP model was programmed using Python operating
language and the module NumPy (Enthought). The sodium cur-
rent was modeled following the formulas of Hodgkin and Huxley
(1952; Eq. 10), with 0 mV defined as an absolute value, instead of
the resting membrane potential.

INa = GNa · m3 · h · j · (V − ENa) (10)

where I Na is the fast sodium current, GNa is the maximal sodium
conductance value, m is the conductance gate, h is the FI gate, j is
the slow inactivation gate, V is the membrane potential, and ENa

is the Nernst potential for sodium.
The conductance (m) gate and FI (h) gate steady-states (see Eqs

A4 and A5 in Appendix) were fit to the experimental data using
Eqs 2 and 5, respectively. The steady-state of the slow inactivation
(j) gate (see Eq. A7 in Appendix ) was fit to Eq. 6. Activation time
constants were chosen to be constant following previously pub-
lished reports (Spampanato et al., 2001, 2003). The time constant
vs. voltage curve of FI (see Eq. A6 in Appendix ) was fit to an
asymmetric inverse hyperbolic cosine function (Eq. 11).

τ = 2 (Tmax)

exp
[
(V − V1/2)/k1

] + exp
[(

V − V1/2
)
/k2

] (11)

where τ is the time constant, T max is the maximum time con-
stant, V 1/2 is the membrane potential at which the maximal time
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FIGURE 1 | Effects of pH on macroscopic ionic currents and window

currents in NaV1.2, NaV1.4, and NaV1.5. (A,Ai) Families of NaV1.2 currents in
response to the pulse protocol (Ai, inset) at pH 7.4 (A) and pH 6.0 (Ai). (B)

NaV1.2 G(V ) curves (triangles) and steady-state FI curves (circles) are plotted
as a function of membrane potential at pH 7.4 (filled symbols) and at pH 6.0
(open symbols). (C) Shows magnified window current area at pH 7.4 (solid
lines) and at pH 6.0 (dotted lines). Values in (C) were converted to percents.
(D,Di) Show families of NaV1.4 currents in response to the pulse protocol (Di,
inset) at pH 7.4 (D) and pH 6.0 (Di). (E) NaV1.4 G(V ) curves (triangles) and
steady-state FI curves (circles) are plotted vs. membrane potential at pH 7.4

(filled symbols) and at pH 6.0 (open symbols). (F) Shows magnified window
current area at pH = 7.4 (solid lines) and at pH 6.0 (dotted lines). Values in (F)

are in percents. (G) Gi show families of NaV1.5 currents in response to the
pulse protocol (Gi, inset) at pH 7.4 (G) and pH 6.0 (Gi). (H) NaV1.5 G(V ) curves
(triangles) and steady-state FI curves (circles) are plotted vs. membrane
potential at pH 7.4 (filled symbols) and at pH 6.0 (open symbols). (I) Shows
magnified window current area at pH 7.4 (solid lines) and at pH 6.0 (dotted
lines). Values in (I) are in percents. Solid lines in (B,E,H) are Boltzmann fits to
corresponding datapoints in (B,E,H) (Eq. 2 in Materials and Methods). Data
represent mean ± SEM (n = 9–12).
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constant occurs, and k1 and k2 are the slopes of the left and right
halves of the curve.

Slow inactivation time constants (see Eq. A8 in Appendix ) were
fit in the same method as (Spampanato et al., 2001, 2003) with a
Gaussian distribution (Eq. 12).

τ = Tmax exp

[(
V − V1/2

)
k1

]2

(12)

where τ is the time constant, T max is the maximum time con-
stant, V 1/2 is the membrane potential at which the maximal time
constant occurs, and k1 is the slope factor of the curve.

A non-inactivating potassium current (Eqs A9–A13 in Appen-
dix) and maximal conductance, Nernst potential, and cell capac-
itance parameters were used based on previously published for-
mulas (Yuen and Durand, 1991; Spampanato et al., 2001, 2003).
Stimulation protocols were done with a continuous stimulation
over 105 ms at amplitudes ranging from −1 to −20 pA/pF.

CARDIAC ACTION POTENTIAL MODEL
The original ten Tusscher model (Ten Tusscher et al., 2004) was
programmed into Python code making use of the module NumPy
(Enthought). The code was then updated to include calcium cur-
rent and slow delayed potassium current equations (Ten Tusscher
and Panfilov, 2006). A late persistent sodium current was added
(Eqs A24–A29 in Appendix ; Hund and Rudy, 2004). The maximal
sodium conductance value was replaced with the Luo–Rudy pas-
sive model value to better reflect our experimental data (Luo and
Rudy, 1991). The slow delayed rectifier potassium conductance
(GKs; Eq. A30 in Appendix ) was changed to incorporate the role
of internal calcium concentrations on gKs (Terrenoire et al., 2005).
The late sodium maximal conductance value was changed to reflect
the data collected by (Zygmunt et al., 2001). The sodium cur-
rent was modeled using Eq. 10. Our sodium channel conductance
steady-states at both pH 7.4 and pH 6.0 (Eq. A14 in Appendix)
were fit with Eq. 2 with the conductance value multiplied by the
proton block in the pH 6.0 model. FI steady-state curves at both
pH values (Eq. A18 in Appendix) were fit with Eq. 5. Slow inactiva-
tion steady-states curves at both pH values (Eq. A20 in Appendix)
were fit with Eq. 6. Time constants of FI at both pH values (Eq.
A19 in Appendix ) were fit to an asymmetric inverse hyperbolic
cosine function, Eq. 11. Activation and slow inactivation time con-
stants (Eqs A15–A17 and A21–A23 in Appendix) were as described
by the ten Tusscher model. The sodium channel parameters were
then Q10 adjusted following the methods used in the model (Ten
Tusscher and Panfilov, 2003) which used the work of Nagatomo
et al. (1998). The simulation was run as an endocardial ventricu-
lar myocyte with a 1-ms stimulus pulse of amplitude −60 pA/pF.
The stimulus protocol had a cycle length of 400 ms for the first 15
APs, 350 ms for the next 15, 325 ms for the next 10, and 300 ms
for all subsequent APs. This was done to step the stimulus rate
up to 3.33 Hz gradually and allow AP shortening. AP parameters
were measured at both 2.5 Hz (150 beats per minute) and 3.33 Hz
(200 beats per minute) to study the AP properties that acidosis of
the cardiac voltage-gated sodium channel modulates at high heart
rates. Measurements of APD were obtained from the time of stim-
ulus to the time at which the membrane potential reaches a value

of −70 mV. Maximal depolarization rise rates were measured as
the maximum slope between two sequential membrane potentials
after the stimulus current was ended. Equations modified from
the original Tusscher model are listed in the Appendix.

All statistical values, both in the text and in the figures, are given
as means ± standard error of the mean (SEM). Statistical differ-
ences were derived from Student’s t -test using the Instat software
package (GraphPad Software, Inc., San Diego, CA, USA).

RESULTS
EFFECTS OF LOW pH ON ACTIVATION AND STEADY-STATE FI IN NaV1.2,
NaV1.4, NaV1.5
Previous studies demonstrated that acidic pH decreases the ampli-
tude of macroscopic sodium currents. Figures 1A,D,G show typ-
ical families of NaV1.2, NaV1.4, and NaV1.5 recorded at control
pH 7.4 in response to a depolarizing pulse protocol shown in
insets of Figure 1. The current amplitude decreased in all three
channel isoforms when pH was lowered to 6.0 (Figure 1, com-
pare Figures 1A,Ai,D,Di,G,Gi). Amplitudes decreased by 32 ± 5,
35 ± 4.3, and 53 ± 7% for NaV1.2, NaV1.4, and NaV1.5, respec-
tively. In contrast to NaV1.2 and NaV1.4, the decay of macroscopic
currents in NaV1.5 at pH 6.0 was slower (denoted with the arrow
in Figure 1Gi) compared to the control family of currents at pH
7.4 (Figure 1G). These results suggest that low pH alters properties
of open-state inactivation.

We examined the effects of low pH on activation in NaV1.2,
NaV1.4, and NaV1.5. Data in Figures 1B,E,H represent normalized
control maximum conductance derived from I (V ) relationships
at pH 7.4 (filled circles) and pH 6.0 (open circles). Normalized
conductance was plotted as a function of membrane potential
and fit with the Boltzmann function (Eq. 1, Materials and Meth-
ods) to obtain values for V 1/2 and apparent valence (z). The
G(V ) parameters we measured are shown in Table 1. At pH
6.0 the apparent valence of activation in NaV1.5 was significantly

Table 1 | Parameters of G(V ) in NaV1.2, NaV1.4, and NaV1.5 at pH 7.4

and 6.0.

Channel z (pH 7.4) z (pH 6.0) V 1/2, mV

(pH 7.4)

V 1/2, mV

(pH 6.0)

NaV1.2 4.4 ± 0.2 3.9 ± 0.1 −11.7 ± 1.56 −10.4 ± 1.4

NaV1.4 3.8 ± 0.3 4.2 ± 0.5 −24.0 ± 1.1 −18.4 ± 2.8

NaV1.5 3.8 ± 0.2 4.6 ± 0.6 −32.6 ± 2.8 −30.4 ± 2.2

n = 9–12.

Table 2 | Parameters of steady-state fast inactivation in NaV1.2, NaV1.4,

and NaV1.5 at pH 7.4 and 6.0.

Channel z (pH 7.4) z (pH 6.0) V 1/2, mV

(pH 7.4)

V 1/2, mV

(pH 6.0)

NaV1.2 −4.6 ± 0.2 −3.6 ± 0.1(1) −50.1 ± 1.3 −52.0 ± 1.6

NaV1.4 −3.5 ± 0.2 −4.2 ± 0.3 −67.5 ± 0.7 −66.0 ± 0.4

NaV1.5 −4.4 ± 0.1 −4.1 ± 0.1 −80.6 ± 1.3 −77.5 ± 1.4

(1)p < 0.05 vs. apparent valence; (z) at pH 7.4 in NaV1.2. n = 7–12.
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FIGURE 2 | Low pH decelerates kinetics of open-state inactivation in

hNaV1.5. (A) Open-state inactivation time constants in NaV1.2 at pH 7.4
(filled circles) and pH 6.0 (open circles) are derived from single
exponential fits (not shown) to the decay of currents in (Ai,Aii). (B)

Open-state inactivation time constants in NaV1.4 at pH 7.4 (filled circles)
and pH 6.0 (open circles) are derived from single exponential fits (not
shown) to the decay of currents in (Bi,Bii). (C) Open-state inactivation

time constants in NaV1.5 at pH 7.4 (filled circles) and pH 6.0 (open circles)
are derived from single exponential fits (not shown) to the decay of
currents in (Ci,Cii). Arrow in Cii denotes deceleration of current decay in
NaV1.5 at pH 6.0. Asterisks denote p < 0.05 between open states FI at
pH 7.4 (filled circles) and pH 6.0 (open circles). Data in (A–C) are fitted
with single exponential for visual guidance. Data represent mean ± SEM
(n = 15).

www.frontiersin.org June 2012 | Volume 3 | Article 109 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Vilin et al. pH modulation of sodium channels

FIGURE 3 | Low pH accelerates recovery from FI. (A–C) The time
course of recovery from FI at pH 7.4 (filled circles) and at pH 6.0 (open
circles) for NaV1.2, NaV1.4, and NaV1.5, respectively. The averaged,
normalized currents obtained during 0 mV test pulse, following an
interpulse of increasing duration over a range of potentials (−130 to

−80 mV, pulse protocol is shown at the bottom) are plotted vs.
interpulse duration and fit with single exponential. Solid lines are single
exponential fits to datapoints (Equation, Materials and Methods). Data
for only −80 mV prepulse are shown. Data represent mean ± SEM
(n = 10–12).
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FIGURE 4 | Low pH slows the rate of onset to FI in NaV1.2 and NaV1.5. (A)

The time course of onset to FI in NaV1.2 at pH 7.4 (filled circles) and at pH 6.0
(open circles). Data represent averaged and normalized current peaks
recorded during test potential following the −30 mV prepulse of variable
duration (0–500 ms) plotted vs. prepulse potential. Diagram of used pulse
protocols shown in (A), inset. (B) The time course of onset to FI in NaV1.5 at

pH 7.4 (filled circles) and at pH 6.0 (open circles). Data represent averaged and
normalized current peaks recorded during test potential following the −60-mV
prepulse of variable duration (0–500 ms) plotted vs. prepulse potential.
Diagram of used pulse protocols shown in (B), inset. Solid lines are single
exponential fits (Eq. 3, Materials and Methods). Data represent mean ± SEM
(n = 10–12)

increased (p < 0.05). The V 1/2 of activation in NaV1.5 was unaf-
fected by low pH. In contrast, neither apparent valence nor the
V 1/2 in NaV1.2 and NaV1.4 were altered by low pH (p > 0.05,
Figures 1B,E, respectively).

To quantify the effects of low pH on voltage-dependent steady-
state channel availability in fast-inactivated state, we compared the
apparent valence (z) and V 1/2 from Boltzmann fits (Eq. 5, Mate-
rials and Methods) to steady-state FI data for NaV1.2 (Figure 1B),
NaV1.4 (Figure 1E), and NaV1.5 (Figure 1H) at pH 7.4 (filled
triangles) and at pH 6.0 (open triangles). These data represent

averaged, normalized current amplitudes obtained with a test
pulse to 0 mV following a 500-ms prepulse (pulse protocol is
shown in insets). Normalized current amplitudes were plotted as
a function of prepulse potential. At pH 6.0 the apparent valence
of steady-state FI in NaV1.2 was reduced from that at pH 7.4 to
the value measured at pH 6.0 (n = 11). The V 1/2 of inactivation
was not affected by low pH (Table 2). Low pH had no effect on
steady-state FI in NaV1.4 (Table 2). In NaV1.5 the apparent valence
was not altered at pH 6.0, but the V 1/2 was depolarized compared
to the V 1/2 at pH 7.4.

www.frontiersin.org June 2012 | Volume 3 | Article 109 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Vilin et al. pH modulation of sodium channels

FIGURE 5 | Low pH alters the voltage dependency of FI time

constants in NaV1.2, NaV1.4, and NaV1.5. Time constants of FI in NaV1.2
(A), NaV1.4 (B), and NaV1.5 (C) were derived from single exponential fits
to recovery, onset, and decay of macroscopic currents in response to
pulse protocols shown at the bottom (also see Materials and Methods)
and plotted vs. membrane voltage. Circles represent recovery time
constants, squires represent time constants of closed-state inactivation

and triangles denote time constants for the open-state inactivation. Filled
symbols represent time constants obtained at pH = 7.4 and open
symbols represent time constants at pH 6.0. The solid lines are
predictions of a first-order reaction model (inactivated ↔ not inactivated,
Materials and Methods). Diagrams at the bottom of Figure depict pulse
protocols used in this series of experiments. Data represent
mean ± SEM (n = 10–12).
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Table 3 | Parameters of τ(V ) in NaV1.2, NaV1.4, and NaV1.5 at pH 7.4

and 6.0.

NaV1.2 NaV1.4 NaV1.5

τmax, ms (pH 7.4) 65 35 109

τmax, ms (pH 6.0) 47 38 90

e, Total reaction value (pH 7.4) 4.1 2.5 4.5

e, Total reaction value (pH 6.0) 3.6 3.6 4.2

Barrier distance (pH 7.4) 0.3 0.3 0.4

Barrier distance (pH 6.0) 0.4 0.4 0.4

V 1/2, mV (pH 7.4) −47.2 −63.4 −74.5

V 1/2, mV (pH 6.0) −44 −66 −68

Table 4 | Parameters of steady-state slow inactivation in NaV1.2 and

NaV1.5 at pH 7.4 and 6.0.

NaV1.2 NaV1.5

SS_SImax,% (pH 7.4) 91.0 ± 1.1 64.0 ± 4.6

SS_SImax,% (pH 6.0) 98.0 ± 2.5 58.0 ± 3.5

z, Apparent valence (pH 7.4) 3.1 ± 0.6 1.9 ± 0.12

z, Apparent valence (pH 6.0) 3.7 ± 0.5 1.4 ± 0.1(2)

V 1/2, mV (pH 7.4) −52.5 ± 2.8 −71.4 ± 3.2

V 1/2, mV (pH 6.0) 61.1 ± 3.7(1) −57.4 ± 3.1(3)

(1)p < 0.05 vs. V1/2 at pH = 7.4 in NaV1.2.
(2)p < 0.05 vs. apparent valence (z) at pH = 7.4 in NaV1.5.
(3)p < 0.05 vs. V1/2 at pH = 7.4 in NaV1.5; n = 6.

Changes in activation and steady-state inactivation slope and
V 1/2 may alter the area of overlap between activation and
steady-state FI curves, known as “window current.” We studied
this possibility by comparing this area at both pH 7.4 and 6.0 for
NaV1.2, NaV1.4, and NaV1.5. Figures 1C,F,I shows window cur-
rent at pH 7.4 (solid line) and at pH 6.0 (dotted line) of NaV1.2,
NaV1.4, and NaV1.5, respectively. Data in these graphs were con-
verted to percents (Wang et al., 1996) and plotted as a function
of membrane potential. To compare the effects of pH on window
currents, window currents were analyzed as described in Materials
and Methods to find the area and peak position relative to mem-
brane potential on the horizontal axis. Low pH had no significant
effect on window currents in NaV1.2 (Figure 1C, p > 0.05). Win-
dow current area in NaV1.4 (Figure 1E) was reduced at pH 6.0
by 47 ± 4.5% (p < 0.05), however peak position was not changed:
−51 ± 1.3 mV at pH 7.4 vs. −49 ± 1.0 mV at pH 6.0. Window cur-
rent area in NaV1.5 was not significantly altered by low pH, but the
peak was shifted from −60.4 ± 0.7 mV (pH 7.4) to −53 ± 0.8 mV
(1I, p < 0.05). The latter finding indicates a possible destabilization
of FI gating in NaV1.5 at low pH.

OPEN-STATE FAST INACTIVATION IN NaV1.5 IS DECELERATED AT pH 6.0
As shown above, the decay of NaV1.5 macroscopic currents
was decelerated at pH 6.0. We asked whether this effect is
specific to NaV1.5. Figure 2 compares the effects of pH on
open-state FI (FI) in NaV1.2, NaV1.4, and NaV1.5. Data in
Figures 2A–C represent time constants of open-state FI derived
from exponential fits to decay of macroscopic current recorded

from NaV1.2 (Figures 2Ai,Aii), NaV1.4 (Figures 2Bi,ii), NaV1.5
(Figure 2Ci,ii) at pH 7.4 and pH 6.0. Pulse protocols are shown in
Figures 2Aii,Bii,Cii insets. Time constants were plotted as a func-
tion of membrane potential and fitted with single exponential for
visual guidance. Figure 2A shows that time course of open-state
inactivation in NaV1.2 at pH 7.4 (filled circles) is statistically iden-
tical (p > 0.05) to that at pH 6.0 (open circles). Similarly to NaV1.2,
the open-state inactivation in NaV1.4 (Figure 2B) at pH 7.4 (filled
circles) was not affected (p > 0.05) by low pH (open circles). How-
ever, the time course of open-state inactivation in NaV1.5 at pH
6.0 (Figure 2C, open circles) was significantly slower than that
recorded at pH 7.4 (Figure 2C, filled circles, asterisks denote
p < 0.05), also see Figures 2Ci,ii arrow. Thus, data in Figure 2
suggest that deceleration of rate of open-state FI due to low pH is
specific to NaV1.5, and is not seen in NaV1.2 or NaV1.4.

LOW pH ALTERS VOLTAGE-DEPENDENCE OF FAST INACTIVATION TIME
CONSTANTS IN NaV1.2, NaV1.4, AND NaV1.5
We studied effects of pH on the time course of recovery from
fast-inactivated state (Figure 3), onset to FI (Figure 4), and conse-
quently, the τ(V ) dependence of FI (Figure 5). The rate of recovery
from FI was studied using a double-pulse protocol (shown in
Figure 3, inset). The fraction of recovered channels was measured
from the peak current during a 0-mV test pulse. The current ampli-
tude following recovery was normalized to the current amplitude
during a pulse to 0 mV from −130 mV, a voltage at which all chan-
nels should be available (not inactivated). Recovery from FI in
NaV1.2, NaV1.4, and NaV1.5 was recorded with interpulse voltages
from −120 to −80 mV. The rate of recovery from fast inactivation
was greater in all three channel isoforms at low pH. Figure 3 shows
the time course of recovery from fast inactivation at pH 7.4 (filled
circles) and at pH 6.0 (open circles) in NaV1.2 (Figure 3A), NaV1.4
(Figure 3B), and NaV1.5 (Figure 3C). Data represent averaged
and normalized current amplitudes recorded in response to test
pulse following a −80-mV interpulse (see pulse protocol diagram
in Figure 3 inset ), plotted as a function of interpulse duration
(ms). For clarity, recovery data for other interpulse voltages are
not shown. Solid lines are single exponential fits (Eq. 3), used
to extract time constants to compare recovery at pH 7.4 and pH
6.0. We also found that more NaV1.4 channels are available for
recovery at the beginning (t = 0) of interpulse (Figure 3B, filled
circles, arrow) at pH = 7.4 compared to pH = 6.0 (open circles,
Figure 3B).

The effects of low pH on the rate of FI onset (Figure 4) were
studied by measuring the test pulse current amplitude after a 0-
to 500-ms prepulse of defined voltage (see protocol diagrams in
Figures 4A,B). In response to increasing duration of prepulse, the
fraction of inactivated channels, assayed with 0 mV test pulse is
increased, as shown in Figures 4A,B. Data in Figure 4 are nor-
malized and averaged test pulse currents plotted as a function
of prepulse duration. The rate of onset (given as a time con-
stant) and steady-state fraction of inactivated channels (given as
an asymptote) was quantified by fitting data with single exponen-
tial (Eq. 3). Onset of FI in NaV1.4 at pH 7.4 was not different
(p < 0.05) from that at pH 6.0 at prepulse potentials of −70, −60,
−50, and −40 mV (data not shown). However, the onset to FI in
NaV1.2 (Figure 4A) and in NaV1.5 (Figure 4B) was differentially
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FIGURE 6 | Low pH alters properties of slow inactivation in NaV1.2

and in NaV1.5. (A) Steady-state slow inactivation in NaV1.2 at pH 7.4 (filled
circles) and at pH 6.0 (open circles) is plotted as averaged normalized
current amplitude vs. 60-s prepulse voltage. Asymptotic values for NaV1.2
derived from double exponential fit to slow inactivation onset (B) at pH 7.4
(filled triangles) and at pH 6.0 (open triangles) are superimposed with
steady-state slow inactivation data at corresponding prepulse voltage
(−50 mV). (B) Steady-state slow inactivation in NaV1.5 at pH 7.4 (filled

squares) and at pH 6.0 (open squares) is plotted as averaged normalized
current amplitudes vs. 60-s prepulse voltage. Asymptotic values for NaV1.5
derived from double exponential fits to slow inactivation onset (B) at pH
7.4 (filled triangles) and at pH 6.0 (open triangles) are superimposed with
steady-state slow inactivation data at corresponding prepulse voltage
(−50 mV). Data were obtained with pulse protocol shown in (B) inset and
fit with a modified Boltzmann function (Eq. 6, Material and Methods). Data
represent mean ± SEM (n = 7–10).
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FIGURE 7 | Low pH alters kinetics of slow inactivation in NaV1.2 and in

NaV1.5. (A) The time course of slow inactivation onset in NaV1.2 at pH 7.4
(filled circles) and at pH 6.0 (open circles) is plotted vs. prepulse voltage as
averaged and normalized currents, obtained with pulse protocol shown in (C)

inset. (B) The time course of recovery from slow inactivation in NaV1.2 at pH
7.4 (filled circles) and at pH 6.0 (open circles) is plotted vs. interpulse voltage

as averaged and normalized currents, obtained with pulse protocol in (D)

inset. (C) The time course of slow inactivation onset in NaV1.5 at pH 7.4 (filled
squares) and at pH 6.0 (open squares). (D) The time course of recovery from
slow inactivation in NaV1.5 at pH 7.4 (filled squares) and at pH 6.0 (open
squares). Data represent mean ± SEM (n = 7–10). Asterisks denote statistical
difference (p < 0.05).

affected by low pH. A direct comparison of pH effects on FI onset
between NaV1.2 and in NaV1.5 at pH = 7.4 (filled circles) and
at pH = 6.0 (open circles) was confounded by an isoform- and
pH-dependent difference in the peak of the τ(V ) curve (shown
in Figure 5). The steady-state fraction of inactivated channels in
NaV1.2, NaV1.4, and NaV1.5 was not altered by low pH (p > 0.05,
data not shown).

Different voltage protocols were used in NaV1.2 and NaV1.5 to
assess the effects of pH on the onset of fast inactivation, as shown
in Figure 4, because of a difference in τ(V ) relationships between
these two isoforms. As shown in Figure 5, the τ(V ) for NaV1.2
is depolarized relative to NaV1.5. Had we compared −60 mV for
both isoforms, we would have measured recovery from fast inacti-
vation in NaV1.2 and onset of fast inactivation in NaV1.5. We chose

www.frontiersin.org June 2012 | Volume 3 | Article 109 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Vilin et al. pH modulation of sodium channels

Table 5 | Parameters of time course of slow inactivation in NaV1.2 and

NaV1.5 at pH 7.4 and 6.0.

NaV1.2 NaV1.5

SI onset τ1, (pH 7.4) 1.8 ± 0.5 0.8 ± 0.2

SI onset τ1, (pH 6.0) 1.0 ± 0.5 0.7 ± 0.1

SI onset τ2, (pH 7.4) 29.0 ± 5.1 6.0 ± 1.1

SI onset τ2, (pH 6.0) 12.0 ± 1.7(1) 16.3 ± 1.8(4)

SI onset asymptote, % (pH 7.4) 48.0 ± 6 45.0 ± 5.4

SI onset asymptote, % (pH 6.0) 25.0 ± 5(2) 64.2 ± 4.1(5)

SI recovery τ1, (pH 7.4) 0.3 ± 0.1 0.5 ± 0.1

SI recovery τ1, (pH 6.0) 0.5 ± 0.1 0.3 ± 0.1

SI recovery τ2, (pH 7.4) 18 ± 2 7.9 ± 2.9

SI recovery τ2, (pH 6.0) 8.2 ± 1.2(3) 9.5 ± 3.0

SI recovery asymptote,% (pH 7.4) 99.0 ± 0.2 98.0 ± 1.9

SI recovery asymptote,% (pH 6.0) 99.0 ± 0.9 99.0 ± 0.7

(1)p < 0.05 vs. SI onset τ2 at pH 7.4 in NaV1.2.
(2)p < 0.05 vs. SI onset asymptote at pH 7.4 in NaV1.2.
(3)p < 0.05 vs. SI recovery τ2 at pH 7.4 in NaV1.2.
(4)p < 0.05 vs. SI onset τ2 at pH 7.4 in NaV1.5.
(5)p < 0.05 vs. SI onset asymptote at pH 7.4 in NaV1.5; n = 6–7.

Table 6 | Parameters of UDI in NaV1.2, NaV1.2, and NaV1.5 at pH 7.4 and

6.0.

NaV1.2 NaV1.4 NaV1.5

UDI τ1, s (pH 7.4) 2.0 ± 0.3 0.3 ± 0.1 2.4 ± 0.3

UDI τ1, s (pH 6.0) 1.8 ± 0.2 0.4 ± 0.1 5.8 ± 0.3(3)

UDI τ2, s (pH 7.4) 13.3 ± 1.3 4.5 ± 0.9 18.0 ± 1.1

UDI τ2, s (pH 6.0) 7.7 ± 1.0(1) 4.9 ± 0.9 36.2 ± 4.6(4)

UDI asymptote,% (pH 7.4) 71.8 ± 1.9 63.0 ± 2.1 55.4 ± 3.0

UDI asymptote,% (pH 6.0) 87.8 ± 2.3(2) 60.0 ± 1.3 69.0 ± 0.7(5)

(1)p < 0.05 vs. UDI τ2 at pH 7.4 in NaV1.2.
(2)p < 0.05 vs. UDI asymptote at pH 7.4 in NaV1.2.
(3)p < 0.05 vs. UDI τ1 at pH 7.4 in NaV1.5.
(4)p < 0.05 vs. UDI τ2 at pH 7.4 in NaV1.5.
(5)p < 0.05 vs. UDI asymptote at pH 7.4 in NaV1.5; n = 5–11.

to compare −30 mV in NaV1.2 with −60 mV in NaV1.5 because of
their similar positions relative to the peak of their respective τ(V )
curves, as seen in Figure 5.

In Figure 5, the averaged time constants of FI recovery (circles),
closed-state FI onset (squares), and open-state FI onset (trian-
gles) are plotted as a function membrane (interpulse and prepulse)
potential at pH 7.4 (solid symbols) and pH 6.0 (open symbols).
The averaged time constants were fit using a two-state (not inacti-
vated ↔ inactivated) Eyring first-order reaction model (solid lines,
Eqs 7–9, Materials and Methods). The coefficients of fits to FI time
constants are summarized in Table 3. Low pH strongly affects the
τ(V ) in NaV1.2 and NaV1.5 by accelerating rate of recovery from
FI, slowing rate entry to FI and producing depolarizing shift in
maximum of τ(V ) curve. In contrast, effects of low pH on τ(V )
in NaV1.4 are limited to an increase in the rate of recovery from FI
(Figure 5B).

pH DIFFERENTIALLY ALTERS SLOW INACTIVATION IN NaV1.2 AND
NaV1.5
We compared the effects of low pH on steady-state slow inactiva-
tion (SS-SI) in NaV1.2, NaV1.4, and NaV1.5 (Figure 6). SS-SI was
measured using a 60-s prepulse followed by a 20-ms, −150 mV
FI recovery pulse immediately before the 0-mV test. After the test
pulse, channels were hyperpolarized to −130 mV for 30 s before
every prepulse to completely recover channels from both fast and
slow inactivation (Featherstone et al., 1996). Data points repre-
sent averaged and normalized amplitudes of currents recorded
during test pulse (see pulse protocol diagram in Figure 6 inset ).
Figure 6A shows SS-SI in NaV1.2 at pH 7.4 (filled circles) and
pH 6.0 (open circles). Figure 6B shows SS-SI in NaV1.5 at pH 7.4
(filled squares) and at pH 6.0 (open squares). Data are plotted as
a function of prepulse potential. Data sets were fitted with mod-
ified Boltzmann function (Figure 6, solid lines, Eq. 6, Materials
and Methods) to obtain values for maximum probability, appar-
ent valence (z), and V 1/2, summarized in Table 4. Data in Figure 6
were closely matched by asymptotic values of exponential fits to
the data in Figures 7A,C at corresponding voltages (−50 mV).

Our results revealed no significant differences in properties of
SS-SI in NaV1.4 recorded at pH 7.4 and at pH 6.4 (data not shown).
However, low pH produced shifts in V 1/2: hyperpolarizing for
NaV1.2 and depolarizing for NaV1.5 (see Table 4).

Figures 7A,C show time course of onset of SI in NaV1.2 at
pH 7.4 (filled circles) and at pH 6.0 (open circles) and in NaV1.5
at pH 7.4 (filled squares) and at pH 6.0 (open squires), respec-
tively. The onset of SI was assessed by recording peak currents
during the test pulse preceded by −50 mV prepulse of varied
duration (0–64 s). As with the pulse protocol for steady-state SI
(Figure 6), a 20-ms, −130 mV pulse immediately prior to a test
pulse was used to recover channels from accumulated FI. After
the test pulse, channels were hyperpolarized to −130 mV for 30 s
before every prepulse to completely recover channels from both
fast and SI. The pulse protocol is shown below Figure 7C. Data
points in Figures 7A,C are averaged and normalized amplitudes
of peak currents recorded in response to a test pulse (as described
above). The time course of SI onset was fit with double exponen-
tial (solid lines, Eq. 4, Materials and Methods) and time constants
were extracted. Parameters, derived from the double exponential
fits are summarized in Table 5. Asymptotic values of onset to SI
at both pH values were added Figure 6 to verify SS-SI data. In
NaV1.2, at pH 6.0 the asymptotic value of onset of SI was signifi-
cantly decreased. Also, at low pH the slow time constant (τ2) was
significantly smaller at pH 6.0 compared to pH 7.4. In contrast,
the asymptotic value of onset of SI in NaV1.5 was significantly
increased at pH 6.0 compared with pH 7.4 (p < 0.05, n = 7), and
the slow component (τ2) of SI onset was significantly smaller at
pH 6.0 compared to pH 7.4 at pH 7.4 (p < 0.05, n = 7).

Figures 7B,D show time course of recovery from SI in NaV1.2 at
pH 7.4 (filled circles) and at pH 6.0 (open circles) and in NaV1.5 at
pH 7.4 (filled squares) and at pH 6.0 (open squares), respectively.
The recovery from SI was measured as follows: channels were inac-
tivated with 60 s prepulse at 0 mV, and then recovered from inacti-
vation with a −110-mV interpulse of variable duration (0–64 s, see
Materials and Methods for details about the interpulse duration
protocol). A short pulse of 20 ms, at −130 mV immediately prior

Frontiers in Pharmacology | Pharmacology of Ion Channels and Channelopathies June 2012 | Volume 3 | Article 109 | 12

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Vilin et al. pH modulation of sodium channels

FIGURE 8 | Low pH differentially affects use-dependent inactivation.

(A,B,C) Use-dependent inactivation at pH 7.4 (filled symbols) and at pH 6.0
(open symbols) in NaV1.2, NaV1.4 and NaV1.5, respectively. Cells were held
at −60 mV and repetitively stimulated either with one thousand 20 ms test
pulses to 0 mV (for NaV1.2 and NaV1.4) or with 120 500 ms test pulses to
0 mV (for NaV1.5). Corresponding pulse protocol diagrams are shown in
(A,B,C) insets. Peak currents from test pulses were normalized to the
amplitude of the first current in the series and values were plotted vs.
number of pulses. (A) Use-dependent inactivation in NaV1.2 at pH 7.4 (filled
symbols) and at pH 6.0 (open symbols). Ai time constants of double

exponential use-dependent inactivation in NaV1.2 at pH 7.4 (filled
histograms) and at pH 6.0 (open histograms). (B) Use-dependent
inactivation in NaV1.4 at pH 7.4 (filled symbols) and at pH 6.0 (open
symbols). Bi time constants of double exponential use-dependent
inactivation in NaV1.4 at pH 7.4 (filled histograms) and at pH 6.0 (open
histograms). (C) Use-dependent inactivation in NaV1.5 at pH 7.4 (filled
symbols) and at pH 6.0 (open symbols). Ci time constants of double
exponential use-dependent inactivation in NaV1.5 at pH 7.4 (filled
histograms) and at pH 6.0 (open histograms). Data represent mean ±
SEM (n = 9–12). Asterisks denote statistical difference (p < .05).
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FIGURE 9 | Effects of pH on neuronal action potential. (A) An overlap of
a two neuronal APs with sodium currents at pH 7.4 (solid line) and pH 6.0
(dashed line). The APs were elicited by a continuous stimulus current of
1 pA/pF. (B) Continuous APs with sodium currents at pH 7.4 (solid line) and
pH 6.0 (dashed line). The continuous firing was induced with a continuous
current of 20 pA/pF. (C) Continuous APs of a neuron expressing a sodium
channel “pH chimera” whose parameters of conductance and FI

correspond to those at pH 6.0 and the parameters of slow inactivation
correspond to those at pH 7.4. The APs were stimulated with a continuous
current of 20 pA/pF. (D) Continuous APs of a neuron expressing a sodium
channel “pH chimera” whose parameters of conductance and FI
correspond to those at pH 7.4 and the parameters of slow inactivation
correspond to those at pH 6.0. The APs were stimulated with a continuous
current of 20 pA/pF.

to the test pulse was used to recover channels from FI. The fraction
of channels recovered from SI was assessed with a 0-mV test pulse.
The pulse protocol is shown below Figure 7D. Currents, recorded
during the test pulse were normalized, averaged, and plotted vs.
interpulse duration. The time course of recovery from SI in NaV1.2
was fitted with a double exponential (Eq. 4, Materials and Meth-
ods) to obtain time constants and asymptotic values, summarized
in Table 5. Low pH did not significantly affect the faster compo-
nent (τ1) of recovery from SI in NaV1.2. However, the slower time
constant (τ2) of recovery from SI was significantly decreased at
pH 6.0 (p < 0.05, n = 6, Figure 7B). The asymptotic value of time
course from recovery from SI in NaV1.2 at pH 6.0 was not different
(p > 0.05) from that at pH 7.4.

Figure 7D shows time course of recovery from SI in NaV1.5
at pH 7.4 (filled squares) and at pH 6.0 (open squares). Com-
paring the time constants extracted from double exponential fits
revealed no significant (p > 0.05) effect of low pH on either on
τ1 or τ2. However, we found that, at pH 6.0, more NaV1.5 chan-
nels are available for recovery at the beginning (t = 0) of inter-
pulse (Figure 7D, open squares, arrow) as compared to pH 7.4
(Figure 7C, filled squares). The asymptotic values for recovery
from SI in NaV1.5 at pH 6.0 were not different (p > 0.05) from
those at pH 7.4 (Table 5).

Our experiments revealed no significant effects of low pH
kinetics of SI in NaV1.4 channels (data not shown).

pH DIFFERENTIALLY ALTERS USE-DEPENDENT INACTIVATION IN NaV1.2
AND NaV1.5
To further investigate the effects of low pH on inactivation
in NaV1.2 and NaV1.5, we compared use-dependent current
reduction at pH 7.4 and pH 6.0. The frequency of pulse stimulation
for each channel isoform was chosen to emulate its tissue-specific
activity prior to/during an ischemic event, such as epileptic episode
or stroke (Kjekshus, 1986; Adeli et al., 2003). Figure 8A shows use-
dependent inactivation (UDI) in NaV1.2 at pH 7.4 (filled circles)
and at pH 6.0 (open circles). Peak current amplitudes, recorded
during a series of 1000, 20 ms test pulses to 0 mV are plotted as
a function of pulse number. The interval between adjacent pulses
was 1 ms, holding potential was −60 mV to emulate neuronal rest-
ing potential in vivo. The resulting frequency was approximately
45 ± 5 Hz, which roughly corresponds to frequency of AP firing
during epileptic episode (Adeli et al., 2003). Peak currents were
normalized to the peak amplitude of the first current record of
the series and fit with a double exponential function to determine
time constants, τ1 and τ2, and steady-state fraction of inactivated
channels (asymptote). UDI parameters are summarized in Table 6.

At pH 7.4 (Figure 8A, filled circles) the asymptote of UDI in
NaV1.2 was significantly (p < 0.05) decreased compared to that at
pH 6.0 (Figure 8A, open circles). Also, acidification accelerated
the τ2 of UDI in NaV1.2 (Figure 8Ai, open histogram), Table 6.
Data shown in Figures 8B,Bi indicate that both time course and
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Table 7 | Parameters of repetitively firing neurons at a stimulus of −20 pA/pF for pH 7.4 model neurons, pH 6.0 model neurons, and pH 6.0 model

neurons with either pH 7.4 slow inactivation or fast inactivation parameters.

pH 7.4 pH 6.0 pH 6.0 with pH 7.4 FI pH 6.0 with pH 7.4 SI

First AP depolarization 41.5 mV 25.8 mV 41.1 mV 25.8 mV

Subsequent AP depolarization 19.8 mV n/a 17.2 mV n/a

First AP hyperpolarization −70.9 mV −61.4 mV −70.9 mV −61.4 mV

Subsequent AP hyperpolarization −68.9 mV n/a −67.9 mV n/a

Firing frequency 94.3 Hz 0 Hz 94.7 Hz 0 Hz

Measured parameters are the maximal membrane potential reached on the initial depolarization and subsequent depolarization, the minimum membrane potential

on the first hyperpolarization and subsequent hyperpolarizations as well as the action potential firing rate.

maximum probability of UDI in NaV1.4 at pH 7.4 (filled circles
and histograms) were statistically similar (p > 0.05) to those at pH
6.0 (open circles and histograms), Table 6. In NaV1.5 the effects of
low pH on UDI were essentially reversed as compared to NaV1.2.
At pH 7.4 the asymptote of UDI (Figure 8C, filled circles) was
increased as compared to that at pH 6.0 (Figure 8Ci, open cir-
cles), Table 6. Also, low pH decelerated both τ1 (Figure 8Ci, filled
histograms) and τ2 (Figure 8Ci, filled histograms) of the UDI,
Table 6. Note that different depolarization durations for UDI
pulse protocols were used (see pulse protocols in Figure 8 and
description in the figure legend) to account for differences in AP
durations between neurons and skeletal muscles (NaV1.2 and 1.4)
vs. myocytes (NaV1.5).

Our results suggest acidification produces differential effects on
inactivation properties of NaV1.2 and NaV1.5, but not in NaV1.4,
suggesting that changes in pH would affect AP generation and
propagation in neuronal and cardiac tissue but not in skeletal
muscle.

MODELING: EFFECTS OF LOW pH ON NEURONAL ACTION POTENTIAL
Our experimental data were used as the basis for computer mod-
eling (see Materials and Methods) to measure characteristics of
neuronal APs at either normal or acidic pH. Figure 9 shows the
results of neuronal modeling. Simulations to elicit APs were done
at a continuous stimulus of −1 pA/pF in both pH 6.0 (dashed line)
and pH 7.4 (solid line) over a period of 105 ms (Figure 9A). The
membrane potentials of the model neurons at each pH value were
plotted as a function of time (Figure 9A). Three main differences
were observed between the two pH values: (1) the pH 6.0 neuron
reached its maximal depolarization at 68.90 ms, faster than the
pH 7.4 neuron at 76.98 ms; (2) the membrane potential at peak
depolarization was 18.7 mV in the pH 6.0, a more positive depolar-
ization than the 30.40-mV observed in the pH 7.4 neuron; and (3)
the maximum hyperpolarization voltage was less negative in the
pH 6.0 neuron, with a value of −67 mV compared to −74.4 mV
found in the pH 7.4 neuron.

Figure 9B compares repetitive AP firing in a model neuron at
pH 7.4 (solid line) and at pH 6.0 (dashed line). Data shown are for
neurons injected with a constant stimulus of −20 pA/pF although
simulations were also performed at stimulus amplitudes of −3,
−5, −10, and −15 pA/pF with the same data trends obtained
(data not shown). In the first AP, the maximum depolarization
and hyperpolarization trends seen in the single AP studies, are
reproduced (Table 7). The pH 7.4 neuron continues to fire APs at
a rate of 94.3 Hz, but with a decreased maximum depolarization

and less negative undershoot (Table 7). In contrast, the pH 6.0
model neuron failed to repetitively fire.

Since our model takes into account both fast and slow gating,
we have modeled“AP chimeras”to study the specific effects of both
inactivation types on the neuronal AP. Chimera 1 (Figure 9C) con-
sists of pH 6.0 data programmed in for the activation and FI and
pH 7.4 data programmed in for the slow inactivation gate. Chimera
2 (Figure 9D) has pH 6.0 data programmed in for the activation
and slow inactivation gates and pH 7.4 data programmed in for
the FI gate. Chimera 2 (Figure 9D) was found to have similar char-
acteristics to the pH 7.4 neuronal model, in which the repetitive
firing was preserved (Figure 9B, solid line). In contrast, Chimera
1 (Figure 9C) results were similar to the pH 6.0 model (Table 7).
These modeling results suggest FI defects induced by decreased
pH are responsible for the failure of the neuronal model to display
repetitive AP firing.

MODELING: EFFECTS OF LOW pH ON CARDIAC ACTION POTENTIAL
Figures 10A,B, show the modeled sodium current during the
15th and 200th APs (firing frequency of 2.5 and 3.33 Hz, respec-
tively) at pH 7.4 (solid line) and at pH (6.0). Plotted are the
sodium current densities in pA/pF over the initial 5 ms of the
cardiac AP. The sodium current is reduced and delayed in the
pH 6.0 model during both 15th and 200th APs. At pH 6.0 there
is a decreased level of activation and a decreased level of FI as
described in Table 7; Figure 10C is the full 15th AP at both pH
values; Figures 10Ci,ii show expanded views of the rising phase
and repolarization phase respectively. The membrane potential of
the model cardiac myocytes is plotted on the vertical axis, with
−85.9 mV as the resting membrane potential, vs. a single cycle
length. The maximum rise rate in the pH 6.0 model is reduced
from 62.1 mV/ms, at pH 7.4, to 18.6 mV/ms, and was also delayed
by 0.6 ms at pH 6.0. There also was a delay in the peak plateau
potential at pH 6.0, but there was no significant difference in the AP
duration (APD) between the models (Table 7). Figures 10D,Di,ii
show the 200th AP as well as expanded views of the rise phase
and repolarization phase. As in Figure 10C, the membrane poten-
tial of the model cardiac AP is plotted as a function of the time
of a single cycle length, with the resting membrane potential at
−85.9 mV. There was a decreased maximal rise rate in the pH 6.0
AP (41.1 mV/ms at pH 7.4 compared to 11.0 mV/ms at pH 6.0)
and a delay in the peak plateau depolarization (Table 7). There also
was a 3.7-mV difference in the peak plateau membrane potential
at pH 6.0 as well as a 1.4-ms delay in the repolarization of the pH
6.0 AP.
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FIGURE 10 | Effects of pH on cardiac action potential. (A) The fast sodium
current of a cardiac AP at pH 7.4 (solid line) and pH 6.0 (dashed line). The
sodium current is recorded on the 15th AP in an endocardial myocyte
stimulated at a frequency of 2.5 Hz. (B) The fast sodium current of a cardiac
AP at pH 7.4 (solid line) and pH 6.0 (dashed line). The sodium current is
recorded on the 200th AP in a endocardial myocyte stimulated at a frequency
of 3.33 Hz. (C) The membrane potential over the time of one endocardial
myocyte AP with sodium currents at pH 7.4 (solid line) and pH 6.0 (dashed
line). The AP is the 15th produced in a model ventricular endocardial myocyte
stimulated at 2.5 Hz. (Ci) The first 25 ms of the 15th endocardial AP

stimulated at 2.5 Hz with sodium currents at pH 7.4 (solid line) and pH 6.0
(dashed line). (Cii) The last 50 ms of the 15th endocardial AP stimulated at
2.5 Hz with sodium currents at pH 7.4 (solid line) and pH 6.0 (dashed line). (D)

The membrane potential over the time of one endocardial myocyte AP with
sodium currents at pH 7.4 (solid line) and pH 6.0 (dashed line). The AP is the
200th produced in a model ventricular endocardial myocyte stimulated at
3.33 Hz. (Di) The first 25ms of the 200th endocardial AP stimulated at 3.33 Hz
with sodium currents at pH 7.4 (solid line) and pH 6.0 (dashed line). (Dii) The
last 50 ms of the 200th endocardial AP stimulated at 3.33 Hz with sodium
currents at pH 7.4 (solid line) and pH 6.0 (dashed line).
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DISCUSSION
The goal of this study was to compare the effects of extracel-
lular acidosis on biophysical properties of NaV1.2, NaV1.4, and
NaV1.5 channels. We observed both similarities and differences
between the responses of the different subtypes to changing
pH from 7.4 to 6.0. On one hand, peak current amplitudes
in all three channel isoforms were approximately equally sup-
pressed due to proton block (Figures 1A,Ai,D,Di,G,Gi), consis-
tent with previously published data (Hille, 1968; Benitah et al.,
1997; Khan et al., 2006). However, more detailed study revealed
that effects of low pH significantly differ between these channel
subtypes, suggesting a specificity of effects that acidosis might
have on voltage-gated sodium channels and, consequently, the
tissues in which the different subtypes are found. In contrast to
NaV1.2 and NaV1.5, NaV1.4 channels are practically insensitive
to changes in pH; activation, and both fast and slow inactiva-
tion were largely unaffected by acidosis (Figures 1D,Di,E,F, 2B,
and 5B) and the UDI at pH 7.4 was statistically identical to that
at pH 6.0 (Figure 8B). These data suggest that steady-state and
kinetic properties of activation and inactivation in NaV1.4 are
pH-insensitive and the decrease in macroscopic current ampli-
tudes at low pH (Figures 1D,Di) can be entirely attributed to
proton block (Hille, 1968; Mozhayeva et al., 1984; Yatani et al.,
1984; Benitah et al., 1997; Khan et al., 2006; Zhang et al., 2007).
This apparent resistance to changes in extracellular pH may reflect
the role of NaV1.4 in skeletal muscle function and its require-
ment to maintain normal functionality during exercise-induced
acidosis.

On the other hand, inactivation in NaV1.2 and NaV1.5 was
modified at low pH in opposite ways. First, the time course of
open-state inactivation was delayed in NaV1.5 (Figure 2C), but
not in NaV1.2 (Figure 2A). Longer time constants of NaV1.5
open-state inactivation indicate destabilization of the fast inac-
tivation state, which in turn may result in elevated electrical
excitability of cardiac tissue (Nerbonne and Kass, 2005; Wang
et al., 2009). Second, the peak of window current area was shifted
toward depolarized potentials in NaV1.5 (Figure 1I), but not in
NaV1.2 (Figure 1C). This also may lead to overexcitability of car-
diac tissue via elongation of the plateau phase of the cardiac AP
(Abriel et al., 2001). Third, at pH 6.0, there was increased max-
imum channel availability in NaV1.5 (Figure 7B). In contrast,
maximum availability in NaV1.2 is decreased in acidic conditions
(Figure 6B). These data agree well with the maximum probabil-
ity of UDI in NaV1.2 and NaV1.5 (Figures 8A,C, respectively),
which is another indication that acidic conditions have opposite
effects on NaV1.2 (decreased availability) and NaV1.5 (increased
availability).

These hypotheses were tested with computer modeling. The
results of modeling these data support in vivo experiments on
acidosis and suggest mechanisms as to how the changes that
occur in electrical signals at low pH are brought about. Neuronal
modeling has shown the presence of both acidosis-inhibited and
acidosis-stimulated neurons (Wang and Richerson, 2000; Wang
et al., 2001). Our models showed complete inhibition of firing
when only sodium channel parameters were changed (Figure 9B),
which agrees with previous reports (Zhang et al., 2007). This
suggests that acidosis inhibition of neurons is in part due to

inhibited sodium currents, more specifically the altered FI kinetics
(Figures 9C,D). Experiments on ventricular myocyte have shown
reduced rise rates in APs at low pH (Kagiyama et al., 1982),
which may be attributed in our modeling data to a decrease in
sodium current amplitude (Figure 10). Decreases in initial rise
rate are a potential cause of slow conduction velocity at low pH
(Fry and Poole-Wilson, 1981; Kagiyama et al., 1982), a condition
associated with ventricular arrhythmias (Cranefield et al., 1972).
Decreased sodium current amplitude would normally suggest an
early repolarization. Our data, however, suggests this is not the
case (Figures 10C,D), and in vivo experiments have shown that
acidosis leads to delays in repolarization. Our data further sug-
gests that elongated macroscopic sodium currents are part of this
effect. Sodium currents were present for almost twice as long at
low pH (Figures 10A,B), probably due to delays in open-state
inactivation at pH 6.0 (Figure 4).

The interpretation of our modeling is necessarily limited by
the fact that only sodium channel properties were modified. The
contribution of other channel types, and the effect of low pH on
them, will inevitably alter the results we report. Nevertheless, our
data, and the models we derive, provide the first direct comparison
of the effects of low pH on sodium channel gating. Future studies
using potassium and calcium channels, as well as other sodium
channel subtypes, will provide the data necessary for a more com-
plete picture of the effects of low pH on electrical excitability of
nerve and muscle.

Our present results with NaV1.5 and the effects of low pH are
consistent with our previous observations (Jones et al., 2011b). In
our previous work, we observed similar effects of low pH on SS-
FI, window current, τ(V ), and UDI in NaV1.5 channels recorded
using the cut-open oocyte voltage clamp. The effects of low pH on
this sodium channel subtype thus are independent of the expres-
sion system and recording technique. The similarity of the NaV1.5
data we report here to that in Jones et al. (2011b), addresses what
we therefore consider to be an unlikely possibility that the differ-
ences between NaV isoforms might be due to differences between
expression systems.

Our results do not distinguish definitively between charge
screening and pore block by protons. Since the peak I Na ampli-
tude is diminished in all the isoforms we tested, we con-
clude the same mechanism described by Khan et al. (2002) is
responsible for this effect. Our previous results (Jones et al.,
2011a), however, suggest the proton-dependent decrease in cur-
rent amplitude is mediated by mechanism and molecular under-
pinnings different from than that by which kinetic properties are
affected.

We can, at this point, only speculate as to the molecular basis
for isoform-dependent differences in responses to low pH. The
most likely place to explore the structural underpinnings of dif-
ferential pH0 sensitivity is in residues that face the external milieu.
Our previously published results (Jones et al., 2011b) suggest that
histidine residues, with a pK a of 6.5, close to the pK a of 6.1 mea-
sured for pH-dependent decrease in peak I Na in NaV1.5, could
be NaV pH sensors. In addition, histidine residues in potassium
channels have been reported to function as pH sensors (Kehl et al.,
2002). Finally, our preliminary experiments also suggest histidine
residues may be pH sensors (Jones et al., 2011a), although other
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reports suggest C373 in NaV1.5 might fulfill this role (Khan et al.,
2006). Future studies will explore the possibility that there may
be several residues that may be protonated under low external pH
conditions.
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APPENDIX
GENERAL EQUATIONS

dV

dt
= I

C
(A1)

where V is membrane potential, I is total current, C is capacitance, and t is time.

dy

dt
=

(
y∞ − y

)
τy

(A2)

where y is the value of any gate, y∞ is its steady-state value and τy is its time constant value.

Neuron

I = Ina + Ik + Istimulus (A3)

C = −3.5 μF/cm2

Gna = 200 mS/cm2

Ena = 50 mV
τm = 0.15 ms
Gk = 40 mS/cm2

Ek = −80 mV

Fast sodium current.

m∞ = 1

1 + exp
[−1

[
(V + 11.7)

/
9.074

]] if pH = 7.4

m∞ = 1

1 + exp
[−1

[
(V + 10.35)

/
10.04

]] if pH = 6.0
(A4)

h∞ = 1

1 + exp
[−1

(
(V + 50.1)

/−8.599
)] if pH = 7.4

h∞ = 1

1 + exp
[−1

(
(V + 52.0)

/−11.056
)] if pH = 6.0

(A5)

τh = 46

0.5{exp[(V + 50.0)
/

14.0] + exp[(V + 50.0)
/−13.0]} if pH = 7.4

τh = 65.58

0.5{exp[(V + 50)
/

9.20 + exp[(V + 50)
/−16.0]} if pH = 6.0

(A6)

j∞ = 0.92

1 + exp[−1((V + 52.5)
/−12.73)] + 0.08 if pH = 7.4

j∞ = 0.95

1 + exp[−1((V + 61.0)
/−10.73)] + 0.05 if pH = 6.0

(A7)

τj = 29000 exp

{
−0.5

{[
(V + 52.5)

60

]2
}}

if pH = 7.4

τj = 12300 exp

{
−0.5

{[
(V + 61.0)

54.5

]2
}}

if pH = 6.0

(A8)
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Potassium current.

Ik = Gk · n4 · (V − Ek) (A9)

n∞ = αn

(αn + βn)
(A10)

τn = 1

(αn + βn)
(A11)

αn = −0.07 [(V + 60) − 47]

exp
[
((V + 60) − 47)

/−6
] − 1

(A12)

βn = (0.264) exp
(V + 60) − 22

40
(A13)

Cardiac
Gna = 23 mS/cm2

Gnal = 0.065 mS/cm2

τhl = 600 ms

Fast sodium current.

m∞ = 0.846

1 + exp
[−1[(V + 32.58)

/
7.04]] if pH = 7.4

m∞ = 0.482

1 + exp
[−1[(V + 32.58)

/
7.86]] if pH = 6.0

(A14)

τm = αm ∗ βm (A15)

αm = 1

1 + exp[(−60 − V )
/

5] (A16)

βm = 0.1

1 + exp
[
(V + 35)

/
5] + 0.1

/
1 + exp[(V − 50)

/
200

] (A17)

h∞ = 1

1 + exp[−1((V + 80.6)
/−6.108)] if pH = 7.4

h∞ = 1

1 + exp
[−1((V + 77.54)

/−6.509)
] if pH = 6.0

(A18)

τh = 378.5

0.5{exp[(V + 80.6)
/

11.5] + exp[(V + 80.6)
/−10.5]} if pH = 7.4

τh = 319.15

0.5{exp[(V + 70)
/

9.5] + exp[(V + 70)
/−12.5]} if pH = 6.0

(A19)

j∞ = 0.588

1 + exp[−1((V + 71.4)
/−14.08)] + 0.3305 if pH = 7.4

j∞ = 0.5324

1 + exp[−1((V + 57.4)
/−19.12)] + 0.3856 if pH = 6.0

(A20)

τj = 1000(
αj + βj

) (A21)

αj = 0 if V ≥ −40 mV

αj = {(V + 37.78){−0.000006948 exp[−0.04391 ∗ V ] − 25428 exp[0.2444 ∗ V ]}}
{1 + exp[0.311(V + 79.23)]} else

(A22)

βj = 0.6 exp[0.057(V )]
1 + exp[−0.1(V + 32)] if V ≥ −40mV

βj = 0.02424 exp[−0.01052(V )]
1 + exp[−0.1378(V + 40.14)] else

(A23)
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Late sodium current.

Inal = Gnal · ml3 · hl · (V − Ena) (A24)

ml∞ = αml

(αml + βml)
(A25)

τml = 1

(αml + βml)
(A26)

αml = 0.482(V + 47.13)

1 − exp [−0.1(V + 47.13)]
(A27)

βml = 0.192 exp

(
V

−11

)
(A28)

hl∞ = 1

1 + exp[(91 + V )/6.1] (A29)

Slow delayed rectifier current conductance.

GKs = 0.433

{
1 +

[
0.68(

1 + (0.000038
/

Cai)1.4)
]}

(A30)
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