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In voltage-gated cation channels, a recurrent pattern for mutations is the neutralization
of positively charged residues in the voltage-sensing S4 transmembrane segments.These
mutations cause dominant ion channelopathies affecting many tissues such as brain, heart,
and skeletal muscle. Recent studies suggest that the pathogenesis of associated pheno-
types is not limited to alterations in the gating of the ion-conducting alpha pore. Instead,
aberrant so-called omega currents, facilitated by the movement of mutated S4 segments,
also appear to contribute to symptoms. Surprisingly, these omega currents conduct cations
with varying ion selectivity and are activated in either a hyperpolarized or depolarized volt-
age range.This review gives an overview of voltage sensor channelopathies in general and
focuses on pathogenesis of skeletal muscle S4 disorders for which current knowledge is
most advanced.

Keywords: epilepsy and neuromyotonia, long QT syndrome, familial hemiplegic migraine, myotonia and

paramyotonia, hyperkalemic and hypokalemic periodic paralysis, sodium overload, cytotoxic edema, degeneration

INTRODUCTION
The basic motif of the alpha subunit of voltage-gated cation chan-
nels is a tetrameric association of four domains I–IV, each con-
sisting of six transmembrane helical segments S1–S6, connected
by intracellular and extracellular loops. At the resting potential,
open probability is low. Activation results from a depolarization-
induced conformational change leading to the opening of the
alpha pore. When the pore is pharmacologically blocked, charge
movements in the electrical membrane field are measurable as so-
called gating currents. These gating currents are a result of the
outward movement of highly conserved voltage-sensitive S4 seg-
ments which display an arginine or lysine residue at every third
amino acid position, almost vertically aligned (denoted as R1,
R2, R3, etc.). At resting potential, the outermost S4 charge sep-
arates the extracellular fluid from the cytoplasm. With membrane
depolarization, each S4 moves outwardly shifting deeper situated
arginines to the critical position of extra-intracellular separation.
During their outward movement, the S4 segments move in a spi-
ral path through canaliculi of the channel protein made up of
segments S1–S3 (Figures 1 and 2). Likewise, during recovery from
channel inactivation, the S4 segments are thought to move back
to their original position. Because of the narrow constriction sep-
arating extracellular from intracellular compartments, mutations
of the S4 charges may cause either a hyperpolarization-activated
or a depolarization-activated non-specific cation leak called the
omega current (Figure 2).

An omega current was first described in the voltage-gated
potassium channel of drosophila Shaker. In this channel the muta-
tion R1H in S4 generates an inward-directed hyperpolarization-
induced proton current that becomes increasingly prominent as
the proton reversal potential EH is shifted to more positive values
(Starace and Bezanilla, 2004). R1 substitutions to residues other

than histidine result in a hyperpolarization-induced inward cur-
rent carried by alkali metal cations rather than protons (Tombola
et al., 2005) indicating that this mutation creates a short-circuit
connection of intracellular and extracellular compartments in
the canaliculus. This current varies with the identity of the
substituted residue: R1S > R1C > R1V ∼ R1A, has the selectiv-
ity Cs+ > K+ > Li+, and is not affected by alpha pore blockers.
Shaker mutants R2H and R3H conduct protons at potentials cor-
responding to the voltage-dependent movement of S4 charges, as
the current is maximal at potentials close to midpoint of the QON-
voltage relation (Starace et al., 1997; Starace and Bezanilla, 2001).
Further depolarization blocks the omega pore, consistent with
the model that outward S4 movement shifts the short-circuiting
mutant residues out of the canaliculus.

Studies on Shaker potassium channel and domain II of rat
brain sodium channel Nav1.2 suggest that substitution of a single
S4 arginine may be insufficient to produce a non-proton omega
current, but that two adjacent mutations (i.e., R2/R3 or II-R1/R2)
are required (Sokolov et al., 2005; Gamal El-Din et al., 2010). In
this respect, the presence of alanine at the position equivalent to
R0 in Shaker may therefore enhance the omega current of R1S.
The motif of adjacent arginine replacements recurs in some of the
potassium channel disorders and may be explained by the degree
of accessibility of arginines to the extracellular or intracellular
compartments. However, this does not hold true for all channels
suggesting that position and orientation of the S4 segment and
its environment play an important role as well. Based on current
knowledge of S4 position, in this review R0 designates charge posi-
tions of S4 outside of the canaliculus and R1 the first charge inside
of it.

For human diseases, the channelopathies result from muta-
tions in voltage-gated ion channels. In several of these disorders,
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FIGURE 1 | Scheme of a voltage-gated ion channel. Bird’s eye view of the
channel consisting of four similar repeats (I to IV). The channel has been cut
open between repeats I and IV to show the opening and closing of the central

pore. The model also shows one of the four voltage sensors S4, which moves
outward when the membrane becomes depolarized and remains in this
position until repolarization.

mutations of specific charges of S4 segments are known, such
as in epilepsy, hemiplegic migraine, long QT (LQT) syndrome,
paramyotonia congenita, and periodic paralyzes (Table 1). The
underlying mutations generally modify voltage sensitivity of gat-
ing and maximal amplitude of alpha current. Additionally, some
of these mutations have been reported to produce an omega cur-
rent. Most of these are inward currents that result in enhanced
membrane depolarization, contributing to the symptoms of the
channelopathy. Depending on the position of the S4 mutation
and the voltage threshold of activation of the channel, the omega
current can appear in very different voltage ranges.

This review briefly outlines the clinical features and pathogene-
sis of the S4 channelopathies with a focus on mutation-dependent
changes of alpha and omega currents as well as their contributions
to the phenotype. It also introduces the concept of membrane bi-
stability in general and in computer simulations incorporating
omega current. Also discussed are the consequences of intra-
cellular sodium overload and tissue degeneration to explain the
non-episodic features of the channelopathies and the ideas behind
best practice treatment. For further reading, there are reviews
with more emphasis on S4 structure and function (Catterall,
2010), S4 mutations in channels of skeletal muscle (Cannon, 2010;
Jurkat-Rott et al., 2010), or drug action in periodic paralyzes and
related channelopathies (Matthews and Hanna, 2010; Tricarico
and Camerino, 2011).

EPILEPSY AND NEUROMYOTONIA
Epilepsy is characterized by recurring episodes of synchronized
electrical discharges of neurons caused by their facilitated depo-
larization within the central nervous system. The symptoms of a
seizure depend on age of the patient, the underlying cause, and the
brain region involved.

Generalized epilepsy with febrile seizures plus (GEFS+) is
a childhood-onset syndrome featuring febrile seizures (FS) and
afebrile epileptic convulsions within the same pedigree. The pen-
etrance is ∼60%. In two-thirds of affected individuals either FS
persist after the sixth year of life or afebrile generalized tonic-clonic
seizures additionally occur (FS+). GEFS+ type II is caused among
others by missense mutations in the alpha subunit of the neuronal
sodium channel Nav1.1, encoded by SCN1A. Mutations frequently
destabilize the fast-inactivated state, resulting in a persistent
inward sodium current that depolarizes the membrane potential
to a value closer to the Nav1.1 threshold (facilitated spike gen-
eration). Additionally, a few mutations result in loss-of-function
by trafficking defects (Catterall et al., 2010; Escayg and Goldin,
2010). S4 mutations II-R1C, IV-R4H, and IV-R7C (Figure 3)
result in additional loss-of-function effects such as decreased cur-
rent amplitude and stabilization of the inactivated state (Alekov
et al., 2000; Spampanato et al., 2001; Lossin et al., 2003; Barela
et al., 2006; Vanoye et al., 2006). Apparently, loss-of-function in
inhibitory neurons produces overexcitability (Martin et al., 2010)

Frontiers in Pharmacology | Pharmacology of Ion Channels and Channelopathies June 2012 | Volume 3 | Article 112 | 2

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Jurkat-Rott et al. Omega pores in channelopathies

FIGURE 2 | Omega pores and currents dependent on the R position.

(A) Replacement of the outermost arginine (red) by a neutral amino acid (gray)
such as glycine (R1G) opens a conductive pathway through the polarized
membrane, resulting in an omega current (red). At depolarized potentials at
which the S4 segment moves outward, the conductive pathway is closed by a
deeper arginine and the omega current ceases. In contrast the replacement
of a deeper arginine (R3G) only opens the omega pore if the membrane is
depolarized. (B) Homology model of domain I in hNav1.4 based on crystal

structure of NaVAb (activated-closed; crystal structure at 0 mV), using
Modeller. Positions of arginine and lysine residues of DIS4 are shown, relative
to the putative gating pore constriction (arrow). Modified from Groome and
Winston (2012). (C) Comparison of current-voltage (I/V ) traces for wild type
hNav1.4 and R222G, with plots of raw I/V, linear leak, and normalized current
(linear leak subtracted from IV and normalized to gating current at +40 mV).
The mutation R222G causes HypoPP type 2. External solution contained
120 mM K+ and 1 μM TTX. Modified from Holzherr et al. (2010).

similar to gain-of-function effects in excitatory neurons (Kahlig
et al., 2006, 2010).

Severe myoclonic epilepsy of infancy (SMEI), or Dravet syn-
drome, is characterized by clonic or tonic-clonic seizures that
occur in the first year of life, are often prolonged, and are typically
associated with fever. During the course of the disease, patients
develop additional afebrile generalized and partial seizures. Cog-
nitive deterioration appears in early childhood. In contrast to
GEFS+, the syndrome is resistant to pharmacotherapy, although
stiripentol seems to have a positive effect by enhancing GABAergic
neurotransmission. Cranial magnetic resonance (MR) imaging

in patients reveals focal and generalized atrophy. Because some
patients with SMEI have a family history of febrile or afebrile
seizures, and in some families GEFS+ and SMEI overlap, SMEI
may therefore be regarded as the most severe phenotype of the
GEFS+ spectrum (Mullen and Scheffer, 2009). SMEI is caused
by mutations in SCN1A encoding Nav1.1. Most SMEI mutations
cause loss-of-function due to nonsense mutations demonstrat-
ing that haploinsufficiency of SCN1A is pathogenic (Oakley et al.,
2011). The loss-of-function of Nav1.1 channels results in reduced
action potential (AP) firing in hippocampal inhibitory neurons,
thus generating overexcitability. IV-R4C causes gain-of-function
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by destabilizing fast inactivation and producing persistent currents
(Rhodes et al., 2004) that may be inhibited by the sodium channel
blocker ranolazine (Kahlig et al., 2010; Figure 3).

Benign familial neonatal seizures (BFNS) are dominantly inher-
ited with a penetrance of 85%. The seizures manifest within the
first weeks of life and typically disappear spontaneously after weeks
to months. Seizures may have a partial onset or may appear as
generalized. Accordingly, ictal EEGs show focal and generalized
discharges. Interictal EEGs are mostly normal. The risk of seizures
recurring in adulthood is ∼15%, but psychomotor development is
usually normal. Causative mutations have been identified in Kv7.2
and Kv7.3 potassium channels encoded by KCNQ2 and KCNQ3
respectively that interact with each other and constitute the so-
called M -current, an important regulator of membrane potential
near the AP threshold. Co-expression of heteromeric wild type and
mutant Kv7.2/Kv7.3 channels usually reveals a potassium current
reduction of ∼20–30% in the setting of haploinsufficiency. This
causes BFNS by depolarizing the membrane and facilitating AP fir-
ing (Maljevic et al., 2008). In contrast, S4 mutations of the pattern
R3W/Q (Figure 3) produce a dominant negative effect on co-
expressed wild type brought about by a drastic depolarizing shift
of the activation curve and slowing of the activation time course

(Dedek et al., 2001; Wuttke et al., 2007; Miceli et al., 2012). This
suppression of inhibitory neurons explains the hyperexcitability
that affects central as well as peripheral neurons. The latter locus
of hyperexcitability leads to additional neuromyotonia also termed
peripheral nerve hyperexcitability (PNH). This disorder is charac-
terized by short spells of spontaneous skeletal muscle overactivity
resulting in twitching, undulation, or rippling of the muscles and
painful cramps, so that the phenotype for these S4 mutation carri-
ers is BFNS-PNH. Omega currents have been implicated in BFNS
for the analogous Kv7.4 channel. There, corresponding R3W/Q
mutations generate non-specific depolarization-induced cation
outward currents of ∼1% of the pore current amplitude, at the
+40 mV voltage step (Miceli et al., 2012). In Kv7 channels, single
mutations of R1 and R3 fulfill the concept of adjacent arginine
replacements because there is a glutamine at position R2.

LONG QT SYNDROME
Long QT syndrome is named for an elongated QT interval in
the electrocardiogram. It is caused by lengthening of the repolar-
ization phase of the cardiac ventricular AP. Because duration of
the cardiac AP is dispersed in different regions of the ventricle
depending on regional channel expression, any disproportionate

FIGURE 3 | S4 sequences of channels with an R0 to R6 mutation.

Positively charged residues in R0 to R6 positions are delineated with a
shaded background (gray). The constriction of the omega pore lies
between R2 and R3. Therefore an inward movement of S4 due to
hyperpolarization opens the omega pore if R1 or R2 is replaced by a

neutral amino acid. An outward movement of S4 due to depolarization
opens the omega pore if R3 or R4 is replaced by a neutral amino acid.
These gray-background arginines are boxed. The Shaker K+ channel serves
as reference. Neutral replacements of its arginines R2 and R3 have been
described as proton transporters.
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prolongation of the AP increases the probability for re-entry of the
depolarization wave, early after-depolarizations and thus, arrhyth-
mia. Associated ECG findings may be ventricular bigemini and
torsade de pointes in which the QRS complex twists around the iso-
electric axis in the electrocardiogram. By this, syncope and sudden
death may result in young and otherwise healthy individuals. LQT
syndrome (LQTS) is caused among others by loss-of-function of
potassium channels Kv7.1 encoded by KCNQ1 or Kv11.1 encoded
by KCNH2 and by gain-of-function of the Nav1.5 sodium channel
encoded by SCN5A.

Kv7.1 currents deactivate very slowly allowing adaptive short-
ening of the AP during tachycardia by incomplete deactivation.
Therefore, loss-of-function in Kv7.1 leads to arrhythmia espe-
cially at elevated heart rate due to physical or emotional stress.
R1C decreases current amplitude which explains the LQT in the
electrocardiogram, but also produces a hyperpolarizing shift of
the voltage dependence of activation and tail currents, thereby
explaining the additional atrial fibrillation in these patients (Bar-
tos et al., 2011). R5H/C produce a slowed rate of activation, a
positive voltage shift of activation and/or dominant suppression
of co-expressed wild type (Franqueza et al., 1999; Mohammad-
Panah et al., 1999; Chouabe et al., 2000). R1, R3, and R5 mutants
all fulfill the concept of adjacent arginine replacements because
there is a glutamine at R2 and a histidine at R4 (Figure 3).

Kv11.1 activates and deactivates relatively slowly in comparison
to a rapid inactivation. LQT mutations suppress repolarization of
the myocardial AP and lengthen the QT interval by either loss-of-
function or haploinsufficiency. A dominant negative effect may be
achieved by current reduction of the tetrameric channel complex.
For the LQT double mutation of R0/R1, there is no functional data
but there two adjacent arginines are changed (Figure 3). The point
mutation R3C reduces current amplitude and accelerates deacti-
vation thereby slowing repolarization of the cardiac AP in its final
phase (Nakajima et al., 1999).

Nav1.5 initiates the cardiac AP. LQT mutants frequently con-
duct a persistent inward current during membrane depolarization
and single channel recordings show fluctuation between normal
and non-inactivating gating modes. I-R3Q/W shift the steady-state
inactivation curve to the right (Bezzina et al., 2003). IV-R0L/Q
delay inactivation (Makita et al., 1998), IV-R1P impairs inactiva-
tion or shifts the steady-state inactivation curve to the left (Ruan
et al., 2007) and decreases inactivation upon stretch modula-
tion (Banderali et al., 2010). Mutations IV-R7C/H show dispersed
re-openings (Dumaine et al., 1996; Figure 3). It has yet to be estab-
lished that omega currents play a role in the pathogenesis of Kv or
Nav LQTS channelopathies, but the finding of mutations in these
cardiac disorders in R1–R3 residues of S4 raises that possibility
(Table 1; Sokolov et al., 2007).

HEMIPLEGIC MIGRAINE
Familial hemiplegic migraine (FHM) presents with characteristic
unilateral migraine headaches accompanied by nausea, phono-,
and photophobia. Episodes are typically precipitated by an aura
with symptoms of both hyper- and hypo-excitability such as apha-
sia, dysarthria, vertigo, homonymous hemianopsia, cheiro-oral
paresthesias, and some degree of (primarily) unilateral paresis.
Additionally, ataxia and cerebellar degeneration are frequently

part of the FHM phenotype. Up to 50% of cases are caused
by mutations in Cav2.1 encoded by CACNA1A. Current patho-
genesis models of migraine with aura suggests cortical spreading
depression which consists of an initial brief spike of increased neu-
ronal activity followed by long-lasting suppression of excitability
spreading across the cortex at 1–3 mm/min. The depression wave
is associated with long-lasting depolarization associated with ele-
vation of extracellular potassium and intracellular sodium. The
progress of FHM correlates to the succession of symptoms during
the aura initiating the migraine attacks. FHM1 includes sporadic
hemiplegic migraine with progressive cerebellar ataxia. The aura
may be prolonged and confusion and loss of consciousness may
occur. In the interval, some families additionally present with
epilepsy, retinal degeneration, hypacusis, and persistent cerebellar
dysfunction with Purkinje cell atrophy. While migraine is mainly
caused by gain-of-function, loss-of-function may lead to addi-
tional ataxia. Of the seven known S4 mutations in Cav2.1, there
is functional data for only two. I-R0Q increases open probabil-
ity and channel density in vitro (Kraus et al., 1998; Hans et al.,
1999). In a knock-in mouse this mutation generates increased
current density in cerebellar neurons, enhanced transmission at
the neuromuscular junction, and reduced threshold and increased
velocity of cortical spreading depression, effects that are compat-
ible with an omega current (van den Maagdenberg et al., 2004;
Figure 3). II-R1Q shifts activation to the left but decreases peak
current (Kraus et al., 2000). Omega currents produced by either
of these mutations have yet to be demonstrated.

SODIUM CHANNEL MYOTONIA AND PARAMYOTONIA
Myotonia is an involuntary slowed relaxation after a forceful vol-
untary muscle contraction, experienced by the patient as muscle
stiffness. After making a forceful fist or eyelid closure, the patient
cannot reopen their hand or eye. Repetition decreases the myoto-
nia, a phenomenon called warm-up. Electrical hyperexcitability of
the muscle fiber membrane is the basis for myotonia, apparent in
the form of repetitive APs in the EMG. Needle insertions into the
resting muscle elicit myotonic bursts, i.e., runs of APs with ampli-
tude and frequency modulation that sound like dive bombers.
Autosomal dominantly inherited myotonia can be caused among
others by mutations in SCN4A, the gene encoding the alpha
subunit of the voltage-gated sodium channel of skeletal muscle,
Nav1.4 (Heine et al., 1993), essential for generation of the muscle
fiber AP. Most mutations destabilize the fast-inactivated state so
that the channel inactivates slower and incompletely (Lerche et al.,
1993). The resulting subthreshold membrane potential facilitates
AP generation. I-R3W causes typical myotonia with warm-up phe-
nomenon and transient weakness (Lee et al., 2009). However, no
functional data are available.

Paramyotonia (PC) is also caused by dominant SCN4A mis-
sense mutations. The cardinal symptom is cold-induced muscle
stiffness that increases with continued activity called paradoxical
myotonia, or paramyotonia for short. In most families, on inten-
sive cooling the stiffness gives way to flaccid weakness or even
to paralysis which is caused by severe membrane depolarization
(Lehmann-Horn et al., 1987; Lerche et al., 1996). Families with
IV-R0H/C/S/L/P also have episodes of generalized periodic paral-
ysis (Lehmann-Horn and Jurkat-Rott, 1999). Such attacks occur
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spontaneously and can be triggered by rest or elevated serum
potassium. They are of much shorter duration than the cold-
induced weakness that usually lasts for several hours even after
the muscles are re-warmed. During cooling, PC muscle fibers
slowly depolarize to an extent greater than that observed in normal
muscle fibers. The depolarization is associated with long-lasting
bursts of APs which cease when the membrane potential reaches
−55 mV. At this potential sodium channels inactivate so that
muscle becomes inexcitable and paralyzed. Causative mutations
generally slow the entry into, and accelerate recovery from, fast
inactivation (Yang et al., 1994). IV-R0 mutations slow deactiva-
tion, in addition to destabilizing the fast-inactivated state (Fan
et al., 1996; Lerche et al., 1996; Featherstone et al., 1998; Groome
et al., 1999; Mitrovic et al., 1999). No omega current is observed
(Francis et al., 2011), possibly because R0 is located outside of the
canaliculus (Figures 2 and 3).

PERIODIC PARALYSIS
Autosomal dominant hypokalemic periodic paralysis (HypoPP) is
characterized by episodes of flaccid generalized muscle weakness
accompanied by low serum potassium levels. Triggers for the weak-
ness are carbohydrates and insulin with subsequent hypokalemia,
rest after exercise, and cooling. Oral potassium administration
accelerates the recovery of muscle strength. Native patient mus-
cle fibers show long-lasting membrane depolarization paradoxi-
cally triggered by lowering of extracellular potassium, resulting in
an inactivation of sodium channels necessary for AP generation
(Jurkat-Rott et al., 2000). This effect is exacerbated in the pres-
ence of insulin (Bond and Gordon, 1993; Ruff, 1999). Permanent
progressive weakness is additionally found in ∼60% of patients
whereby muscle degenerates and is increasingly replaced by fatty
tissue. The causative mutations are located in the skeletal muscle
calcium channel Cav1.1 encoded by CACNA1S (HypoPP-1) and
the skeletal muscle sodium channel Nav1.4 encoded by SCN4A.
Given the finding that all but one of these mutations neutralize
a positively charged S4 residue, it is not surprising that a role for
omega currents as a causal factor in the pathogenesis of the chan-
nelopathies has been most clearly demonstrated for the periodic
paralyzes.

Functional studies of the alpha currents of either of these
channels do not satisfactorily explain the phenotype. In Cav1.1,
II-R1H/G and IV-R2H/G (Figure 3) lead to loss-of-function in
the sense of current amplitude reduction, slowing of activation,
reduced open probability, left shift of steady-state inactivation,
reduced amplitude and broadening of APs (Lehmann-Horn et al.,
1995; Lapie et al., 1996; Jurkat-Rott et al., 1998; Morrill et al., 1998;
Morrill and Cannon, 1999; Kuzmenkin et al., 2007). None of these
gating defects are expected to lead to increased depolarization.
Similarly, in Nav1.4, II-R1H, II-R2H/G/S/C, and II-R3G/W/Q
show reduced current amplitude, left shift of steady-state fast inac-
tivation, enhanced fast and slow inactivation, slowed recovery after
long depolarizations, and reduced AP amplitudes (Bulman et al.,
1999; Jurkat-Rott et al., 2000; Struyk et al., 2000; Bendahhou et al.,
2001; Kuzmenkin et al., 2002; Carle et al., 2006; Wu et al., 2008,
2011). These defects would not contribute to depolarization either.

In Nav1.4, II-R1H, II-R2H/G/C/S, and III-R2Q mutations gen-
erate omega currents that are activated by hyperpolarization,

are still active at the usual resting potential, but are closed
by depolarizations large enough to activate and thus, move S4
(Figure 3). Their amplitude is about 1% of the alpha pore cur-
rent. Substitution of these arginines by the bulky histidine residue
enables proton transport only; other cations do not seem to have
enough space to pass (Sokolov et al., 2007; Struyk and Can-
non, 2007; Francis et al., 2011). Substitution of these arginines
with uncharged resides such as glycine allow an inwardly recti-
fying flow of small monovalent cations whereby potassium and
cesium are preferred over sodium or lithium (Sokolov et al., 2007;
Struyk et al., 2008). Figure 2C shows current-voltage relation-
ships for R222G/hNaV1.4 channels from experiments performed
in our lab as an example (Holzherr et al., 2010). Omega pores
conduct currents that show an above-linear increase in ampli-
tude with hyper- or depolarization although the electrical field is
focused to a single amino acid (Ohm resistor) and not constantly
increasing within the membrane (constant field theory). The non-
linearity of the omega current reflects the stochastic process of
a voltage-dependent open probability and follows a Boltzmann
distribution.

Guanidinium, a derivative of arginine, has greater than 10
times the conductance through the omega pore than monova-
lent cations, while divalent and trivalent cations block the omega
pore at mM concentrations (Sokolov et al., 2010). In that study, a
screen of guanidine derivatives as potential blockers of the path-
ogenic omega current in HypoPP yielded one compound, 1-(2-4
xylyl) guanine that exhibited similar potency for block compared
to the divalent cations tested. In addition, there is an inward cation
leak current at hyperpolarized potentials in native muscle of R1H
knock-in mice with omega features (Wu et al., 2011). The conclu-
sion from these alternative approaches to study omega currents is
that they contribute to the depolarization leading to inexcitability
and weakness. Nevertheless, despite similarities of sodium channel
omega currents with those in Shaker produced by R1H mutations,
their blockade is quite different, suggesting differences in shape,
size, and exact cation pathway along the canaliculi of these chan-
nels. Perhaps this phenomenon is related to the postulation that
two adjacent mutated charges promote omega currents in voltage-
gated potassium channels, a requisite that does not hold true for
sodium channels.

In contrast to the hyperpolarization-induced omega currents
from substitutions of II-R1 and II-R2, II-R3G/Q/W mutations
generate Nav1.4 cation currents that are activated by depolariza-
tion (Figure 3). This means that the omega currents are conducted
when S4 is in the activated or inactivated state,but not in the resting
state. This omega current is deactivated at hyperpolarized mem-
brane potentials (Sokolov et al., 2008). The associated phenotype
differs slightly in the ictal serum potassium levels which can be low
or normal (normokalemic periodic paralysis, NormoPP). Also, the
reaction to oral potassium administration may be different than
for HypoPP – anything from amelioration to worsening of the
weakness.

For II-R1H/Q and IV-R2H/G Cav1.1 channel mutations
(Figure 3), no direct omega currents have been shown. However,
in native patient muscle there is an inward cation leak current at
hyperpolarized potentials with omega features (Jurkat-Rott et al.,
2009). Also, based on these measurements, the periodic paralysis
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episodes can be successfully modeled. The underlying idea is that
depolarized muscle fibers will be paralyzed, and that polarized
fibers will be fully functional. If transitions between these two
situations are reversible, the membrane potential is bi-stable.

BI-STABILITY OF MEMBRANE POTENTIAL
P-states are the electrically stable resting membrane potentials of
a cell in the nomenclature of Jurkat-Rott et al. (2009). Normal
cells reveal a bimodal distribution around the stable membrane
potentials P1 and P2. At physiological conditions, most fibers are
highly negative polarized and in the excitable P1-state which fol-
lows the predictions of the Goldman–Hodgkin–Katz equation.
Upon an increased sodium conductance, e.g., by omega pores, the
fraction of cells in the (depolarized) P2-state is increased. With
slow depolarization, voltage-gated sodium channels might inacti-
vate via closed-state inactivation and render the cells inexcitable.
In contrast, cells that remain in the P1-state are only slightly depo-
larized and thus still excitable. This bi-stability is the result of
inwardly rectifying potassium channels (K ir), which open with
hyperpolarization and close with depolarization (Figure 4A). The
bi-stability is the reason that only a small increase in sodium con-
ductance, e.g., by an omega pore, is required to shift cells from
the P1- to the P2-state (Figure 4B). Vice versa, a repolarizing con-
ductance can shift the membrane back to the P1-state (Figure 4).

Transitions between the P1- and P2-states can occur when any
trigger drives the system closer to a limit point or shifts a limit
point. If the limit points of both states (LP1 and LP2) are situated
at different K+ values, the system shows hysteresis (Figure 4C). If
external K+ is considered as a control parameter, it is shown to
play an important role in driving the system to its limits, and set
the stage during “physiological” hypokalemia, for the paradoxical
depolarization triggered by a slight increase in sodium conduc-
tance provided by an omega current. A significant role for the
activated omega pore as a causal factor in the pathogenesis of
HypoPP is supported by the computer model whose details are
given in the Appendix and whose parameters are given in Table 2.

A drop of serum K+ will decrease K ir conductance. Although
the Nernst equation predicts hyperpolarization when external K+
is reduced, the hypokalemia-induced reduction of K ir conduc-
tance may shift the cells from the P1- to the P2-state (Figure 4C).
Therefore, cells show a bimodal distribution of membrane poten-
tials especially at low K+. This phenomenon is called paradoxical
depolarization (Jurkat-Rott and Lehmann-Horn, 2007; Struyk and
Cannon,2008; Jurkat-Rott et al., 2009). Not surprisingly,decreased
conductance in mutant K ir channels contributes to the pathogen-
esis of episodic paralysis associated with thyrotoxicosis (K ir 2.6;
Ryan et al., 2010; Cheng et al., 2011), periodic paralysis and car-
diac arrhythmia in Tawil–Anderson’s syndrome (K ir 2.1; Plaster

FIGURE 4 | Effects of omega currents schematically (A) and in a

computer simulation (B). (A) The current-voltage relationship of K ir

potassium channels shows a voltage range characterized by a “negative”
resistance. This negativity leads to membrane bi-stability. Whereas small
instantaneous changes of P1 will be compensated for (P1 is therefore a
stable membrane potential), larger depolarizing artifacts will cause a jump of
P1 to the limit point LP2. P1 can be regained by substantial repolarizing
influences like the Na/K pump. (B) The curve is downwardly shifted by an
omega Na+ current. Limit point LP1 is a very instable membrane potential
that will be shifted to P2 by even smallest instantaneous changes. In the
P2-state the cell membrane will be electrically stable. (C) Membrane
potentials P for various [K+]o values and for various omega pore
conductances (in μS/cm2). Reducing [K+]o first leads to hyperpolarization until
the limit point (LP1) is reached at which the membrane potential becomes
instable and jumps to the depolarized state of about −58 mV. From there,

increasing [K+]o takes the potential along the curve until LP2 is reached. LP2
is the starting point for the repolarization. The curves of LP1 and LP2 meet in
the cusp point, CP. The region inside the cusp (bounded by LP1, LP2, and CP)
is bi-stable. In contrast omega pore conductances larger than 18 μS/cm2

result in gradual depolarization without bi-stability. The model reveals that an
omega pore shifts LP1 and LP2 (the cusp) to the right, i.e., less severe
hypokalemia is required to shift cells from the P1- to the P2-state. The
membrane potentials yielded by the computer simulation were compared
with values measured for muscle fibers by use of microelectrodes: open
symbols stand for human controls (−83 ± 5 mV in 95% of fibers at 4 mM K+,
−99 ± 3 mV for 87% at 1.5 mM K+, and −58 mV for 91% at 1 mM K+); filled
symbols for HypoPP patients with either Cav1.1-R1239H (circle: −74 ± 5 mV
in 76% of fibers at 4 mM K+) or Cav1.1-R528H (triangle: −75 ± 5 mV in 91%
of fibers at 4 mM K+); at 1.5 mM K+, 95% of the patients’ fibers −56 mV
(square; n = 127). Modified after Jurkat-Rott et al. (2010).
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Table 2 | Parameters of the catastrophe model.

Parameter Value Unit

GATING PARAMETERS OF NaV, KV, AND CLC

Êomega −110 mV

Aomega 34 mV

ĝNaV 268 mS/cm2

ĝNaL 2.75 μS/cm2

ĝKV 21.6 mS/cm2

ĝClC 0.5 mS/cm2

ĝir 0.0485 mS/cm2

K S 0.0475 mM2

K K 5 mM2

δ 0.2 –

Ĵp 8 Nmol cm−2 s−1

KmK 1 mM

KmNa 8 mM

LH 1.25 × 10−10 l cm−2 N−1 s−1

EXTRA AND INITIAL INTRACELLULAR CONCENTRATIONS

ĉNa+
e + ĉK+

e 141.5 mM

ĉCl−
e 108 mM

ĉFix−
e 25.8 mM

ĉNeutral
e 10 mM

ĉNa+
i 15.6 mM

ĉK+
i 132.3 mM

ĉS
i 8.9 mM

ĉCl−
i 4.3 mM

ĉFix−
i 124.1 mM

EH+ −18.5 mV

V i 3.38 μl

c̄H2O 55555 mM

PARAMETERS FOR ION AND WATER FLUXES

α̂m 0.288 ms−1

β̂m 1.38 ms−1

Êm −42 mV

K αm 10 mV

K βm 18 mV

α̂h 0.0081 ms−1

β̂h 4.38 ms−1

Êh −45 mV

K αh 14.7 mV

K βh 9 mV

ÊS −85 mV

AS 6 mV

α̂n 0.0131 ms−1

β̂n 0.067 ms−1

Ên −37 mV

K αn 7 mV

K βn 40 mV

ÊhK −30 mV

K τhK 25.75 mV

AhK 7.5 mV

Êa 70 mV

Aa 150 mV

(Continued)

Parameter Value Unit

PHYSICAL AND STRUCTURAL PARAMETERS

Df 70 μm

η 2 –

c̄m 1 μF/cm2

zFix −1.3 –

R 8.3145 J mol−1 K−1

T 311.15 K

F 96485 C/mol

et al., 2001) and underlies barium-induced augmentation of para-
doxical depolarization of skeletal muscle fibers in low external K+
(K ir 2.1; Struyk and Cannon, 2008). Decreased conductance of the
ATP-sensitive K channel in skeletal muscle may also be a causative
factor in hypokalemic-induced depolarization, at least in response
to insulin (Tricarico et al., 1998). It has been proposed that part of
the therapeutic effect of acetazolamide in HypoPP is its action to
promote the activation of several different types of skeletal muscle
potassium channels, which may offset the decreased conductance
of K ir (for review see Matthews and Hanna, 2010).

If the omega pore conductance is >18 μS/cm2 (for the condi-
tions in Figure 4C), the bi-stability is replaced by a single stable
resting potential. The value depends on the conductance ratio
g K/gω with g K carried by additional (e.g., delayed rectifying) Kv

channels which are less dependent on extracellular K+ than are
K ir channels. In this monostable system, the membrane potential
can vary between −74 and −58 mV (Figure 4C).

Usually the majority of normal cells do not become inexcitable
in response to decreased serum K+, because the limit points are
located at very low K+ that do not occur physiologically. However
in the presence of an omega current, the limit points are shifted to
higher K+, and transitions between the states are possible under
physiological conditions. HypoPP seems to be caused by such a
shift. For instance, computer simulation of the effect of R669H
on V rest in response to low external K+ predicts a decrease in the
threshold for paradoxical depolarization of muscle fibers, similar
to that observed experimentally with barium poisoning (Struyk
and Cannon, 2008). Cation ionophores like amphotericin B and
gramicidin can mimic the omega pore current and serve as a suc-
cessful, pharmacological in vitro model for HypoPP (Jurkat-Rott
et al., 2009). Based on the ionophore experiments, the fraction of
fibers in the P2-state may correspond to the chronic weakness in
HypoPP patients. Typical triggers such as glucose and insulin caus-
ing hypokalemia will further increase this fraction and precipitate
a paralytic attack. The pharmacological computer model predicts
that smaller omega currents require a more severe hypokalemia
of the patients to shift cells into the P2-state than larger omega
currents.

SODIUM OVERLOAD, CYTOTOXIC EDEMA, AND TISSUE
DEGENERATION
By tackling the question as to whether sodium influx (e.g., through
omega pores) increases the cytoplasmic sodium concentration, a
23Na MR sequence was developed (Nielles-Vallespin et al., 2007)
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FIGURE 5 | 1H and 23Na measurements in the calf muscles of

HypoPP patients. (A–F) T2-weighted STIR 1H (left) and 23Na-MR
images (right) from a healthy control (A,B) and the propositus of a
HypoPP family, a 37-year-old female harboring the Cav1.1-R1239H
mutation (C–F). The images in (C,D) were taken before treatment and
the images in (E,F) were taken after treatment with 250 mg/d
acetazolamide for 4 weeks. Note the very high proton intensities in
STIR (C) and the elevated Na+ concentration before treatment (D),

arrows pointing at highest Na signal intensities) and their improvement
after treatment. The central reference contains 0.3% NaCl solution;
occasional side tubes containing 0.3% NaCl in 1% agarose (left) and
0.6% NaCl in H2O (right) were additional standards. (G–I) Axial
T1-weighted MR images from family members patients: the female’s
80-year-old grandmother whose limb muscles were almost completely
replaced with fat (G), the female’s 35-year-old sister (I), and the
55-year-old uncle (H,G). Modified after Jurkat-Rott et al. (2009).

that indeed revealed a muscle sodium overload in HypoPP patients
(Figure 5). In addition, 1H-MR images (MRI) with a short-tau
inversion recovery (STIR) sequence displayed an edema in the
muscles of these HypoPP patients (Figures 5A–F). Therefore the
question arose as to whether the edema was caused by a cyto-
plasmic sodium accumulation and osmotic imbalance, or by an
interstitial edema, e.g., by an inflammation. To answer this ques-
tion the MRI technique was further improved to a 23Na MRI
inversion recovery sequence (Na-IR) which partially suppresses
the signal raised by free sodium in the extracellular fluid and
thus mainly represents cytoplasmic sodium (Nagel et al., 2011).
In the HypoPP patients the nature of the edema was cytoplasmic.
It seemed to be cytotoxic as all patients who showed the edema
presented with a chronic weakness and muscle degeneration with
age (Figures 5G–I).

In parallel with the concept of degeneration caused by sodium
overload, ictal cytotoxic edema during the long-lasting depolar-
ization (spreading depression) has been frequently reported in
FHM (for example Chabriat et al., 2000; Butteriss et al., 2003)
and has been suggested to sustain the long-lasting aura (Iizuka
et al., 2006) and contribute to neurodegeneration (Carreño et al.,

2011). Likewise, ictal edema is associated with neuronal degener-
ation and sclerosis of the hippocampus in FSs (Scott et al., 2003,
2006; Sokol et al., 2003). Therefore, it is possible that intracellular
sodium overload may contribute to neuronal as well as muscle
channelopathies.

REPOLARIZATION AND RELIEF OF THE CYTOTOXIC EDEMA
Guided by the experience that acetazolamide has favorable effects
on the episodic weakness in the periodic paralyzes (Resnick
et al., 1968), this agent was administered to HypoPP patients and
reduced the chronic weakness of the patients as well as the sodium
overload and edema in the MRI (Figure 5). In the pharmacologi-
cal in vitro model of HypoPP using an ionophore, acetazolamide
shifted many fibers from the P2- to the P1-state. This in vitro
effect was considered to be responsible for the positive, in vivo
effects (Jurkat-Rott et al., 2009). Thus, drugs that repolarize the
fiber membrane may prevent progression of the cell degeneration
by reducing the cytotoxic edema. Supporting the idea that FHM
and epilepsy share similar pathomechanisms to HypoPP, it is not
surprising that acetazolamide is standard treatment option for
both epilepsy (Wolf, 2011) and FHM (Russell and Ducros, 2011).
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APPENDIX
PATHOGENESIS MODEL – CATASTROPHE ON THE CUSP
Using catastrophe theory, the effects of an omega current were simulated in a one-compartment computer model of skeletal mus-
cle fibers. Both changes of ion concentrations and consecutive water shifts were considered. The size of the T-tubular system was
accounted for by a specific factor. It was not considered a separate compartment since the low-resistance T-tubular openings justified
the assumption of an equilibrium. Parameters of the catastrophe model are given in Table 2; notations and abbreviations at the end of
the Appendix.

The membrane was equipped with the following conductances: a background Na+ leak conductance (g NaL), the omega pore con-
ductance (g leak), a voltage-gated Na+ (g NaV ) and K+ (g Kv ) conductance, an inward-rectifying K+ (g IR) and a voltage-dependent
Cl− (g Cl) conductance, a hydraulic conductivity (LH), and a Na+/K+ pump flux (J p). The model was based on the charge-difference
approach (3) in which the membrane potential E is calculated from the amount of charges in the intracellular compartment Qi and
the membrane area Am:

E = Qi

c̄m · Am
with Am = 4 · η · Vi

Df

Qi = F ·
∑
ion

nion · zion ion ∈ {Na, K , Cl, Fix, S}

V i was the cell volume, Df the fiber diameter and η a factor correcting the size of the T-tubular membrane. The cell was only permeable
for Na, K, Cl, and H2O. Fix are intracellular anions (e.g., proteins, phosphates), which – in this model – cannot pass through the
membrane. Their overall charge valence zFix is set to −1.3. This was necessary to avoid very negative membrane potentials at low
potassium concentrations. S are the positive charged ions, that block inward-rectifying K+ channels from inside upon depolarization.
Its valence zS is set to +2, so they represent Mg2+. Multiple positively charged polyamines that increase the strength of rectification
were not considered.

The amounts of ions and water in the cell n are state variables in this model. They are integrated over time by numerically solving
the differential equations that describe their fluxes J :

ns = n̂s +
t∫

0

Js · dt s ∈ {Na, K , Cl , H2O}

Js = dns

dt
=
∑

c

J c
s +

∑
p

J
p
s

c ∈ {NaV, KV, Kir, ClC, Aqua
}

p ∈ {Na/K − pump
}

The fluxes of ions through channels J c
s and water through an aquaporin J

Aqua
H2O (modeled by a simple hydraulic conductivity) are

computed by the following equations:

J c
ion = −F−1 · g c

ion · (E − Eion)
ion ∈ {Na+, K+, Cl−

}
c ∈ {NaL, Leak, NaV, KV, Kir, ClC

}
J

Aqua
H2O = LH · ĉH2O · ΔΠ

The driving forces for the fluxes were the electrochemical gradients (E − E ion) for ions or the osmotic pressure difference ΔΠ for water:

Eion = R · T

zion · F
· ln

(
c ion

e

c ion
i

)

ΔΠ = R · T ·
∑
sol

(
c sol

i − c sol
e

)
sol ∈ {Na, K, Cl, Fix, S}

The Na/K pump was modeled by

Jp = Ĵp ·
(

1 + KmK

/
cK +

e

)−2 ·
(

1 + KmNa

/
cNa +

i

)−3
, J

p
Na + = −3 · Jp and J

p
K + = 2 · Jp
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The parameters K mK and K mNa were taken from Wallinga et al. (1999). The maximum pump flux Ĵp was chosen to get an intracellular

Na+ concentration cNa+
i of 15 mM at control conditions. Intracellular ion concentrations were calculated from the cell volume V i and

the amount of ions:

Vi =
∑

s
ns

c̄H2O
, s ∈ {Na, K, Cl, Fix, H2O}

c ion
i = nion

Vi
, ion ∈ {Na, K, Cl, Fix}

The voltage-gated Na+ (NaV), K+ (KV), and Cl− (ClC1) conductances were based on the Hodgkin–Huxley type formalism; identifiers
had their classical meaning. The equations taken from Wallinga et al. (1999) are given here for completeness:

g Na+
NaV

= ĝNaV · m3 · h · S, g K+
KV

= ĝKV · n4 · hK and g Cl−
ClC = ĝClC · a4

The gating variables m, h, S (NaV slow inactivation), n, and hK (inactivation of KV) were state variables and defined by the following
differential equations

dy

dt
= αy · (1 − y

)− βy · y y ∈ {m, n, h}

αm =
α̂m ·

(
E − Êm

)
1 − e

−
(

E−Êm

)/
Kαm

and βm = β̂m · e
−
(

E−Êm

)/
Kβm

αh = α̂h · e
−
(

E−Êh

)/
Kαh and βh = β̂h

1 + e
−
(

E−Êh

)/
Kβh

dS

dt
= S∞ − S

τS
, τS = 60

0.2 + 5.65 · [(E + 90)
/

100
]2 and S∞ = 1

1 + e

(
E−ÊS

)/
AS

αn =
α̂n ·

(
E − Ên

)
1 − e

−
(

E−Ên

)/
Kαn

and βn = β̂n · e
−
(

E−Ên

)/
Kβn

dhK

dt
= hK∞ − hK

τhK

, τhK = e
−
(

E−EhK

)/
KhK and hK∞ = 1

1 + e

(
E−ÊhK

)/
AhK

The gating variable of ClC1 was assumed to reach the steady-state instantaneously

a = 1

1 + e

(
E−Êa

)/
Aa

For the inward-rectifying potassium channels the same model as in Wallinga et al. (1999) was used, parameters were chosen to get

appropriate values for the limit points at control conditions and a resting conductivity at cK+
e = 3.5 mM of 41 μS/cm2. The equations

were:

g K+
IR = g ′

IR · y , g ′
IR =

ĝIR ·
(

cK+
R

)2

K K+
IR +

(
cK+

R

)2 , cK+
R = cK+

e · e−δEK+ F
/

RT
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y = 1 −
⎡
⎢⎣1 + K S

IR

cS
i · e2(1−δ)EF/RT

·
⎛
⎜⎝1 +

(
cK+

R

)2

K K+
IR

⎞
⎟⎠
⎤
⎥⎦

−1

The constant background sodium leak conductance was then adapted to reach a K+ to Na+ permeability ratio between 0.01 and 0.02

and a membrane potential of approximately –86 mV (at cK+
e = 3.5 mM).

For modeling the H+ leak conductance, it was assumed – based on the 31P MR spectroscopy measurements (Jurkat-Rott et al.,
2009) – that the H+ equilibrium potential was constant and further, that every H+ was exchanged by one Na+ ion, presumably by a
Na+/H+ exchanger. Thus the omega current was treated as a sodium current (indirectly) driven by the electrochemical gradient for
protons. Its conductance was modeled as a pore with a voltage-dependent open probability that follows a Boltzmann distribution. The
equation

gomega = ĝomega ·
(

1 + e
E−Êleak

/
Aleak

)−1

was fitted to the HypoPP muscle fiber results. The Na+ flux (indirectly) mediated by the omega pore was calculated by

J Na+
omega = −F−1 · gomega · (E − EH+

)
with EH+ = R · T

F
· ln

(
10pHi

10pHe

)

The model was implemented in MatLab Version 7.3 (The Mathworks, Inc.). Initial-value problems were solved with ODE15s, a solver
for sets of stiff ordinary differential equations. Then bifurcation analysis was done by using the continuation routines of the toolbox
CL_MATCONT Version 2.4.

NOTATIONS AND ABBREVIATIONS
Indices

Aqua water channel

c channel like voltage-gated Na+ channel, voltage-gated K+ channel

ClC1 voltage-dependent Cl− channel

e extracellular

f fiber

i intracellular

ion Ion: Na+, K+, Cl−

IR inwardly rectifying K+ channel

KV voltage-gated K+ channel

Omega omega pore conductance

NaL background Na+ channels

NaV voltage-gated Na+ channel

p Na+/K+-pump

s substance: sodium, potassium, chloride, fixed anion, water

∞ steady-state

Identifiers

a gating variable of the Cl− channel

Am membrane area

c concentration

Cl− chloride ion

cm specific membrane capacity
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Df fiber diameter

δ electrical distance from outside where binding site for K+ and S2+ is localized in K ir

E membrane potential

Eion equilibrium potential (Nernst)

F Faraday constant

Fix intracellular fixed anions (e.g., proteinates, phosphates)

g conductance

H+ protons

η scaling factor relating the size of T-tubular membrane to sarcolemma

J flux

K+ potassium ion

KmK sensitivity of the Na+/K+-pump for extracellular potassium

KmNa sensitivity of the Na+/K+-pump for intracellular sodium

K K dissociation constant of K+ on K ir channels

K S dissociation constant of S2+ on K ir channels

LH hydraulic conductivity

m, h, S gating variables of the voltage-gated Na+ channel (activation, fast, slow inactivation)

n, hK gating variables of the voltage-gated K+ channel (activation, inactivation)

n amount of substance

Na+ sodium ion

Π osmotic pressure

Q charge

R gas constant

S2+ intracellular fixed cation (cytoplasmic blocker of K ir channels)

T absolute temperature

t time

V i cell volume
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