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The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs
targeting the major kinases of this pathway have been approved by the Food and Drug
Administration and many are being tested in clinical trials for the treatment of various can-
cers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological
function of the heart, especially in the presence of cardiac stress. Clinical studies have
shown that in patients treated with doxorubicin concurrently with Trastuzumab, a mono-
clonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV
heart failure was significantly increased compared to those who were treated with doxoru-
bicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases
of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the
heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies,
however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing
heart. In addition, results from transgenic mouse models are not always consistent with
the outcome of the pharmacological inhibition of this pathway. Here, we will review these
findings and discuss how we can address the cardiac side-effects caused by inhibition of
this important pathway in both cancer and cardiac biology.
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INTRODUCTION
HER receptor tyrosine kinases (RTKs) and the major components
of the phosphoinositide 3-kinase (PI3K) pathway are frequently
mutated or aberrantly expressed in a wide variety of cancers (Luo
et al., 2003; Yuan and Cantley, 2008). Therefore, they are major
targets for cancer therapy (Garcia-Echeverria and Sellers, 2008;
Yap et al., 2008). Trastuzumab (Herceptin), a monoclonal anti-
body that blocks the HER2 receptor, was one of the first drugs
of this class approved by the US Food and Drug Administration
(FDA) for cancer therapy. Subsequent clinical trials had shown
that Trastuzumab significantly improved survival in breast cancer
patients (Slamon et al., 2001). Since then, multiple drugs targeting
the HER2-PI3K pathway have been approved by FDA for cancer
treatment. These drugs include lapatinib (Tykerb), a small mole-
cule that inhibits EGFR (HER1) and HER2, Erlotinib (Tarceva),
a small molecule that inhibits EGFR, Cetuximab (Erbitux), a
chimeric IgG1 monoclonal antibody that blocks EGFR, Tem-
sirolimus (Torisel), and Everolimus (Afinitor), small molecules
that inhibit mTOR (a nodal kinase of the PI3K pathway). In addi-
tion, more than 20 new drugs targeting this pathway are currently
being tested in clinical trials1.

Compared to traditional cancer chemotherapy, targeted can-
cer therapy was designed to target molecules that were aberrantly
activated in cancer. This strategy was therefore thought to be more

1www.clinicaltrials.gov

specific and restricted to the tumor tissues. It was expected that
these agents would cause much less damage to normal tissues (Hait
and Hambley, 2009). While this may still be true, but because Tyro-
sine Kinase Inhibitors (TKIs) are presently introduced to clinics
as adjuvant therapies and are tested in combination with stan-
dard chemotherapeutic regimens, unexpected toxicities are being
observed. This should not be surprising considering that most
targeted therapies, and particularly TKIs, are chemotherapy sensi-
tizers (Ueno et al., 2000; Dickerson et al., 2010), and both cancer
cells as well as highly metabolic organs such as heart, lungs, and
kidney should have been expected to have increased sensitivity
to these drugs. Cardiovascular toxicities, have been frequently
reported in patients treated with targeted cancer therapies, and
have resulted in widespread concern regarding the cardiac safety
of using these drugs. An early concern was first raised in clin-
ical studies of Trastuzumab. Patients treated with combination
of Trastuzumab and doxorubicin, had an increase rate in the New
York Heart Association class III/IV heart failure compared to those
who were treated with doxorubicin alone (16 vs. 3%; Slamon et al.,
2001). Similarly, the FDA recently revoked the approval of Beva-
cizumab (Avastin), a drug that blocks VEGF (vascular endothelial
growth factor), for breast cancer treatment. This was due at least
in part to severe cardiovascular events2. The anthracyclines are
perhaps the most notorious offenders in the setting of clinical

2www.fda.gov
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use of growth factor pathway inhibitors such as TKIs (Hershman
and Shao, 2009). The results of early clinical trials suggest that
the introduction of targeted therapies to clinical settings must
include a careful consideration for the mechanism of action of
these agents, and future development of cardio, lung, and kidney
protective strategies. Results from clinical studies of Trastuzumab
and animal studies using transgenic mouse models or pharmaco-
logical approaches have demonstrated that major kinases of the
HER2-PI3K pathway are important for regulating and maintain-
ing cardiac physiological function, especially in the presence of
cardiac stress (Heineke and Molkentin, 2006). Preclinical studies
also suggest that this pathway is delicately regulated (Klein and
Dybdal, 2003), and depending on the type of nodal kinase inhib-
ited within this pathway cardiac function may be either augmented
or depressed. The cardiac outcome of inhibiting the nodal kinases
within this pathway also depends on the specific disease setting. In
this review, we will revisit the specific findings in transgenic mice
with cardiomyocyte-specific expression of mutants of key kinases
of the HER2-PI3K pathway.

THE HER2-PI3K SIGNALING PATHWAY
The HER receptors belong to the epidermal growth factor recep-
tor tyrosine kinase family, which include four receptors HER1
(also known as EGFR-epidermal growth factor receptor), HER2
(ErbB2/Neu), HER3 (ErbB3), and HER4 (ErbB4; Yarden and Sli-
wkowski, 2001; Citri and Yarden, 2006). The HER receptors are
composed of an extracellular ligand-binding domain,a transmem-
brane domain and a cytoplasmic region with kinase activity. Upon
ligand-binding, HER receptors form hetero- or homo-dimers, fol-
lowed by auto-phosphorylation of the tyrosine kinase residues
on the receptors. These residues then serve as docking sites for
recruiting cytosolic signaling molecules to the cell membrane.
Each receptor has a unique pattern of binding partners. HER2
and HER3 are unique receptors. There are no-known ligands
for the HER2 receptor, while HER3 lacks intrinsic kinase activ-
ity. However, HER2 and HER3 can form potent heterodimers to
propagate signals and induce cancer cell proliferation (Guy et al.,
1994; Klapper et al., 1999; Citri et al., 2003).

In growth factor signaling, multiple signaling pathways can be
activated simultaneously. Two most identified pathways are the
PI3K pathway and the MAPK pathway. Other pathways include
STATs, JNK, and PLCs (Yarden and Sliwkowski, 2001; Citri and
Yarden, 2006). Systems biology studies revealed that this signal-
ing network is highly organized and precisely regulated through
a network of positive and negative feed-back loops and cross-
talk among pathways. The activation and integration of all sig-
naling pathways lead to the regulation of key functions of the
cell, which include growth, proliferation, differentiation, survival,
and metabolism (Yarden and Sliwkowski, 2001; Citri and Yarden,
2006).

Phosphoinositide 3-kinases (PI3Ks) are conserved lipid kinases
that phosphorylate the 3′-hydroxyl group of phosphoinositides
(Cantley, 2002). The best studied are class I PI3Ks, and these also
represent the major targets for cancer therapy (Zhao and Vogt,
2008). They are further divided into class IA and class IB. Class IA
are heterodimers comprised of a regulatory subunit (p85α, p55α,
p50α, p85β, p55γ) and a catalytic subunit (p110α, p110β, p110δ).

In response to the RTKs activation, class IA PI3Ks are recruited,
and bind, to the tyrosine phosphate motifs on the activated RTKs
via the regulatory subunits. Class IB PI3Ks are composed of a
regulatory subunit p101 and a catalytic subunit p110γ, and acti-
vated by G-protein-coupled receptors (GPCRs; Shaw and Cantley,
2006; Liu et al., 2009). The catalytic subunit of the PI3Ks produces
phosphatidylinositol-3,4,5-triphosphate (PIP3), a key signaling
messenger that recruits and activates a spectrum of signaling
molecules. The PIP3 signal is negatively regulated by PTEN (phos-
phatase and tensin homolog), which converts PIP3 back to PIP2
(Shaw and Cantley, 2006).

In addition to class I PI3Ks, a number of other key components
of the PI3K pathway that are mutated in cancer, have been iden-
tified as targets for intervention in cancer therapy. These include
Akt, PDK1 (3-phosphoinositide-dependent kinase-1), and mTOR
(mammalian target of rapamycin; Garcia-Echeverria and Sellers,
2008).

Akt, also known as protein kinase B, is a serine-threonine pro-
tein kinase. There are three isoforms – Akt1, Akt2, and Akt3 (Brazil
et al., 2004; Dummler and Hemmings, 2007). PIP3 recruits Akt to
the cell membrane, where it is phosphorylated by PDK1 on Thr308
and kinases such as mTORC2 on Ser473. Phosphorylation of both
residues is necessary for full activation of Akt. Activated Akt then
regulates a wide variety of transcription factors and signaling mol-
ecules, including FOXO1 (forkhead box O1), GSK3β (glycogen
synthase kinase 3β), NF-κB (nuclear factor-κB), and mTOR (Luo
et al., 2003; Shaw and Cantley, 2006).

mTOR is central for cell growth, nutrients, and energy metab-
olism (Zoncu et al., 2011). There are two mTOR complexes:
mTORC1 and mTORC2. In addition to mTOR, the mTORC1 con-
tains RAPTOR (regulatory associated protein of mTOR), PRAS40
(proline-rich Akt substrate 40 kDa), mLST8 (mammalian lethal
with SEC13 protein 8), and DEPTOR (DEP domain-containing
mTOR-interacting protein). The mTORC2 is composed of mTOR,
RICTOR (rapamycin-insensitive companion of mTOR), mSIN1
(mammalian stress-activated MAP kinase interacting protein 1),
mLST8, DEPTOR, and PROTOR (protein observed with RIC-
TOR; Zoncu et al., 2011). Akt activates mTORC1 by releasing the
inhibitory effects of PRAS40 and TSC2 (tuberous sclerosis 2 pro-
tein, also known as tuberin; Shaw and Cantley, 2006). mTORC1
promotes protein synthesis and cell growth by activating riboso-
mal protein S6 kinase-1 (S6K1) and inhibiting eukaryotic trans-
lation initiation factor 4E-binding protein (4E-BP). mTORC2, on
the other hand, is an upstream signaling molecule of Akt. It acti-
vates Akt by phosphorylating Ser473 (Sarbassov et al., 2005; Zoncu
et al., 2011).

THE HER2-PI3K PATHWAY IN CANCER
The HER2-PI3K pathway is the most frequently mutated or aber-
rantly amplified oncogenic pathway in cancer (Yuan and Cantley,
2008; Lin et al., 2010). HER2 is overexpressed in 25–30% of
invasive breast and ovarian cancers. PIK3CA, the gene encod-
ing the p110α subunit of PI3K, is mutated in 27% of breast,
24% of endometrial, and 15% of colorectal cancers. Amplifica-
tion of p110α was found in 53% of squamous cell lung cancer
and 69% of cervical cancer. p110β of PI3K is amplified in 5% of
breast and ovarian cancers. PDK1 is amplified in 20% of breast
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cancers. Akt1, Akt2, and Akt3 mutations were found in breast,
colon, ovarian, lung, gastric, pancreas, and skin cancers in the
range of 2–20%. mTORC1, a downstream target of PI3K and
MAPK pathways, are frequently overactivated in a wide range of
cancers.

HER-PI3K PATHWAY INHIBITORS
Inhibitors targeting HER receptors and nodal kinases of the PI3K
pathway have been developed. Some of them are approved by the
FDA and many are in clinical trials (Table 1). The FDA approved
EGFR and HER2 inhibitors include Gefitinib (AstraZeneca),
Cetuximab (ImClone), a chimeric IgG1 monoclonal antibody that
binds the extracellular domain of the EGFR, Erlotinib (Genentech,
OSI, and Roche), a small molecule tyrosine kinase inhibitor, Van-
detanib (AstraZeneca), small molecule tyrosine kinase inhibitor
of VEGFR and EGFR, Trastuzumab (Genentech), a monoclonal
antibody blocks HER2, and Lapatinib (GSK), a small TKI of EGFR
and HER2.

At least 10 inhibitors target PI3Ks are in clinical Phase I–II trials
for treatment of various cancers, including breast, lung, ovarian
cancers, and hematological malignancies. These inhibitors can be
divided into the following categories: isoform-specific, class IA
PI3K, pan-PI3K, and PI3K-mTOR dual inhibitor. PI3Kα-specific
inhibitors include BYL719 (Novartis) and INK1117 (Intellikine).
PI3Kδ inhibitors include CAL-101 (Calistoga). PI3Kα, δ, and γ

specific inhibitors include GDC-0032 (Genentech) and PX-866
(Oncothyreon). Pan-PI3K inhibitors include GSK1059615 (Glax-
oSmithKline). Class I PI3K inhibitors include XL147 (Exelixis),
BKM120 (Novartis), and GDC0941 (Genentech). PI3K/mTOR
dual inhibitors include BEZ235 (Novartis), BGT226 (Novartis),
GDC-0980 (Genentech), and PF-4691502 (Pfizer).

Inhibitors of Akt include MK2206 (Merck), GDC-0068
(Genentech), AZD5363 (Astrazeneca), Perifosine (Keryx), VQD-
002 (VioQuest), and XL418 (Exelixis). Rapamycin, Temsirolimus,
and Everolimus are inhibitors of mTOR and approved by the
FDA for treatment of certain types of tumors. Clinical trials
are ongoing to test these drugs in other tumors. In addition,
new inhibitors of mTOR are in development. They are AZD8055
(Astrazeneca), INK128 (Intellikine), AP23573 (Merck/Ariad), and
OSI-027 (OSI).

INHIBITION OF MAJOR KINASES OF THE HER2-PI3K
PATHWAY IN THE HEART: LESSONS FROM ANIMAL STUDIES
The role of the HER2-PI3K pathway in cardiac physiology and
pathophysiology has been extensively studied during the past
10 years. Transgenic mice with cardiomyocyte-specific overex-
pression of the mutants of nodal kinases of this pathway were
generated. The biological functions and complex signal transduc-
tion in the cell, including the cardiomyocytes, of this network have
been comprehensively reviewed (Dorn and Force, 2005; Yuan and
Cantley, 2008; Oudit and Penninger, 2009; Aoyagi and Matsui,
2011; Chaanine and Hajjar, 2011; Ghigo et al., 2011; Hers et al.,
2011). Here, we will focus on the cardiac physiology in mice with
perturbation of key nodal kinases of this network, with emphasis
on those where the activities of these kinases are inhibited. These
findings may provide clues of whether inhibitors of these kinases
may cause significant impact on the heart.

Table 1 | Drugs targeting the HER-PI3K pathway for cancer treatment.

Agent Target Sponsor

EGFR INHIBITORS

Cetuximab (Erbitux) EGFR ImClone

Erlotinib (Tarceva) Genentech, OSI, Roche

Gefitinib (Iressa) AstraZeneca

Vandetanib (Caprelsa) EGFR, VEGFR AstraZeneca

HER2 INHIBITORS

Lapatinib (Tykerb) EGFR, HER2 GSK

Trastuzumab (Herceptin) HER2 Genentech

PI3K INHIBITORS

BYL719 PI3Kα Novartis

INK1117 Intellikine

CAL-101 PI3Kδ Calistoga

GDC-0032 PI3Kα, δ, γ Genentech

PX-866 Oncothyreon

BKM120 Class I PI3K Novartis

GDC0941 Genentech

XL147 Exelixis

GSK1059615 Pan-PI3K GlaxoSmithKline

BEZ235 Class I PI3K,

mTOR

Novartis

BGT226 Novartis

GDC0980 Genentech

PF-4691502 Pfizer

PKI587 Pfizer

Akt INHIBITORS

AZD5363 Akt Astrazeneca

GDC-0068 Genentech

MK2206 Merck

Perifosine Keryx

VQD-002 VioQuest

XL418 Exelixis

mTOR INHIBITORS

AP23573 mTORC1 Merck/Ariad

Everolimus (RAD-001) Novartis

Rapamycin/sirolimus

(Rapamune)

Wyeth

Temsirolimus (Torisel) Wyeth

AZD8055 mTORC1 and

mTORC2

AstraZeneca

INK128 Intellikine

OSI-027 OSI

MICE WITH CARDIAC EXPRESSION OF HER2 MUTANTS
Mice carrying an HER2 null allele died around E10.5 (HER2KO).
The mutant embryos exhibited malformation of LV trabeculae
(Lee et al., 1995). Cardiomyocyte-specific overexpression of the
HER2 gene in the HER2KO mice restored normal ventricular tra-
beculation and prolonged survival of HER2KO mice (Morris et al.,
1999).

To study the effects of HER2 inhibition in the adult heart, two
mouse models with cardiac ventricular myocyte-specific condi-
tional deletion of the HER2 gene were generated (HER2-CKO).
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Mice that harbor the loxP-flanked HER2 allele were cross-bred
with mice that carry Cre coding sequence under the control of
myosin light chain 2v (MLC2v) locus, which drives ventricular-
restricted gene deletions (Crone et al., 2002; Ozcelik et al., 2002).
HER2-CKO mice survived to the adulthood, but progressively
developed dilated cardiomyopathy,with increased LV hypertrophy,
chamber dilation, and dysfunction. The HER2 protein expression
was decreased in HER2-CKO hearts with no changes of HER4
expression. Electron microscopy studies showed an increase in
the numbers of mitochondria and vacuoles in the HER2-CKO
myocardium. Although TUNEL staining was not increased in
HER2-CKO hearts, expression of Bcl-xL partially rescued dilated
cardiomyopathy in HER2-CKO mice. Transverse aortic constric-
tion (TAC) induced a similar LV hypertrophic response with
increased mortality rate in one HER2-CKO model (Crone et al.,
2002), but a de-compensated response and worsened cardiac dys-
function in another model (Ozcelik et al., 2002). This discrepancy
may be caused by the baseline cardiac function of mice before
surgery. Cardiomyocytes isolated from HER2-CKO mice were
more susceptible to doxorubicin (Crone et al., 2002) (Table 2).

MICE WITH CARDIAC EXPRESSION OF PDK1 MUTANTS
Two types of transgenic mouse models with conditional dele-
tion of the PDK1 gene have been generated. The first model
was generated by cross-breeding mice harboring a “floxed”
PDK1 allele (PDK1fl/fl) with mice expressing Cre recombinase
under the control of the muscle creatine kinase (MCK) pro-
moter (PDK1-MckCre; Mora et al., 2003). The MCK promoter
induces expression of Cre specifically in skeletal muscle and heart
just prior to birth (Bruning et al., 1998). The second model
was generated by cross-breeding PDK1fl/fl with mice express-
ing tamoxifen-inducible Cre recombinase under the control of
the α-MHC promoter (PDK1-MerCre; Ito et al., 2009; Di et al.,
2010).

Both PDK1-MckCre and PDK1-MerCre mice developed
dilated cardiomyopathy within weeks after the onset of PDK1 gene
deletion. Insulin-induced activations of Akt, mTOR, and S6K were
decreased in the PDK1 knockout hearts (Mora et al., 2003; Ito et al.,
2009; Di et al., 2010). LV mass and cardiomyocyte volume were
decreased in PDK1-MckCre, but not in PDK1-MerCre mice. On
the other hand, apoptosis was increased in PDK1-MerCre, but
not in PDK1-MckCre hearts. Studies in PDK1-MerCre mice fur-
ther showed that β-adrenergic responsiveness was impaired in the
heart. This was associated with increased internalization of β1-
adrenergic receptor (β1-AR) and increased β-adrenergic receptor
kinase-1 (β-ARK1)-PI3Kp110γ complex formation. Disruption of
this complex reduced cardiac dysfunction in PDK1-MerCre mice
(Ito et al., 2009). These results suggest that inhibition of PDK1
signaling can cause heart failure. This may be related to increased
apoptosis and β-AR desensitization (Table 2).

MICE WITH CARDIAC EXPRESSION OF PI3K MUTANTS
At least three class I PI3Ks can be found in the heart, which
are p110α, p110β (class IA) and p110γ (class IB). The class
IA PI3Ks are activated by RTKs in cardiomyocytes, whereas the
class IB PI3Ks are activated by GPCRs. To understand the phys-
iological role of class I PI3Ks in the heart, transgenic mice

with cardiomyocyte-specific expression of PI3K isoform-specific
mutants were generated (Table 2).

MICE WITH CARDIAC EXPRESSION OF CLASS IA PI3K MUTANTS
Shioi et al. (2002) reported their studies in mice with
cardiomyocyte-specific overexpression of a dominant nega-
tive PI3Kp110α (dnPI3K) and mice with constitutively active
PI3Kp110α (caPI3K; Shioi et al., 2000). To generate dnPI3K mice,
a truncated p110α mutant that has p85 binding domains but is
devoid of the kinase domain was cloned downstream of the α-
MHC promoter, which drives transgene expression exclusively in
cardiomyocytes. To generate caPI3K mice, iSH2p110, a chimeric
molecule that contains the iSH2 domain of p85, was fused to the
N-terminus of the bovine p110α by a flexible glycine linker. This
molecule was then constructed downstream of the α-myosin heavy
chain (α-MHC) promoter. In dnPI3K mouse hearts, PI3K activity
was decreased by 77%. In caPI3K mice, PI3K activity was increased
6.5-fold compared to wild type mice (WT).

One specific finding was that dnPI3K mice had smaller hearts
while caPI3K mice had bigger hearts (Shioi et al., 2000). The
heart weight to body weight ratio (HW/BW), an index for cardiac
hypertrophy, was decreased in dnPI3K mice, which was associ-
ated with decreased LV chamber and cardiomyocyte area. Con-
versely, HW/BW was increased in caPI3K mice, associated with
increased LV chamber and cardiomyocyte area. No abnormalities
of cardiac morphology and function were observed. mTORC1
(pP70S6K and pS6) and mTORC2 (pAktS473) activities were
decreased in dnPI3K mouse hearts but increased in caPI3K mouse
hearts.

When mice were subjected to aortic banding (McMullen et al.,
2003, 2007), myocardial infarction (MI; Lin et al., 2010), or cross-
bred with DCM mice (dilated cardiomyopathy; McMullen et al.,
2007; Pretorius et al., 2009), the dnPI3K mice rapidly devel-
oped dilated cardiomyopathy. The LV chamber of dnPI3K mice
became dilated with thinning of the LV wall, increased fibrosis and
decreased LV systolic function. On the other hand, aortic banding
induced concentric hypertrophy in caPI3K mice, with preserved
LV function. MI in caPI3K induced less cardiac remodeling and LV
dysfunction compared to WT mice and dnPI3K mice. Cross-bred
caPI3K mice with DCM mice prolonged survival of DCM mice
(Table 2).

The p85 regulatory subunit of the class 1A PI3Ks is essential
for stabilizing p110 catalytic subunit and recruiting it to activated
RTKs at the cell membrane (Fruman et al., 1998). There are five p85
isoforms, which are encoded by three genes. The p85α isoforms
(p85α, p55α, and p50α) are encoded by gene pik3r1, the p85β iso-
form is encoded by gene pik3r2 and p55γ isoform is encoded by
the pik3r3 gene (Luo et al., 2005). The p85α and p85β are ubiq-
uitously expressed, while the p55γ isoform is expressed mainly in
the brain and the testis (Fruman et al., 1998).

Luo et al. (2005) generated mice with striated muscle-specific
deletion of both p85α and p85β. The HW/BW ratio was signifi-
cantly lower in p85α/β KO mice compared to WT, associated with
a smaller cardiomyocyte area. The size of the cardiac chamber and
the LV wall thickness were comparable to WT mice. No increase
of fibrosis was found in p85α/β KO hearts. The systolic function
was preserved in p85α/β KO mice. However, ANP and BNP were
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significantly increased, and the response to insulin signaling was
attenuated, in p85α/β KO hearts.

These results suggest that class IA PI3Ks determine the size of
the heart. It is also crucial for maintaining normal cardiac function
in the presence of cardiac stress (Table 2).

MICE WITH CARDIAC EXPRESSION OF CLASS IB PI3K MUTANTS
The class IB PI3Kp110γ is activated by GPCRs by binding to
Gβγ directly or via its regulatory subunit p101 (Stoyanov et al.,
1995; Stephens et al., 1997). The recruitment of PI3Kp110γ

to GPCRs is also mediated by β-ARK1 which forms a com-
plex with PI3Kp110γ. Upon ligand-binding to GPCRs, the het-
erotrimeric G-proteins dissociate into Gα and Gβγ subunits.
The termination of GPCR signals is initiated by phosphoryla-
tion of agonist occupied GPCRs by GPCR kinase, such as β-
ARK1, followed by binding to β-arrestins and AP-2 which mediate
receptor internalization. Studies suggested that PI3Kp110γ neg-
atively regulates cardiac contractile function by least two mech-
anisms: (1) it serves as a scaffold protein to stabilize phospho-
diesterase 3B (PDE3B), which degrades cAMP. This effect of
PI3Kp110γ is kinase-independent; (2) it forms a complex with
β-ARK1, which contributes to internalization of β-ARs. This
effect of PI3Kp110γ is kinase-dependent. The PI3Kp110γ pro-
teins generate PIP3, which can recruit β-arrestins and AP-2 to
the cell membrane (Gaidarov and Keen, 1999; Naga Prasad et al.,
2002).

Transgenic mouse models with PI3Kp110γ knockout
(p110γ−/−), expression of PI3Kp110γ kinase-dead (p110γKD/KD),
or cardiomyocyte-specific overexpression of an inactive mutant
of PI3Kp110γ (p110γinact) were generated (Hirsch et al., 2000;
Li et al., 2000; Nienaber et al., 2003; Patrucco et al., 2004).
The major difference of p110γ−/− mice with p110γKD/KD or
p110γinact mice is that p110γ proteins are depleted in p110γ−/−
hearts, but not in p110γKD/KD or p110γinact hearts; whereas in
p110γKD/KD or p110γinact hearts the PI3Kp110γ kinase activity
was impaired.

The p110γ−/− mice had normal LV chamber geometry and
histology under the baseline condition. However, the cardiac sys-
tolic function and cardiomyocyte contractility were increased
which were associated with increased cAMP in cardiomy-
ocytes. TAC induced a rapid development of heart failure in
p110γ−/− mice showing LV chamber dilation and wall thin-
ning, decreases in FS% and dP/dt±, as well as increases in
necrosis, fibrosis, and infiltration of inflammatory cells in the
myocardium. Similarly, ischemia/reperfusion (IR) induced a sig-
nificant increase in infarct size, collagen deposition, and scar
formation in p110γ−/− mice, which was associated with severe
reduction of cardiac systolic function (Crackower et al., 2002;
Nienaber et al., 2003; Patrucco et al., 2004; Haubner et al.,
2010).

Conversely, the cardiac function was normal in p110γKD/KD or
p110γinact mice at the baseline. TAC induced concentric hypertro-
phy in p110γKD/KD −TAC mice, which is comparable to WT-TAC
mice. The cardiac myocyte diameter was smaller in p110γKD/KD

−TAC mice with less fibrosis in the cardiac myocardium (Patrucco
et al., 2004). IR induced a similar infarct size, fibrosis, and cardiac
dysfunction in p110γKD/KD mice compared to WT mice. Similar

to the findings in p110γKD/KD mice, TAC induced a compara-
ble degree of LV hypertrophy in p110γinact vs. WT mice 1 week
after TAC. In addition, 12 weeks after TAC, survival was improved
in p110γinact –TAC mice, with less cardiac dysfunction and LV
dilation (Crackower et al., 2002; Nienaber et al., 2003; Patrucco
et al., 2004; Haubner et al., 2010).

Further studies revealed that cAMP was excessively elevated
in p110γ−/− −TAC, while maintained in p110γKD/KD –TAC
mouse hearts. Injections of propranolol, a non-selective β-blocker,
lowered cAMP levels, and reverse the adverse cardiac remod-
eling in p110γ−/− −TAC hearts. In addition, the activity of
phosphodiesterase (PDE) was significantly lower in p110γ−/−
−TAC hearts compared to p110γKD/KD −TAC mouse hearts. Co-
immunoprecipitation showed that p110γ and PDE3B are physi-
cally associated with each other. These results suggest that p110γ

serves as a scaffold protein that stabilizes PDE3B, leading to the
degradation of cAMP (Patrucco et al., 2004).

In addition, βARK1-associated PI3K activity was decreased in
p110γinact hearts, but not in p110γ−/− hearts. Chronic isopro-
terenol infusion caused desensitization and downregulation of
β-ARs in p110γ−/− hearts, but not in p110γinact hearts (Nienaber
et al., 2003).

Taken together, p110γ proteins are necessary for maintaining
cAMP homeostasis in cardiomyocytes. On the other hand, block-
ade of p110γ kinase activity may be beneficial for preventing β-AR
desensitization in a failing heart (Table 2).

MICE WITH CARDIAC EXPRESSION OF Akt MUTANTS
Akt is a key regulator of multiple aspects of cardiomyocyte func-
tions, including survival, hypertrophy, calcium homeostasis, and
metabolism (Lawlor and Alessi, 2001; Ceci et al., 2004). All three
isoforms of Akt are expressed in the heart, Akt1 and Akt2 are most
abundant (Matsui and Rosenzweig, 2005; DeBosch et al., 2006b).
Akt can be activated by RTKs (such as insulin and IGF) and by
GPCRs (such as β-ARs) in cardiomyocytes (Tian, 2005). Studies
have shown that Akt1 is important for exercise-induced cardiac
hypertrophy, while Akt2 is pivotal for normal glucose metabolism
of the heart (DeBosch et al., 2006b; Muslin, 2011).

Several transgenic mouse models were generated with
either systematic disruption of the Akt1 gene (Akt1−/−) or
cardiomyocyte-specific overexpression of a kinase-dead Akt1
(kdAkt; Cho et al., 2001; Shioi et al., 2002; Yang et al., 2003). In the
first Akt1−/− model, mice developed atrial and ventricular septal
defects in embryos, associated with a high early mortality rate.
Neonatal Akt1−/− mice developed dilated cardiomyopathy. The
phosphorylated and total Akt proteins were decreased in Akt1−/−
hearts; While Akt2 and Akt3 proteins were comparable to WT.
The activity of p38MAPK was increased in Akt1−/− hearts. Cross-
breeding of Akt1−/− with null p38α mice partially rescued the
cardiac defects (Chang et al., 2010).

In the second Akt1−/− model, no embryonic or early mortality
were found. Mice had a normal lifespan and were fertile. The car-
diac geometry and function were similar to WT. Adult cardiomy-
ocytes isolated from Akt1−/− mice had an impaired response
to IGF1 stimulation, as assessed by phosphorylation of key sig-
naling molecules of IGF1 signaling and IGF1-induced protein
synthesis. Accordingly, swimming induced cardiac hypertrophy
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was blunted in Akt1−/− mice; instead, LV dilation and decreased
cardiac function was observed. On the other hand, cardiomy-
ocytes from Akt1−/− mice retained normal response to GPCR
ligand endothelin-1. In response to pressure overload, Akt1−/−
mice developed increased LV hypertrophy compared to WT, which
was associated with LV dilation and dysfunction (DeBosch et al.,
2006b) (Table 2).

In kdAkt mice, a kinase-dead Akt (K179M), in which the
ATP binding site of Akt1 was mutated, was conditionally overex-
pressed in cardiomyocytes. The activity of Akt at baseline and that
induced by IGF1 stimulation was decreased in kdAkt hearts. The
phosphorylation of GSK3β, p70S6K, and S6 were lower in kdAkt
hearts. However, cardiac geometry, function, and cardiomyocyte
size were preserved with no fibrosis and apoptosis in the cardiac
myocardium (Shioi et al., 2002).

Akt2 knockout mice (Akt2−/−), had normal cardiac function
and geometry at the age of 2 months. However, these mice grad-
ually developed LV hypertrophy and heart failure and this was
associated with hyperglycemia (Etzion et al., 2010). Cardiomy-
ocytes isolated from Akt2−/− mice showed impaired insulin-
induced glucose uptake, but enhanced palmitate uptake and
oxidation. The responses to IGF1 and endothelin-1 were com-
parable to WT (DeBosch et al., 2006a). TAC induced a simi-
lar LV hypertrophy in both Akt2−/− and WT mice (DeBosch
et al., 2006a); whereas isoproterenol infusion induced more LV
hypertrophy in Akt2−/− mice (Etzion et al., 2010). Myocardial
infarction-induced a larger infarction area, increased apoptosis in
the myocardium, and decreased FS% in Akt2−/− mice (Li et al.,
2011).

Several transgenic mouse models with α-MHC promoter dri-
ven cardiomyocyte-specific overexpression of constitutively active
mutants of Akt1 (caAkt, myr-Akt, and E40KAkt) and nuclear-
targeted Akt (Akt/nuc) were generated. The caAkt mice had
LV hypertrophy with increased cardiomyocyte size and myocar-
dial fibrosis; and gradually developed LV systolic dysfunction
(Shioi et al., 2002). The myr-Akt mouse lines had different phe-
notypes. Several lines of myr-Akt mice developed heart failure
associated with early mortality. Survived lines had concentric
cardiac hypertrophy and preserved cardiac function. Ischemia-
reperfusion induced a smaller infarct size in myr-Akt hearts vs.
WT, suggesting a protective role of Akt (Matsui et al., 2002).
The E40KAkt mice also developed LV hypertrophy with increased
cardiomyocyte size and cardiac contractility (Condorelli et al.,
2002). On the other hand, the Akt/nuc mice did not develop
LV hypertrophy. Rather, cardiomyocyte volume was smaller and
the number of cardiomyocytes was increased. The cardiac func-
tion and myocyte contractility were enhanced in Akt/nuc mice
at the baseline. Ischemia-reperfusion induced a smaller infarct
size in Akt/nuc hearts (Shiraishi et al., 2004; Rota et al., 2005)
(Table 2).

MICE WITH INHIBITION/ACTIVATION OF mTOR IN THE HEART
The cardiac effects of mTOR inhibition were tested in transgenic
mice with cardiomyocyte-specific overexpression of a dominant
negative or constitutively active mTOR, a common component
of mTORC1 and mTORC2 (Shen et al., 2008), in mice with
cardiomyocyte-specific conditional deletion of mTOR, in mice

with cardiomyocyte-specific deletion of raptor, a specific sub-
unit of mTORC1, and in mice that treated with rapamycin (Shioi
et al., 2003; Boluyt et al., 2004; McMullen et al., 2004; Gao et al.,
2006; Soesanto et al., 2009; Zhang et al., 2010; Shende et al.,
2011).

In the first study, Shen et al. (2008) generated mice with
cardiomyocyte-specific overexpression of a dominant negative
mTOR (mTORkd) by overexpressing a mutant mTOR (a point
mutation at aspartic acid residue 2338 leds to preventing mTOR
auto-phosphorylation and kinase activity) under the control of
the α-MHC promoter. The phosphorylation of S6 was decreased
in these mice hearts, suggesting the inhibition of mTORC1 activity.
However, the phosphorylation of Akt (S473) was unchanged. At
baseline, mTORkd mice had normal cardiac gross morphology and
histology. The weight and the size of the heart were normal. How-
ever, cardiac function as assessed by fractional shortening (FS%)
and ejection fraction (EF%) was gradually decreased. Addition-
ally, the heart rate was decreased; P-duration, P-R interval, and
RR interval were increased in mTORkd mice. Isoproterenol infu-
sion in mice caused a similar degree of increases in HW/BW ratio
and cardiomyocyte area, suggesting disruption of mTOR kinase
activity does not change β-adrenergic signaling induced cardiac
hypertrophy.

In the same study, mice with cardiomyocyte-specific over-
expression of a constitutively active mTOR were generated
(mTORca – mTOR mutant lacking amino acid residues 2430–
2450 led to increased kinase activity). mTORca mice dis-
played normal cardiac morphology and cardiac function at
the baseline (Shen et al., 2008). When treated with doxoru-
bicin, mTORca overexpression alleviated doxorubicin-induced
cardiac dysfunction and the reduction of cardiac mass, but did
not decrease doxorubicin-induced cardiomyocyte apoptosis (Zhu
et al., 2009).

In a second mouse model, mice with cardiomyocyte-specific
conditional deletion of mTOR (αMHC-MCM/MTORfl/fl) were
generated. The αMHC-MCM/MTORfl/fl mice gradually devel-
oped dilated cardiomyopathy 4 weeks after the induction of mTOR
gene deletion (Zhang et al., 2010). This was associated with
increased fibrosis, apoptosis, autophagy, and mitochondrial dys-
function in the heart. The activation of downstream targets
of mTORC1 S6K1 and S6 was decreased; while the amount
of 4E-BP1 (eukaryotic initiation factor 4E-dependent protein
1), a protein that inhibits cap-dependent initiation of protein
translation (Beretta et al., 1996), was increased. The αMHC-
MCM/MTORfl/fl mice rapidly developed dilated cardiomyopathy
when they were subjected to TAC 1 week after the initiation
of mTOR gene deletion, which was associated with increased
amount of 4E-BP1. Cross-breeding of αMHC-MCM/MTORfl/fl

with 4E-BP1 knockout mice improved survival and cardiac func-
tion in αMHC-MCM/MTORfl/fl mice. These results suggest that
cardiac hypertrophy induced by TAC, which is an adaptive
response of the heart, was abolished by mTOR gene deletion.
Instead, the heart progressed rapidly to dilation and failure in
αMHC-MCM/MTORfl/fl mice.

To study the cardiac effects specifically related to mTORC1
deletion, Shen et al. (2008) generated mice with cardiomyocyte-
specific conditional knockout of raptor (αMHC-MCM/raptorfl/fl).
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Under the baseline condition, αMHC-MCM/raptorfl/fl mice grad-
ually developed dilated cardiomyopathy 5–6 weeks after the induc-
tion of raptor gene deletion. Decreased palmitate oxidation and
increased glucose oxidation were observed before cardiac dysfunc-
tion was evident. TAC induced a rapid development of dilated
cardiomyopathy in αMHC-MCM/raptorfl/fl mice, which was asso-
ciated with absence of hypertrophic response, increased fetal gene
expressions, increased apoptosis, autophagy, and mitochondrial
abnormalities.

The cardiac effects of inhibiting mTOR signaling were also
studied using rapamycin. Rapamycin pre-treatment significantly
reduced ascending aortic stenosis (AS) induced cardiac hyper-
trophic remodeling, as assessed by the HW/BW ratio and cardiac
myocyte area, while cardiac function was not affected (Shioi et al.,
2003). In mice with established LV hypertrophy induced by AS or
TAC, or in spontaneously hypertensive rats, short term rapamycin
injections (2 mg/kg, i.p. daily) partially reversed LV hypertrophy
(McMullen et al., 2004; Gao et al., 2006; Soesanto et al., 2009).
Rapamycin injections also reduced myocardial infarction (MI)
induced cardiac remodeling, fibrosis, and cardiac dysfunction in
mice (Di et al., 2012) (Table 2).

These findings in transgenic mice suggest that mTOR and
mTORC1 are necessary for adaptive growth response for the
heart under mechanical stress. mTOR is pivotal for protecting the
cardiomyocyte from apoptosis and maintaining cardiac mitochon-
drial function. However, studies using rapamycin injections sug-
gested a different role of mTOR complexes in cardiac hypertrophy
and failure.

CONCLUSION
The HER2-PI3K pathway plays a pivotal role in cancer develop-
ment as well as in maintaining the normal physiological function
of the heart. Newly developed cancer therapies targeting this
pathway will inevitably have a significant impact on the heart.

In addition to cancer control, the ultimate goal of cancer ther-
apy is to prolong survival of cancer patients. Cancer treatment is
no doubt a matter of urgency; however, toxic side-effects caused
by cancer therapy, such as those affecting the cardiovascular sys-
tem may be more life-threatening. In addition, the incidence of
cardiac diseases caused by cancer therapy may significantly rise
in cancer survivors. Currently, several strategies are in practice
in order to avoid or minimize the cardiac toxicity which include
screening patients for cardiac dysfunction before starting the treat-
ment, closely monitoring cardiac function during the treatment,
and stopping the treatment when cardiac dysfunction is detected.
These strategies certainly will reduce the cardiac incidence of drugs
in clinical trials. However, a significant number of patients will be
excluded. The adaptation of these management strategies, at the
same time, clearly suggests that cardiac side-effects have already

become a major obstacle for effective cancer treatment. Reducing
the cardiac toxicity caused by cancer therapy, therefore, is a major
challenge in medical practice.

Since cancer cells frequently adopt survival signals that are
equally important for the well being of normal tissues, it is hard to
selectively target cancer cells while sparing normal tissues. Studies
of the same molecules by oncologists and by cardiologists often
result in opposing theories when it comes to clinical practice. For
example, oncologists will inhibit growth signals (such as VEGF
and Akt) in cancer, while cardiologists will increase these signals
in a failing heart. It seems that these two fields cannot compromise
with each other.

Experimental evidence, however, has provided us clues for
reconsidering this view. First, results from transgenic mice may
not represent the outcomes of pharmacological intervention. For
example, transgenic mice with cardiomyocyte-specific overexpres-
sion of a dominant negative mTOR, or conditional deletion of
mTOR or raptor, all developed cardiac dysfunction, especially in
the presence of cardiac stress. However, rapamycin, an mTOR
inhibitor, can reduce aortic stenosis or myocardial infarction-
induced adverse cardiac remodeling and dysfunction. Second,
studies have shown that feed-back loops, cross-talks, and redun-
dant signals exist in the HER2-PI3K pathway. Inhibition of certain
kinases of the pathway may reactivate others, or vice versa. For
example, inhibition of S6K feed-back reactivates insulin signals
in the cell (Um et al., 2004). Activation of Akt by β-ARs, in
turn, can phosphorylate threonine residues on the insulin recep-
tor β-subunit leading to desensitization of the insulin receptor
and insulin resistance (Morisco et al., 2005; Tian, 2005). Third,
inhibition of certain kinases within the HER2-PI3K, such as
PI3Kp110γ, may be beneficial, as suggested by studies. Fourth,
the dose and the duration of the pharmacological treatment may
need to be adjusted. Treatment using a repeated low dose of
inhibitors (metronomic chemotherapy) may significantly increase
the therapeutic window (Klement et al., 2000; Francia et al.,
2012).

In summary, to address this challenge, oncologists and cardi-
ologists need to work closely together to further understand the
biology of both diseases and develop new strategies to achieve
effective cancer treatment and minimize cardiac toxicity.
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