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Research of the past 25 years has shown that astrocytes do more than participating and
building up the blood-brain barrier and detoxify the active synapse by reuptake of neu-
rotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a
consequence, respond to stimuli. Within the tripartite synapse, the astrocytes owe more
and more importance. Besides the functional aspects the differentiation of astrocytes has
gained a more intensive focus. Deeper knowledge of the differentiation processes during
development of the central nervous system might help explaining and even help treating
neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis, Parkinsons
disease, and psychiatric disorders in which astrocytes have been shown to play a role.
Specific differentiation of neural stem cells toward the astroglial lineage is performed as
a multi-step process. Astrocytes and oligodendrocytes develop from a multipotent stem
cell that prior to this has produced primarily neuronal precursor cells. This switch toward
the more astroglial differentiation is regulated by a change in receptor composition on the
cell surface and responsiveness to Fibroblast growth factor and Epidermal growth factor
(EGF). The glial precursor cell is driven into the astroglial direction by signaling molecules
like Ciliary neurotrophic factor, Bone Morphogenetic Proteins, and EGF. However, the early
astrocytes influence their environment not only by releasing and responding to diverse
soluble factors but also express a wide range of extracellular matrix (ECM) molecules, in
particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules
have been shown to participate in glial development. In this regard, especially the matrix
protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell
proliferation and migration during spinal cord development. Nevertheless, ECM molecules
expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion
under pathophysiological conditions. Thus, we further summarize resent data concerning
the role of chondroitin sulfate proteoglycans and Tnc under pathological conditions.
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INTRODUCTION
When the neuroglial cells were first described, these cells were
thought to act as connective cells that subdivide neurons into clus-
ters of cells in the brain, spinal cord, and nerves (Virchow, 1856).
Later this connective tissue was named glia (“glue”) that can be
distinguished from nerve cells within the brain and the peripheral
nervous system (PNS). Glial cells include primarily oligodendro-
cytes and astrocytes in the central nervous system (CNS) and
Schwann cells in the PNS. In addition, the brain “immune cells,”
the microglia are the immune competent macrophages of the CNS
(Kauppinen et al., 1989; Volterra and Meldolesi, 2005; De Keyser
et al., 2008; Allen and Barres, 2009; Kettenmann and Verkhratsky,
2011). While oligodendrocytes and Schwann cells mainly function
as myelin producing cells ensheathing the axon in the central and
PNS, the astrocytes have long been thought to have a structural
function, providing energy, detoxifying the synapses, and building
up the blood-brain barrier, rather than an active role in neu-
rotransmission (Kettenmann and Verkhratsky, 2011). Astrocytes

represent the major brain cell component (20–50%). They send
out numerous processes and locally contact the surrounding cells,
neurons, other glial cells, and endothelial cells. Besides the pure
barrier function, they also play a vital role in the control of cere-
bral blood flow and the glucose homeostasis of the brain as this is
the main energy source for the brain. For review (see Sofroniew
and Vinters, 2009).

Within the developing brain and spinal cord Neural stem cell
precursor cells (NSPCs) generate neuronal cells in the first place.
Changes in the expression of growth factor receptors subsequently
result in the specification of astroglial cells (see also Table 1). Here,
it has been shown that the expression of the epidermal growth
factor (EGF)-Receptor seems to be necessary for normal astrocyte
development (Kornblum et al., 1998). While initial PDGF and
FGF2 signals form these cells the cells themselves turn to a PDGF-
R negative precursor cell (see also Figure 1). In general, the cells
are then characterized by expression of A2B5, Nestin and PLP, and
the fibroblast growth factor (FGF)-Receptor.
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Table 1 | Stage dependent marker expression for the astroglial differentiation lineage.

Marker Early precursor cell Late precursor cell Astrocyte precursor Mature astrocyte Citations

Nestin + + − − Rauch et al. (1997), Kornblum et al. (1998)

BLBP + + − − Rauch et al. (1997), Kornblum et al. (1998)

FGFR + + − − Kornblum et al. (1998)

GLAST − + + + Lehre et al. (1995)

EGFR − + + ? − Karus et al. (2011)

Tnc − + + − Lehre et al. (1995), Karus et al. (2011)

FGFR3 − − + + Cahoy et al. (2008)

S100β − − + + Nagelhus et al. (2004)

Aqp4 − − + + Nagelhus et al. (2004)

AldH1L1 − − + + Cahoy et al. (2008)

GFAP − − − + Meeuwsen et al. (2003)

BLBP, basic lipid binding protein; FGFR/FGFR3, Fibroblast growth factor receptor (3); GLAST, Glutamate-AspartateTransporter; EGFR, Epidermal growth factor receptor;

Tnc, Tenascin C; Aqp4, Aquaporin 4; AldH1L1, Aldehyde dehydrogenase 1, member L1; GFAP, Glial fibrillary acidic protein.

The maturation of astrocytes is also accompanied by the
expression of a wide variety of chondroitin sulfate proteoglycans
(CSPGs) like brevican,neurocan,versican and aggrecan,and extra-
cellular matrix (ECM) proteins, namely Tnc, that are released to
the ECM compartment but have also impact on the astrocytes
themselves. This gains importance as the glial scar has been shown
to reexpress, e.g., Tnc that can highly influence the regenerative
capacity to its worse in Human and mammals (Sofroniew and
Vinters, 2009). In this review we will therefore first focus on the
development of astrocytes in the CNS with respect to functions of
the ECM therein and then take a closer look to functional aspects
of soluble factors and ECM molecules in health and disease.

THE NEURAL EXTRACELLULAR MATRIX: COMPOSITION AND
FUNCTIONAL ASPECTS FOR ASTROCYTE DEVELOPMENT
Cells in connective tissues are embedded in an ECM that not only
binds the cells together but also influences their survival, devel-
opment, shape, polarity, and behavior. The ECM includes various
protein fibers interwoven in a hydrated gel (Maleski and Hockfield,
1997; Rauch et al., 1997). In general this interwoven meshwork
comprises fibrillar proteins (e.g., collagens), glycoproteins (e.g.,
laminins, fibronectin, tenascins), and several classes of proteo-
glycans (heparan sulfate-, chondroitin sulfate-, dermatan sulfate-,
and keratan sulfate proteoglycans). The latter mainly consist of
large glycosaminoglycan (GAG) chains, covalently linked to extra-
cellular or membrane bound core proteins. In contrast to other
tissues, the ECM in the CNS lacks fibrillar proteins under physio-
logical conditions. Instead the neural ECM is rich in glycoproteins
and proteoglycans. It has been estimated that the neural ECM
makes up about 20% of the CNS parenchyma (Nicholson and
Sykova, 1998). Therefore, it is not surprising, that several studies
in the last decades demonstrated important functions of distinct
ECM molecules in the developing as well as in the adult CNS.
During the early development of the CNS the overall expression
of ECM molecules is relatively low and subsequently increases
toward the end of embryogenesis and during postnatal develop-
ment. However, the germinal layers already contain distinct ECM
components and their cognate receptors during neurogenesis in
the developing cortex (Ford-Perriss et al., 2003; von Holst et al.,

2006; Lathia et al., 2007; Moritz et al., 2008). In the adult CNS sev-
eral ECM molecules are prominently expressed in stem cell niches
(Gates et al., 1995; von Holst et al., 2006; Kazanis et al., 2007).

RADIAL GLIA STEM CELLS AND NEUROSPHERES EXPRESS
CSPGs AND ECM MOLECULES
Despite their prominent expression during neural development
only little is known about the functional importance of spe-
cific CSPGs and ECM molecules for astrocyte development. In
the following we summarize recent findings concerning the roles
of CSPGs and members of the Tenascin family in the context
of the cortical and spinal cord development. CSPGs consist of
chondroitin sulfate GAG chains, covalently attached to a serine
residue of a core protein (Kleene and Schachner, 2004). CSPGs
have been shown to bind to FGF2 and modulate FGF signaling
(Milev et al., 1998; Sirko et al., 2010a). Thus, they are perfectly
suited for regulating neural development.

When exploring the ECM structure in the stem cell niche, we
have shown in an earlier study that both phosphacan and the DSD-
1-epitope are enriched in the germinal zones of the adult CNS
(Gates et al., 1995). Therefore, we have more closely examined
the relationship of the DSD-1- (473HD-) epitope to the neural
stem cell compartment during different stages of development.
We provided evidence that both Neural stem cell precursor cells
(NSPCs) and radial glia express the RPTP-β/ζ-receptor and the
473HD-carbohydrate (Garwood et al., 2001; Faissner et al., 2006;
von Holst et al., 2006). The structure targeted by monoclonal anti-
body (MAb) 473HD is enriched in the germinal layers during
mouse forebrain development and can be considered a novel sur-
face marker of radial glia (von Holst et al., 2006). This is consistent
with the observation that CSPGs are released by NSPCs growing
as neurospheres (Ida et al., 2006). Neurospheres are viewed as cul-
ture model of NSPCs that grow in suspension and comprise neural
stem and committed progenitor cells. The neurospheres strongly
express the 473HD-epitope. Consistent with this observation, a
compositional analysis detected a considerable variety of mono-
and di-sulfated disaccharide units in chondroitin sulfate/dermatan
sulfate (CS/DS) chains purified from the embryonic mammalian
CNS (Ueoka et al., 2000; Zou et al., 2003; Bao et al., 2005; Properzi
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FIGURE 1 | Differentiation of astrocytes during CNS development

Schematic illustration of the CNS astroglial lineage and its associated

molecular markers. At early embryonic stages NSPCs expressing Nestin,
BLBP, and FGFRs primarily generate neurons. Upon sustained FGF
signaling these NSPCs acquire an additional EGF responsiveness. The
expression of the EGFR is also stimulated by Tnc (Karus et al., 2011). At
that stage NPCs still generate neurons through intermediate progenitors
at least in the embryonic cortex. In contrast, these EGF responsive NPCs
appear to generate only few if any neurons in the embryonic spinal cord.
Regardless of their location along the rostro-caudal axis these NPCs

already share some molecular markers with astroglial cells such as GLAST
and Tnc (Lehre et al., 1995). These cells also express additional markers
such as S100β, Aquaporin 4 (Nagelhus et al., 2004), Fibroblast growth
factor receptor 3 (FGFR3), and Aldh1L1 (Cahoy et al., 2008). Subsequently
the cells transform into GFAP-positive mature astrocytes often classified
into fibrous white matter and protoplasmic gray matter astrocytes. In this
context, soluble molecules such as CNTF/CT1, BMPs, and FGFs are
known to regulate the GFAP expression (Meeuwsen et al., 2003).
Moreover, CSPGs and potentially also Tnc are also involved in the
maturation toward GFAP-positive astrocytes (Sirko et al., 2007).

et al., 2005; Ida et al., 2006). CSPGs as well as CS specific sulfo-
transferases are expressed by both radial glia cells in the embryonic
cortex and NSPCs cultivated as free floating neurospheres (Kabos
et al., 2004; von Holst et al., 2006;Akita et al., 2008; Ishii and Maeda,
2008). To obtain functional insights into potential functions of
the 473HD-epitope, the MAb 473HD, or the enzyme chondroiti-
nase ABC (ChABC) were added to neurosphere cultures. Both

treatments caused a reduction of the number of neurospheres and
proliferating NSPCs (von Holst et al., 2006; Sirko et al., 2010b).
Furthermore, the treatment with ChABC treatment favored the
generation of the astrocyte lineage at the expense of neurogenesis
(Sirko et al., 2007, 2010a). Altogether, these data clearly suggest
that CS-GAGs are involved in controlling the pathway of NSPC
expansion and differentiation.
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The enzymes that are required for the biosynthesis of CS-
GAGs sulfation patterns are detectable in neurospheres and in
neurogenic regions of the developing and the adult CNS (Akita
et al., 2008). With regard to astrocyte development, chicken
embryos lacking the CSPG aggrecan exhibit an increased differ-
entiation of astrocyte precursors toward GFAP-positive astrocytes
(Domowicz et al., 2008). Along these lines the enzymatic degra-
dation of CS-GAGs from telencephalic NSPCs promotes astroglial
differentiation in vitro and in vivo (Sirko et al., 2007).

Besides CSPGs members of the Tenascin gene family recently
gained much attention with regard to glial development owing
to their late embryonic and early postnatal expression (Czopka
et al., 2009; Karus et al., 2011). We have recently shown that
Tnc regulates the maturation of astroglial cells during embryonic
spinal cord development, primarily by orchestrating the growth
factor responsiveness of NSPCs (Figure 1; Karus et al., 2011).
This appears to be a common phenomenon, since a Tnc depen-
dent regulation of growth factor responsiveness has also been
shown for cortical NPCs (Garcion et al., 2004; Yagi et al., 2010).
Tnc also modifies the expression of important neural pattern-
ing genes at the onset of gliogenesis in the developing spinal
cord. However, on a cell biological level, the lack of Tnc affects

gliogenic NSPC proliferation and migration (see also Figure 2;
Karus et al., 2011). The effect on gliogenic NSPC proliferation is
in line with a former report on primary human astrocytes, showing
a Tnc dependent reduction in BrdU incorporation accompanied
by reduced Nestin expression levels (Holley et al., 2005). In addi-
tion, Tnc lowers the Nestin expression level of rat NSPC derived
astrocytes (Nash et al., 2011). Interestingly, both the adult cor-
tex and the adult hippocampus of Tnc deficient animals contain
more S100β-positive astrocytes (Irintchev et al., 2005; Gurevicius
et al., 2009). These phenotypes could be explained by changes of
astrocyte proliferation and differentiation during development.

MATURE ASTROCYTES EXPRESS, RELEASE, AND REGULATE
PROTEOGLYCAN EXPRESSION IN HEALTH AND DISEASE
Astrocytes express a large range of proteoglycans (see also
Figure 2), both during development and after lesion, under
which condition they contribute significantly to the glial scar.
The proteoglycans are generally subdivided into two classes, the
membrane-associated heparin sulfate proteoglycans (HSPGs) of
the glypican and the syndecan subfamilies; and CSPGs of the
lectican family such as brevican, neurocan, versican, and aggre-
can that are mostly released into the extracellular environment

FIGURE 2 | Expression of astrocyte markers and ECM molecules

in the developing mouse spinal cord. (A) GFAP-positive
astrocytes in the developing E18.5 mouse spinal cord are present
predominantly in the white matter and within the later gray matter
as migrating cells. (B) Moreover, Fgfr3-expressing astroglial cells are

distributed throughout the whole spinal cord. (C) Additionally, the
spinal cord is characterized by strong expression of ECM molecules,
such as the glycoprotein Tenascin C or (D) glycosaminoglycans
residues on proteoglycans detected by the mAb473HD. Scale bar:
100 μm.
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(Bandtlow and Zimmermann, 2000). HSPGs play important roles
in FGF-2-signaling by recruiting the cytokine to its receptor FGFR.
Furthermore, they have been implicated in supporting the signal
transfer of morphogens such as Wnt-proteins that regulate neural
stem cell proliferation.

Chondroitin sulfate proteoglycans are enriched in CNS scar
tissue after lesions and thought to inhibit regeneration of axons
(Smith-Thomas et al., 1994, 1995; Silver and Miller, 2004; Carulli
et al., 2005; Properzi et al., 2005; Busch and Silver, 2007; Fitch
and Silver, 2008; Galtrey et al., 2008; Kwok et al., 2008). In agree-
ment with this view, the elimination of CSPGs with the bacterial
enzyme ChABC improves functional recovery in the CNS after
damage (Bradbury et al., 2002;Fawcett, 2006a,b; Fitch and Silver,
2008; Massey et al., 2008). The regeneration preventing properties
of CSPGs and the potential therapeutic value of ChABC have been
extensively commented in recent years (Verma et al., 2008; Faw-
cett, 2009). Yet, ChABC resistant inhibition has also been reported
(Siddiqui et al., 2009). Beyond a role as obstacles to regeneration,
CSPGs have also been implicated in the regulation of synaptic
plasticity (Bradbury et al., 2002; Pizzorusso et al., 2002; Faissner
et al., 2010). In this context the 473HD-epitope has been shown
to be expressed on a subpopulation of GFAP- as well as nestin-
positive cells in a laser lesion model of the adult rat visual cortex.
Therefore, the 473HD-epitope as stem cell-marker designates the
cells which generate the neurospheres that can be cultivated from
the lesioned adult rat cortex (Sirko et al., 2009). This particular
chondroitin sulfate motif has been discovered with the help of a
MAb recognizing the 473HD-epitope (Faissner et al., 1994a; Gates
et al., 1995). The structure has been designated as DSD-1-epitope,
which is strongly enriched on phosphacan (Garwood et al., 1999,
2001). The DSD-1-glycosaminoglycan (GAG)-epitope is function-
ally active in that it promotes neurite outgrowth from several
CNS neuron types (Faissner et al., 1994b; Garwood et al., 1999).
The structural analysis revealed that the 473HD- (synonymous
to DSD-1-) epitope requires sulfation and comprises the CS-D-
type chondroitin sulfate motif (Faissner et al., 1994b; Clement
et al., 1998; Nadanaka et al., 1998; Hikino et al., 2003). Overall,
the structure is characterized by sulfated hexa- or octasaccharide
oligomers that differ from the binding sites of the monoclonal
anti-chondroitin sulfate antibodies CS-56 or MO-225 (Ito et al.,
2005).

THE ECM GLYCOPROTEIN TENASCIN-C IS EXPRESSED AND
REGULATED BY DEVELOPING AND REACTIVE ASTROCYTES
Tenascin-C is a glycoprotein that is expressed in the ECM of
various tissues where it regulates processes such as cell growth,
migration, and adhesion during development (see also Figure 2),
but also under pathological conditions in the adult, for example
in tumors (Faissner, 1997a; Jones and Jones, 2000; Joester and
Faissner, 2001; Chiquet-Ehrismann and Chiquet, 2003; Chiquet-
Ehrismann and Tucker, 2011). Tnc is even involved in plasticity,
memory, and learning by modulation of L-type Ca2+ channels
and modulation via the fibronectin domains (Evers et al., 2002;
Strekalova et al., 2002). Tnc is built up in a modular fashion
and consists of a cysteine-rich amino-terminus, Egf-like domains
followed by fibronectin type III (FNIII) domains and a carboxyter-
minal domain resembling fibrinogen-b. The smallest Tnc variant

contains a sequence of eight FNIII repeats that are included in all
Tnc proteins. A large number of isoforms can be generated by the
inclusion of up to six (mouse), seven (rat, Garwood et al., 2012),
or nine (human) additional alternatively spliced FNIII domains
between the fifth and sixth FNIII domains of the basic structure.
In mice, up to 27 Tnc-isoforms have been described so far, sug-
gesting a combinatorial code (Joester and Faissner, 1999; von Holst
et al., 2007). The alternatively spliced domains A1, A2, A4, B, C,
and D expressed in mouse encode diverse functions by themselves,
which indicates that the combinatorial variation is functionally
relevant (Faissner, 1997b; Joester and Faissner, 2001; Tucker et al.,
2006). It is tempting to speculate that binding and availability of
the EGF might depend on the splice variants of Tnc as structural
folding might also change the availability of the bound EGF. This
could lead to direct changes in the amounts of EGF in the intra-
cellular space and therefore lead to changes in the response to this
factor.

In the developing CNS, Tnc is first expressed by radial glia and
later primarily by astrocytes, where it seems to exert autocrine
effects that regulate the proliferation of astrocyte progenitor cells
(Karus et al., 2011). Tnc modulates the stem celI compartment in
the niche, where it is specifically enriched in the environment of
mouse NSPCs at embryonic day E14–E15 (von Holst et al., 2007).
For example, tenascin-C contributes to the maturation of NSPCs
(Garcion et al., 2004) and to the proliferation and maintenance of
oligodendrocyte precursors (Garcion et al., 2001; Garwood et al.,
2004; Czopka et al., 2009). The gene Sam68 is a Tnc-regulated tar-
get and involved in the control of NSPC proliferation (Moritz et al.,
2008). In vivo and in vitro studies demonstrate that Tnc encodes
permissive as well as inhibitory cues and thereby mediates neu-
ron migration and axon growth and guidance in the context of
neuron-glia interactions (Faissner and Kruse, 1990; Lochter et al.,
1991; Husmann et al., 1992;Götz et al., 1996, 1997; Meiners and
Geller, 1997; Meiners et al., 1999).

Tnc expression is down-regulated in the adult CNS, with the
exception of the canonic neurogenic zones and regions of plastic-
ity in the hypothalamus (Theodosis et al., 1997). In stab wound
and knife-cut injuries, however, a subset of GFAP-positive reactive
astrocytes up-regulate Tnc (McKeon et al., 1991; Laywell et al.,
1992; Brodkey et al., 1995; Zhang et al., 1997; Tang et al., 2003;
Dobbertin et al., 2010). Interestingly, the transcription factor Pax6
is also expressed in CNS lesions (Sirko et al., 2009) and induces the
preferential up-regulation of the large alternatively spliced Tnc-
isoforms in vitro (von Holst et al., 2007). Enhanced Tnc expression
is also observed in gliomas, in non-invasive laser lesions (Sirko
et al., 2009), in the dentate gyrus after unilateral entorhinal cortex
lesion (Deller et al., 1997) or the hippocampus after injection of
kainic acid (Niquet et al., 1995; Nakic et al., 1996). The cytokines
FGF2 and TGF-β that have been implicated in scar formation both
induce Tnc expression in astrocyte cultures (Meiners et al., 1993;
Mahler et al., 1997; Smith and Hale, 1997; Flanders et al., 1998;
Smith et al., 2001). The question whether distinct isoform vari-
ants are selectively regulated has been examined in detail in knife
cut wounds inflicted in the adult CNS, an established forebrain
injury model. While the small isoform dominated in the resting
CNS we observed a 25-fold injury-induced increase of the spliced
paired TNfnBD-containing isoforms. Interestingly, transforming
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growth factor-β1 (TGF-β1) as well as TGF-β1 in conjunction with
FGF2 induced a strong increase of D-containing Tnc isoforms
in the ECM of astrocyte monolayers in culture (Dobbertin et al.,
2010).

FUNCTIONAL IMPLICATIONS OF UP-REGULATION OF Tnc IN
CENTRAL NERVOUS SYSTEM WOUNDS
The expression of the large Tnc-isoforms correlates with periods
of increased axonal growth in the developing CNS (Prieto et al.,
1990; Bartsch et al., 1992; Joester and Faissner, 2001). Most of
the Tnc splice variants in the developing brain contain the FNIII
domain TNfnD which promotes neurite outgrowth in all neu-
rons tested so far (Götz et al., 1996; Rigato et al., 2002; Siddiqui
et al., 2008; Michele and Faissner, 2009). A peptide encoded in
domain TNfnD has been reported to stimulate axon growth in an
α7β1 integrin-dependent manner (Meiners et al., 2001; Mercado
et al., 2004). Thus, the enrichment of Tnc isoforms containing the
TNfnBD or TNfnD6 domains may create an environment favor-
able to axonal growth. This interpretation is consistent with a
recent study reporting that Tnc retards retrograde degeneration in
a spinal cord injury model and that the TNfnD-domain is required
for this effect (Chen et al., 2010; Yu et al., 2011).

On the other hand, Tnc alternating with laminin-1 stripes
exerts a strong repulsive effect on growth cones at the bound-
ary separating it from the promoting substrate in a choice assay
(Faissner and Kruse, 1990; Taylor et al., 1993; Götz et al., 1996).
Using domains heterologously expressed in bacteria we could show
that both the TNegf-type repeats and the alternatively spliced
TNfnA1A2A4 domains are repulsive in this assay (Götz et al.,
1996). Consistent with these observations, sprouting axons do
not penetrate the Tnc-rich denervated outer molecular layer of
the rat fascia dentate after entorhinal lesion (Deller et al., 1997).
Tnc-up-regulation has also been proposed to inhibit terminal
sprouting of mossy fibers in kainate-treated hippocampus (Niquet
et al., 1995). Boundaries formed by Tnc-containing ECM have also
been observed in developing tissues (Faissner and Steindler, 1995;
Treloar et al., 2009).

SOLUBLE FACTORS INFLUENCING ASTROCYTES IN HEALTH
AND DISEASE
Astrocytes can secrete and respond to a number of important
cytokines affecting the cellular state of surrounding cells, such as
microglia and neurons, and astrocytes themselves. Factors, such as
Interleukin-6 (IL-6), Interleukin-1β (IL-1β), TGF-β1, and Tumor
necrosis factor α (TNFα) can act to up regulate or down reg-
ulate other pro- and anti-inflammatory genes including COX-2
and NOS-2. Astrocytes also play an important role in secretion
of trophic factors such as glial cell line-derived neurotrophic fac-
tor (GDNF), brain-derived neurotrophic factor (BDNF), nerve
growth factor (NGF), or basic fibroblast growth factor (bFGF
or FGF2). Astrocytes can promote neuronal and oligodendro-
cyte survival by secretion of such factors and can also promote
myelination and thereby influence maturation of oligodendro-
cytes. Therefore, analysis and targeting of growth factor release to
promote survival and maintenance of adjacent cells like neurons
is an important function that still has to be further analyzed. Here,
we further focus on the role of the activated signaling cascades

that may have impact on diseases concerning the released factors
of astrocytes.

CNTF, IL-6, AND STAT3 SIGNALING
Ciliary neurotrophic factor (CNTF) is a cytokine that can be pro-
duced by glia of the CNS and PNS and in terms of signaling can
be mimicked in its action (Stöckli et al., 1989, 1991) CNTF signals
through the LIF-Receptor-β/gp130 receptor, which, among oth-
ers elicits activation of the JAK/Stat pathway and therefore leads
to changes in gene expression mainly through the activation of
STAT3 (Nakashima et al., 1999). Activation of STAT3 through only
gp130 by Interleukin-6 (IL-6) signaling is known to trigger reac-
tive astrogliosis (Sofroniew, 2009). The role of IL-6 is ambivalent,
depending on the animal model and the disease that occurs in the
experimental paradigms (Campbell et al., 1993; Penkowa et al.,
2003; Quintana et al., 2009).

STAT3 is an early trigger for astrogliosis in astrocytes (Sri-
ram et al., 2004). In a mouse model of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced striatal degenera-
tion, gp130-related cytokines (e.g., IL-6, CNTF) were up regulated
prior to STAT3 activation and nuclear translocation. These events
also involve up regulation of GFAP expression, and GFAP mRNA
and protein therefore can be used as a marker in astrogliosis
(Nakashima et al., 1999; Yanagisawa et al., 1999). STAT3 is not
the only trigger for astrogliosis, but it seems to be required for it
to occur, at least in the case of spinal cord injury. Ablating STAT3
signals in astrocytes as a consequence leads to attenuated GFAP
expression and diminishes astrocyte glial scar formation, com-
pared with Stat3 wild type astrocytes in mice (Herrmann et al.,
2008). In this light, experiments ablating STAT3 in neurons show-
ing that motoneuron survival is significantly reduced after facial
nerve lesion in the adult (Schweizer et al., 2002) might also be
influenced by less active astrocytes as the astrocytes might have
been less activated by missing signals from the lesioned motoneu-
rons. Overall, further study of CNTF, IL-6, and STAT3 signaling
pathways might be interesting as it further clarifies the concert
interaction of astrocytes,other glial cells, and last not least neurons.

GDNF SIGNALING
Astrocytes are the major source for GDNF upon brain injury
(Bresjanac and Antauer, 2000; Nakagawa and Schwartz, 2004). It
also may be responsible for maintenance of GDNF levels in the
substantia nigra of Parkinson patients (Mogi et al., 2001). There-
fore it may also contribute to a survival scenario toward neuronal
survival. While neuronal expression of GDNF under pathophysi-
ological conditions appears to be uncontrollable and widespread
also toward the contralateral side of a lesioned brain, astrocytic
expression of GDNF exerts a strictly local function (Drinkut et al.,
2011). Especially GDNF shows an application dependent func-
tion as intrathecal injection of the factor did not significantly
improve late stage Parkinsons disease (PD) patients (Lang et al.,
2006; Marks et al., 2010), while astrocytic delivery of GDNF proved
to be efficient at least in a mouse model (Drinkut et al., 2011).
Local administration of neurotrophic support therefore appears
to be a possible solution to the general problem of administration
of trophic factors that in the past caused various side effects or
proved to be insufficient (Sendtner et al., 1995; Ochs et al., 2000).
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NF-κB SIGNALING
NF-κB is a mediator of transcriptional induction for various
inflammatory cytokines/factors like IL-6 (Spooren et al., 2010)
and NOS-2. It translocates to the nucleus, and binds to its NF-κB
consensus sequence. NF-κB can be activated by pro-inflammatory
mediators, including LPS, TNFα, and IL-1β. The classical and
endogenous activator is IL-1β. Inhibition of NF-κB in astrocytes is
reported to ameliorate inflammation and improves recovery after
spinal cord injury (Brambilla et al., 2005).

TGF-β1 AND SMAD SIGNALING
The cytokine TGF-β1 is generally expressed at low to undetectable
levels in the brain, but it is strongly up regulated under neu-
ropathological conditions in various neurologic diseases (Kiefer
et al., 1993a,b, 1995; Morgan et al., 1993; Wang et al., 1995; Per-
ess et al., 1996; Vawter et al., 1996; Ata et al., 1997; Krupinski
et al., 1998; De Groot et al., 1999; Ali et al., 2001; Zetterberg
et al., 2004). TGF-β1 signals by binding to TGFβRII. The recep-
tor heterodimerizes with and phosphorylates the TGFβ signaling
receptor TGFβRI. It then activates activin-like kinase 5 or 1 (ALK5,
ALK1), and initiates an intracellular serine/threonine kinase sig-
naling cascade. While ALK1 phosphorylates SMAD1/5/8, ALK5
phosphorylates mothers against decapentaplegic homologs 2/3
(SMAD2/3) which results in nuclear translocation of signaling
complexes that change gene expression pattern (Miyazawa et al.,
2002).

The effects of TGF-β1 in the brain appear to be dependent on
the disease which is examined. There are reports on the neuro-
protective role of TGF-β1 as well as there are reports that show
its pro-inflammatory and neuropathological role. In general the
effects are widespread and appear to be context-dependent with
respect to the disease or disorder examined. An extensive litera-
ture has clearly demonstrated a neuroprotective role (Prehn et al.,
1993; Henrich-Noack et al., 1996; Mattson et al., 1997; Wyss-Coray
et al., 1997;Burton et al., 2002a,b; Brionne et al., 2003; Buisson
et al., 2003). Anyhow there is still a missing link for both of
these roles with respect to astrocytic functions. However, TGF-
β1 is known to have various effects on astrocytes, such as gene
expression, or up-regulation of the amyloid precursor protein
(APP; Amara et al., 1999; Burton et al., 2002a; Lesné et al., 2003)
modulation of the astrocyte response to pro-inflammatory medi-
ators (Hamby et al., 2006, 2008) and regulation of astrogliosis via
increasing GFAP expression, eliciting hypertrophy, and facilitat-
ing glial scar formation through up regulation of ECM molecules
(ECM; i.e., CSPGs, fibronectin, laminin; Smith and Strunz, 2005).
These ECM molecules, especially the CSPGs produced by astro-
cytes have been investigated in concert with nerve cells to elucidate
the diverse functional aspects in terms of neurite growth and sur-
vival. Sofar it is known by now that the protein core unit and the
glycosaminoglycan chains as well as possibly also the sulfation of
these molecules might have even contradictory impact on survival
and neurite growth (Conrad et al., 2011; Klausmeyer et al., 2011).
Consistent with the effects of TGF-β1 on ECM formation, mice
that lack Smad3, the downstream effector of TGF-β1 signaling
through ALK5, exhibit a faster rate of wound closure after stab
injury to the brain, compared with control mice (Wang et al.,
2007). Future elucidation of regulatory molecules in response

to TGF-β1 signaling in the brain pathway should prove a more
detailed picture of the concert activities and the role for astrocytes
in this signaling concert.

NUCLEOTIDES AND THEIR RECEPTORS
In addition to their many essential intracellular functions, the
nucleotides ATP, ADP, and adenosine have functions as extra-
cellular signaling molecules. Nucleotides like ATP or ADP can
exert their activities on various cell types within the body and
they act through different specific plasma membrane recep-
tors, the purinoceptors P2X and P2Y, and the adenosine recep-
tors (Khakh and North, 2006). ATP signaling triggers elevation
in cytosolic calcium in astrocytes (Bowser and Khakh, 2007;
Halassa et al., 2009a; Shigetomi et al., 2010) may even func-
tion in sleep modulation influenced by astrocytes (Halassa et al.,
2009b) and leads to gene expression changes associated with reac-
tive astrogliosis after trauma-induced cell injury in vitro (Neary
et al., 2003, 2004; Wanner et al., 2008). The molecular phar-
macology of P2X, P2Y, and adenosine involves a number of
inhibitors and activators, and some of these are being studied
for effects on reactive astrogliosis and CNS injury and repair
after traumatic injuries such as spinal cord injury (Wang et al.,
2004; Peng et al., 2009). This will be a promising area for future
exploration.

ASTROCYTIC FUNCTIONS IN NEUROLOGICAL DISEASES
Astroglial cells are involved in neurological diseases by determina-
tion of progression and outcome in neuropathological processes.
Astrocytes are involved in various neurodegenerative diseases,
including Alzheimer’s disease (AD), PD, and amyotrophic lateral
sclerosis (ALS; Harvey et al., 2010). Recent evidence suggests that
early stages of neurodegenerative processes are accompanied with
atrophy of astroglia, which causes disruptions in synaptic connec-
tivity, misbalance in neurotransmitter homeostasis, and neuronal
death. At later stages, astrocytes become activated and contribute
to the neuroinflammatory component of neurodegeneration.

In the pathology of AD Aβ can act as a neurotoxic protein that
disrupts calcium signaling in neurons and alters synaptic plastic-
ity (Boillée et al., 2006; Vincent et al., 2010). These effects can
lead to loss of synapses, and therefore a dysfunction in the neural
network. Protection against AD therefore seems to be in part reg-
ulated by environmental cues like higher education. However, the
precise mechanism by which Aβ causes neurodegeneration is still
not clear. The role of astrocytes in early cognitive decline is a major
component of disease pathology (Agostinho et al., 2010; Balducci
and Forloni, 2010; Vincent et al., 2010). Aβ can disrupt astrocytic
calcium signaling and gliotransmitter release, processes that are
vital for astrocyte-neuron communication (Vincent et al., 2010).
Therefore, astrocyte dysfunction may contribute to the earliest
neuronal deficits in AD.

The role of astrocytes in the early pathogenesis of PD has not
been fully characterized so far; but astrogliosis was detected at the
late stages of the disease (McGeer and McGeer, 2008; Mena and
García de Yébenes, 2008; Solano et al., 2008). At the same time the
substantia nigra, in which PD pathology primarily develops, has a
low density of astrocytes compared to other brain regions so that
early astroglial atrophy and especially mitochondrial pathology
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may have a pathological significance that has not been able to be
completely understood so far (Stichel et al., 2007; Schmidt et al.,
2011). Astrocyte degeneration can result in diminished support
for dopaminergic neurons and therefore be associated with an
increased vulnerability. However, this is still a hypothesis to be
tested.

Neuron-glial interactions also play an important role in ALS
pathology. Prominent astroglial degeneration and atrophy was
found in the human SOD1G93A transgenic mouse model. The
astrocyte degeneration included both neuronal death and the
appearance of clinical symptoms (Rossi et al., 2008; Rossi and
Volterra, 2009). The ALS astrocytes in mice (expressing the human
SOD1) were more sensitive to glutamate, and displayed a gluta-
mate excitotoxicity (Rossi et al., 2008; Rossi and Volterra, 2009).
Even more important, the selective silencing of the SOD1 mutant
gene in astrocytes significantly slowed the progression of ALS in
transgenic mice (Yamanaka et al., 2008). Late stages of ALS are also
characterized by significant astrogliosis and astrocyte proliferation
(McGeer and McGeer, 2008).

OUTLOOK
Astrocytes and astrocyte development have gained more and more
intensive research focus over the past years. The changes in view
on these cells started with the switch to a more global view in terms
of a tissue or organ and not in terms of a single cell type therein.
Analysis of astrocyte development and changes that lead to spe-
cific alterations are of higher interest as pathological situations like
lesions, toxic insults, or neurodegenerative diseases show – paral-
lel to what has been shown for neurons already – that astrocytes
reexpress markers that have been down regulated. The difference
to neurons might be on the first sight the capacity to undergo
cell division so that the cells primarily do not undergo apoptosis.
Here, extracellular cues are of high importance as they give sig-
nals to the cells and may even regulate the availability of survival
versus cell death signals by blocking or neutralizing specific fac-
tors. To further elucidate the concert action of soluble factors and
matrix components that influence on the other hand the expres-
sion profile of the developing and mature astrocytes will be of high
importance for the future research.
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