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The blood brain barrier (BBB) is a highly dynamic interface between the central nervous sys-
tem (CNS) and periphery.The BBB is comprised of a number of components and is part of
the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs
of abuse alter the function of the BBB which likely contributes to the neurotoxicities asso-
ciated with these drugs. In both preclinical and clinical studies, psychostimulants including
methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alter-
ations in tight junction protein expression and conformation, increased glial activation,
increased enzyme activation related to BBB cytoskeleton remodeling, and induction of
neuroinflammatory pathways. These detrimental changes lead to increased permeability
of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse
of these psychostimulants, notably methamphetamine and cocaine, has been shown to
increase the invasion of peripheral bacteria and viruses into the brain. Much work in this
field has focused on the co-morbidity of psychostimulant abuse and human immunode-
ficiency virus (HIV) infection. As psychostimulants alter BBB permeability, it is likely that
this BBB dysfunction results in increased penetration of the HIV virus into the brain thus
increasing the risk of and severity of neuro AIDS.This review will provide an overview of the
specific changes in components within the BBB associated with psychostimulant abuse as
well as the implications of these changes in exacerbating the neuropathology associated
with psychostimulant drugs and HIV co-morbidity.

Keywords: blood brain barrier, cocaine, HIV, mdma, methamphetamine, neuroinflammation, nicotine

INTRODUCTION
The blood brain barrier (BBB) is a specialized structure formed
by brain endothelial cells (BECs) that are tightly interconnected
to form a boundary between the central nervous system (CNS)
and periphery (Abbott et al., 2010). Once thought to be static,
the BBB is now known to be an active and dynamic interface
that responds to signals from both the brain parenchyma and
vasculature. BBB dysfunction contributes to the pathophysiology
of numerous CNS disorders including Alzheimer’s disease (AD),
Parkinson’s disease (PD), multiple sclerosis, ischemia, and neu-
roAIDS (Stewart et al., 1992; Nath et al., 2001; Samii et al., 2004;
Compston and Coles, 2008; Yenari and Han, 2012). Recent evi-
dence points to the ability of drugs of abuse (e.g., stimulants)
to disrupt BBB function. This review will provide an overview
of normal BBB structure and function, focusing on the regula-
tion of neuroinflammation, and will provide examples of BBB
disruption specifically associated with stimulant drug abuse. As
neuroAIDS is exacerbated by stimulant abuse, we will also dis-
cuss the implications of stimulant-induced BBB dysfunction as it
relates to neuroAIDS disease progression.

COMPONENTS OF THE BBB
The structure of the BBB has been thoroughly described in other
reviews (Sandoval and Witt, 2008; Carvey et al., 2009). In brief, the

BBB is comprised of highly specialized BECs which interact with
pericytes, the vascular basement membrane, and astrocytes (Diaz-
Flores et al., 1991; Krueger and Bechmann, 2010). BECs are closely
associated through cell–cell complexes of tight junction proteins:
claudins, occludins, and junctional adhesion molecules (JAMs;
Hawkins and Davis, 2005). Adherens junctions also form between
BECs. Accessory proteins like zona occludins (ZO), cingulin, and
afadin (AF-6) provide structural support and stability to both
tight and adherens junctions (Yamamoto et al., 1999; Mark and
Davis, 2002). Though little is known about pericyte involvement
within the BBB, these cells likely regulate cerebral blood flow (Ban-
dopadhyay et al., 2001) and stabilize forming vessels (Ramsauer
et al., 2002). BECs and pericytes are enveloped by extracellular
matrix proteins that comprise the basement membrane (Farkas
and Luiten, 2001). Astrocytes interact with components of the
BBB through their foot processes that make contact with BECs to
form the glia limitans perivascularis as well as the basement mem-
brane (Krueger and Bechmann, 2010). Astrocytic foot process in
the margin of the brain form a thin membrane called the glia limi-
tans superficialis in the subarachnoid space. These two glia limitans
are classically viewed as continuous, starting at the subarachnoid
space, and merging with the parenchymal limitans as vessels pene-
trate into brain. Astrocytes facilitate BBB development by inducing
tight junction formation, providing microvascular support, and
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allowing molecule (e.g., water, sugar, ions) diffusion into the brain
(Janzer and Raff, 1987; Madsen and Hirschberg, 2010).

NEUROVASCULAR COUPLING AT THE BBB INTERFACE
There is a complex relationship between vascular and neuronal sys-
tems within the CNS. These interactions are promoted by the BBB,
neurons, and glia, which together make up the neuro(glio)vascular
unit (Hawkins and Davis, 2005; Koehler et al., 2009). This neu-
rovascular coupling regulates cerebral blood flow enabling efficient
oxygen and nutrient supply to various cell types and brain regions
(Iadecola, 2004). Moreover, intracellular communication within
the neuro(glio)vascular unit allows for localized control of cere-
bral blood flow to match the needs of specific brain regions. These
interactions are important for blood flow to the neurons, as well
as for the development, and maintenance of the neurovasculature.

FUNCTIONS OF THE BBB
The main function of the BBB is to maintain homeostasis of the
brain. This barrier protects the CNS from peripheral toxins within
the circulation. These toxins may be endogenous factors or exoge-
nous xenobiotics (Abbott et al., 2010). The impenetrability of
the BBB results from physical restriction due to tight junction
connectivity of BECs, transport regulation limiting transcellu-
lar migration, and enzymatic activities of BECs that metabolize
harmful substances at the vascular face of the BBB (Madsen and
Hirschberg, 2010).

Transport of molecules across the BBB is strictly regulated. A
wide range of lipid-soluble molecules passively diffuse through
BECs and certain molecules and cells are capable of paracellular
migration between adjacent BECs. Most molecules are restricted
either by lipid-solubility, polarity, or size, and thus require trans-
porters to cross the BBB. Transporters found within the BBB
are numerous, but in general, transporters can be categorized as
being ion transporters, active transporters (e.g., P-glycoprotein),
sodium-dependent transporters, or sodium-independent trans-
porters (Carvey et al., 2009). These transport systems supply nutri-
ents to the brain from the blood and remove metabolic byproducts
from the brain to the blood for elimination (Ohtsuki, 2004).

Through neurovascular coupling, the BBB regulates cerebral
blood flow. Contractile proteins identified in pericytes are thought
to alter vascular diameter and cerebrovascular blood flow (Ban-
dopadhyay et al., 2001). Transport systems bring in vasoactive
factors from the periphery that interact with smooth muscle
cells and pericytes surrounding the BBB endothelium to allow
for vasodilation or constriction (Peppiatt et al., 2006; Bell et al.,
2010). Additionally, cells within the neuro(glio)vascular unit can
secrete local vasoregulators like norepinephrine, nitric oxide, and
endothelin which regulate regional cerebral blood flow (Lecrux
and Hamel, 2011).

Inflammatory cells and signaling factors from the periphery
into the CNS are trafficked across the BBB. The neuroinflam-
matory responses produced by these cells and factors can also
alter BBB function and stability. While it is yet to be determined
whether BBB dysfunction occurs prior to neuroinflammation
or vice versa, studies have clearly shown that the inflamma-
tory response by resident neuroglia perpetuates BBB dysfunc-
tion and this BBB dysfunction increases the neuroinflammatory

response. Under normal physiological conditions, the BBB limits
the entry of most leukocytes into the CNS. However, select leuko-
cytes like neutrophils, can cross the BBB during normal immune
surveillance with little disruption to BBB tight junctions (Petty
and Lo, 2002). During a neuroinflammatory response, immune
factors, and endothelial adhesion molecules signal to increase
immune cell migration through the BBB (Petty and Lo, 2002).
Signals resulting in increased immune cell migration can alter
the structural organization of tight junction proteins and lead
to actin cytoskeleton remodeling in the BBB basement mem-
brane (Deli et al., 1995; Couraud, 1998; Ransohoff et al., 2003).
Migrating peripheral immune cells disrupt normal BBB function,
and produce cytokines and chemokines within the CNS which
furthers BBB disruption (Cartier et al., 2005). Cytokines [e.g.,
tumor necrosis factor alpha (TNFα), interleukin (IL)-1β and IL-6]
and the CCL2 chemokine are increased in serum, neuronal tis-
sue, and cerebrospinal fluid in several CNS disorders including
traumatic brain injury (Morganti-Kossman et al., 1997), HIV-
associated encephalitis (Cartier et al., 2005), and Huntington
disease (Stolp and Dziegielewska, 2009). These neuroinflamma-
tory factors likely contribute to BBB breakdown occurring in
these disorders through activity at their receptors on BECs and
other BBB cell types (Buckner et al., 2006). Peripheral immune
cells can also trigger increased production of inflammatory factors
(Verma and Szmitko,2006; Fletcher et al., 2009),neurotransmitters
(e.g., glutamate), neurotrophic factors (e.g., vascular endothe-
lial growth factor), and proteases (e.g., matrix metallopeptidase
(MMP-9; Petty and Lo, 2002) from BECs and astrocytes. These
factors perpetuate neuroinflammation, and contribute to contin-
uing alterations to the BBB (Petty and Lo, 2002). Alterations in
BBB integrity resulting from neuroinflammation produce a cas-
cade resulting in further BBB disruption and increased penetration
of immune cells into the CNS. This feed-forward cycle can lead
to disruptions in physiological functions of the BBB normally in
place to protect against peripheral toxins and xenobiotics, allow
for cross-barrier transport, and regulate cerebral blood flow.

Many abused drugs, including stimulants,are pro-inflammatory
which leads to BBB disruption and propagates the cyclic rela-
tionship between neuroinflammation and BBB damage. This may
accelerate the onset of the neurotoxicities associated with chronic
use of these potent drugs (Czub et al., 2001; Nath et al., 2002). This
review focuses on the effects of psychostimulant drugs though
many of the molecular and cellular mechanisms of BBB dys-
function and neuroinflammation have been well-characterized in
studies focused on the CNS depressant alcohol (see reviews: de la
Monte et al., 2009; Perdisky et al., 2011; Strazza et al., 2011).

STIMULANT DRUGS AND THE BBB
METHAMPHETAMINE
Current surveys estimate that approximately 13 million people
ages 12 and older have abused methamphetamine (meth) in their
lifetimes, making it the second most widely abused illicit drug in
the United States after cannabis (NSDUH 2011; United Nations
Office on Drugs and Crime 2007). Meth reverses the transport
of norepinephrine, dopamine (DA), and serotonin (5-HT) lead-
ing to excess release of these monoamines from the cytoplasm
and storage vesicles into the synapse (Rothman et al., 2001). Meth
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also prevents monoamine reuptake causing them to remain in
the synaptic cleft to increase post-synaptic receptor stimulation.
Chronic meth abuse in humans is associated with neurotoxic-
ities resulting in damage to both DA and 5-HT terminals in a
variety of brain regions (see review: Krasnova and Cadet, 2009).
Proposed mechanisms underlying meth-induced neurotoxicity
include increased reactive oxygen species (ROS) and dopamine-
quinone (DAQ) production (Kuhn et al., 2006), hyperthermia
(Kiyatkin et al., 2007), neuroinflammation (Guilarte et al., 2003),
and BBB dysfunction (Sharma and Kiyatkin, 2009). It is likely that
more than one mechanism underlies the neuronal maladaptations
and damage associated with meth abuse, and that this damage
is associated with the interaction of multiple mechanisms. For
example, oxidative stress and hyperthermia can increase BBB dys-
function which in turn, can exacerbate neuroinflammation after
meth exposure. While some studies show direct neurotoxicity
(Ricaurte et al., 1980; McCann et al., 2008) after meth exposure
without BBB disruption or neuroinflammation, these studies did
not assess changes in the BBB or in the inflammatory response
so it is uncertain whether neurotoxicity can occur independent of
BBB disruption and/or neuroinflammation.

Preclinical studies have reported BBB dysfunction in both
whole animal and in vitro models. Our laboratory recently showed
that a single intraperitoneal injection of either 3 or 9 mg/kg meth
in rats resulted in BBB damage in the prefrontal cortex and nucleus
accumbens shell, identified by punctate areas of fluorescein isoth-
iocyanate (FITC)-labeled albumin leakage (Kousik et al., 2011).
Other rodent studies also showed BBB dysfunction following
acute meth treatment marked by leakage of Evans blue into the
parenchyma or through increased IgG immunostaining (Bowyer
and Ali, 2006; Bowyer et al., 2008;Kiyatkin and Sharma, 2009,
2011; Sharma and Kiyatkin, 2009; Kuroda et al., 2010; Martins
et al., 2011). The treatment regimens varied greatly from single
doses ranging from 3–40 mg/kg to several acute doses over 24 h,
all of which compromised BBB integrity. Alterations to the BBB
occurred where meth-induced changes in DA or 5-HT levels and
terminal damage were most pronounced, including the striatum,
cortex, and hippocampus, but not in areas where monoamine lev-
els were unaffected by meth (e.g., the substantia nigra; Sharma and
Ali, 2006; Bowyer et al., 2008; Kousik et al., 2011; Martins et al.,
2011). Increased permeability across BECs after meth treatment
was also observed in vitro through dose-dependent decreases in
transendothelial electrical resistance, a method commonly used to
measure paracellular permeability (Mahajan et al., 2008; Zhang
et al., 2009; Abdul Muneer et al., 2011). Clinical studies report
increased levels of peripheral toxins, like HIV and hepatitis C
virus, in the brain parenchyma of meth-abusing humans (Nath
et al., 2001;Letendre et al., 2005, 2007; Schep et al., 2010). In fact,
70% of individuals undergoing treatment for hepatitis C in one
study were self-reported chronic meth abusers (Letendre et al.,
2007). These individuals had a higher hepatitis C viral load in
the brain than meth-naïve individuals diagnosed with hepatitis C
suggesting that meth-induced BBB dysfunction can increase viral
penetration into the CNS (Letendre et al., 2007).

Alterations in tight junction complexes can contribute to loss
of BBB integrity after meth treatment. Meth treatment decreases
the expression of ZO-1, occludin, and claudin-5 in both in vivo

and in vitro studies (Mahajan et al., 2008; Ramirez et al., 2009;
Banerjee et al., 2010; Abdul Muneer et al., 2011; Martins et al.,
2011). Additionally, meth can also alter other BBB cell types
and interactions. For example, meth increases the expression
of peptidases, like MMP-1 and MMP-9, which are involved
in degrading certain tight junction proteins to produce struc-
tural changes to the BBB basement membrane (Conant et al.,
2004). Meth also activates microglia and astrocytes within the
neuro(glio)vascular unit which may contribute to meth-induced
neurotoxicity, potentially through the secretion of inflammatory
cytokines, chemokines, and vasoactive factors (Kiyatkin et al.,
2007; Wisor et al., 2011). These structural and functional changes
within the BBB/neuro(glio)vascular unit can also result in brain
edema and disruption of proper ion flow across the barrier
(Sharma and Kiyatkin, 2009).

Neuroinflammation is a proposed mechanism underlying
meth-induced neurotoxicity and may also contribute to BBB dam-
age produced by meth. A single 30 mg/kg intraperitoneal injection
of meth increases the expression TNFα and IL-6 in the hip-
pocampus, frontal cortex, and striatum in mice (Goncalves et al.,
2008). Similar increases in TNFα, IL-1β, and IL-6 are reported
after multiple meth treatments and are potentially linked to meth-
induced microglial activation (Cadet et al., 1994; Lai et al., 2009;
Goncalves et al., 2010). Mahajan et al. (2008) showed that exposure
to 50 nM meth produced a 47% increase in the transmigration of
peripheral blood mononuclear cells using an in vitro BBB model.
Meth-induced increases in glial activation as well as TNFα and
TNF receptor expression were attenuated with pre-treatment of
indomethacin, an anti-inflammatory agent, suggesting a potential
therapeutic target for impeding meth-neurotoxicity (Goncalves
et al., 2010). In summary, neuroinflammation contributes to the
neurotoxicities seen after meth exposure and potentiates the feed-
forward cycle between neuroinflammation and BBB damage to
produce prolonged BBB damage (see Table 1 for a summary of
the effects of meth on BBB function).

Table 1 | Summary of the preclinical and clinical literature on

meth-induced BBB dysfunction.

In vitro BBB model Decreased transendothelial resistance (TEER)1,2,3

Increased leakage of FITC-Dextran2,4

Increased transmigration of PBMCs1

Increased MMP-1 activation5

Rodent models Increased leakage of FITC-labeled albumin

(FITC-LA) and Evans Blue6,7,8,9

Increased IgG penetration10,11,12

Increased edema8,13

Decreased expression of zona occludin 1 (ZO-1),

occludin, and claudin-53,4,14

Clinical studies Increased penetration of peripheral viruses like HIV

and Hepatitis C15,16

1Mahajan et al. (2008); 2Zhang et al. (2009); 3Abdul Muneer et al. (2011); 4Ramirez

et al. (2009); 5Conant et al. (2004); 6Kousik et al. (2011); 7Martins et al. (2011);
8Sharma and Kiyatkin (2009); 9Kiyatkin and Sharma (2011); 10Sharma and Ali (2006);
11Bowyer et al. (2008); 12Kuroda et al. (2010); 13Kiyatkin et al. (2007); 14Banerjee

et al. (2010); 15Nath et al. (2001); 16Letendre et al. (2005, 2007).
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MDMA (ECSTASY)
3,4-Methylenedioxymethamphetamine (MDMA or “Ecstasy”) is
a synthetic derivative of amphetamine. There is a growing popu-
lation of MDMA abusers, particularly among young adults who
attend “raves” or private clubs (NIDA 2008). Like other amphet-
amines, MDMA increases the release of monoamines from nerve
terminals through interactions with the serotonin transporter
(SERT) and dopamine transporter (DAT; Sulzer et al., 2005).
MDMA has a higher affinity for SERT than DAT resulting in
a greater release of 5-HT than DA (Rothman and Baumann,
2003). Like meth, secondary release of glutamate may contribute
to the neurotoxic effects of MDMA (Nash and Yamamoto, 1992).
Though acute consequences of MDMA use have been well-studied,
long-term effects and potential neurotoxicities are not well known.
MDMA appears to be selectively toxic to 5-HT terminals and pro-
duces long-lasting depletions of 5-HT in the hippocampus, pre-
frontal cortex, amygdala, and striatum (Morgan and Gibb, 1980;
Ricaurte et al., 1985, 1988). Moreover, thioester metabolites of
MDMA, including 3,4-dihydroxyamphetamine (DHA), also pro-
duce long-term depletion of 5-HT (Monks et al., 2004). Though
5-HT toxicities have been identified in multiple brain areas, the
mechanisms underlying this selective toxicity remain unknown.

Recent studies suggest that BBB dysfunction may contribute
to MDMA-induced neurotoxicities. Increased leakage of Evans
Blue or trypan blue as well as increased IgG immunostaining
were reported in several cortical areas, hippocampus, cerebellum,
and striatum of rats treated acutely with MDMA (Yamamoto and
Bankson, 2005; Sharma and Ali, 2008; Torres et al., 2011). BBB
dysfunction was observed immediately following acute MDMA
treatment and up to 10 weeks following an acute injection.
Increased BBB permeability after MDMA treatment was associated
with increased parenchymal penetration of endogenous albumin
(Sharma and Ali, 2008), increased activation of astrocytes, and
microglia (Monks et al., 2004), and increased brain water content
suggesting edema (Sharma and Ali, 2008).

In addition to altering BBB permeability, MDMA increases
expression of pro-inflammatory cytokines, including IL-1β, in
brain tissue (Torres et al., 2011). These cytokines can con-
tribute to the feed-forward cycle between BBB dysfunction and
neuroinflammation. MDMA abuse also leads to oxidative stress
(Yamamoto and Bankson, 2005). MDMA-induced excess release
of DA and 5-HT results in the formation of ROS, DAQ, and toxic
metabolites from 5-HT oxidation (Quinton andYamamoto, 2006).
The accumulation of toxic free radicals increases the susceptibility
of brain tissue to ischemic injury and triggers a variety of signaling
cascades leading to BBB dysfunction, brain edema, and neuroin-
flammation (Gu et al., 2012). It is likely that the oxidative stress
and neuroinflammation produced by MDMA results in BBB dys-
function, though further research is needed to verify if MDMA has
a direct detrimental effect on the BBB (see Table 2 for a summary
of the effects of MDMA on BBB function).

COCAINE
Cocaine inhibits monoamine reuptake, particularly through bind-
ing DAT (Barnett et al., 1981). While cocaine abuse was at its
highest levels in the 1970–1980s, the United States is still the
world’s number one importer and user with approximately 1.9

Table 2 | Summary of the preclinical and clinical literature on

MDMA-induced BBB dysfunction.

Rodent models Increased leakage of Evans Blue and Trypan Blue1

Increased penetration of IgG and endogenous

albumin2

Increased edema1

Increased activation of astrocytes and other neuroglial

cells1,3

Increased expression of pro-inflammatory

cytokines2,4,5

Increased production of reactive oxygen species6,7

1Sharma and Ali (2008); 2Torres et al. (2011); 3Monks et al. (2004); 4Orio et al.

(2004); 5O’Shea et al. (2005); 6Yamamoto and Bankson (2005); 7Yamamoto and

Raudensky (2008).

million current cocaine abusers (NSDUH 2008). Cocaine abuse is
not linked to DA or 5-HT terminal damage (Bennett et al., 1993)
though cocaine can produce oxidative stress and neuroinflamma-
tion. These potentially toxic effects likely contribute to cocaine-
induced BBB dysfunction. Chronic cocaine administration
(30 mg/kg/day intraperitoneal injection) ruptures the neurovascu-
lar capillaries and basement membranes of rats (Barroso-Moguel
et al., 1997). Increased BBB permeability marked by approximately
50% more Evans Blue or sodium fluorescein leakage from blood
to brain after cocaine exposure has also been observed in rodents
(Sharma et al., 2009; Yang et al., 2010; Yao et al., 2011). Whole
animal studies are more recent in this field as most studies inves-
tigating the effects of cocaine on BBB integrity use an in vitro BBB
model comprised of brain microvascular endothelial cells and C6
astrocytes. Decreases in transendothelial electrical resistance and
increases in FITC-Dextran leakage across an endothelial mono-
layer indicates increased permeability across BECs after cocaine
treatment (Fiala et al., 1998, 2005; Zhang et al., 1998; Gandhi et al.,
2010; Yao et al., 2011). Clinical studies reveal similar BBB break-
down in the basal ganglia and increased HIV penetration into the
CNS of cocaine-abusing humans (Nath et al., 2001).

Cocaine-induced BBB dysfunction is partially characterized by
loss of, or alterations in, tight junction protein complexes (Fiala
et al., 2005, 2008). Significant decreases in ZO-1 and JAM-2 occur
in both rodents and in vitro BBB preparations (Dhillon et al.,
2008; Gandhi et al., 2010; Yao et al., 2011). Cocaine treatment also
increases gene expression of factors, including MMP-1, that con-
tribute to basement membrane actin rearrangement resulting in
stress fiber formation around cerebral vessels (Nair et al., 2004;
Fiala et al., 2005; Dhillon et al., 2008). Persistent loss of, or con-
formation changes in tight junction proteins, and reorganization
of basement membrane fibers leave the brain open to peripheral
toxin penetration leading to CNS disorders linked with cocaine
abuse (see Table 3 for a summary of the effects of cocaine on BBB
function).

Neuroinflammation induced by cocaine (through increases in
endothelial adhesion molecules and inflammatory factors) poten-
tially plays an important role in BBB dysfunction. Increases
in intracellular adhesion molecule 1 (ICAM-1), vascular cell
adhesion molecule 1 (VCAM-1), endothelial-leukocyte adhesion
molecule (ELAM or selectin-1), and platelet endothelial cell
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Table 3 | Summary of the preclinical and clinical literature on

cocaine-induced BBB dysfunction.

In vitro BBB model Decreased transendothelial resistance (TEER)1,2

Increased leakage of FITC-Dextran, Evans Blue, and

toxins1,2,3,4,5,6

Increased transmigration of peripheral blood

mononuclear cells (PBMCs) and expression of

adhesion molecules4,7,8,9,10

Decreased expression of zona occludin 1(ZO-1),

junctional adhesion molecule 2 (JAM-2), and other

tight junction proteins1,2,5,7,8

Increased expression of pro-inflammatory

cytokines3,10,11

Rodent models Increased leakage of Evans Blue and NaFl5,12

Increased edema13,14

Increased transmigration of leukocytes and

expression of adhesion molecules13,15

Decreased expression of zona occludin 1 (ZO-1)5

Clinical studies Increased penetration of peripheral viruses like HIV16

Increased transmigration of leukocytes and

expression of adhesion molecules17

1Fiala et al. (2005); 2Gandhi et al. (2010); 3Zhang et al. (1998); 4Fiala et al. (1998);
5Yao et al. (2011); 6Fiala et al. (1996); 7Fiala et al. (2008); 8Dhillon et al. (2008); 9Nair

et al. (2004); 10Gan et al. (1999); 11Lee et al. (2001); 12Yao et al. (2011); 13Barroso-

Moguel et al. (1997); 14Sharma et al. (2009); 15Chang et al. (2000); 16Nath et al.

(2001); 17Buch et al. (2011).

adhesion molecule 1 (PECAM1), have been indentified in both
preclinical studies (Fiala et al., 1998, 2005; Gan et al., 1999; Chang
et al., 2000) and in cocaine-abusing humans (Buch et al., 2011).
Increases in circulating leukocytes and cell adhesion molecules
on leukocytes have also been reported with cocaine treatment in
rodents and in vitro (Chang et al., 2000; Nair et al., 2004). Increases
in cell adhesion molecules on the BBB endothelium and on leuko-
cytes promote more leukocyte extravasation from blood to brain
(Barroso-Moguel et al., 1997; Gan et al., 1999). Indeed, cocaine
treatment in vitro results in a 100% increase in the number of
peripheral blood mononuclear cells migrating across BECs (Fiala
et al., 1998, 2008; Zhang et al., 1998). Cocaine-induced increases
in leukocyte-endothelial adhesion are accompanied by elevated
levels of pro-inflammatory cytokines and chemokines. Western
blotting and immunostaining reveal increases in the expression
of TNFα, IL-6, IL-8, nuclear factor kappa B (NFκB), activator
protein 1 (AP-1), and CCR2 (Zhang et al., 1998; Gan et al.,
1999; Lee et al., 2001; Dhillon et al., 2008). These inflamma-
tory signals are also associated with increased viral invasion of
macrophage-tropic HIV across an in vitro BBB (Fiala et al., 1996;
Zhang et al., 1998) which may explain the greater neuropathol-
ogy observed in patients co-morbid for HIV infection and cocaine
abuse (Fiala et al., 2008). The effects of cocaine on the BBB are
likely exacerbated by cocaine-induced neuroinflammation.

NICOTINE
Though the number of cigarette smokers in the United States
has been steadily on the decline since the 1960s, an estimated

45.3 million Americans are still considered daily cigarette smokers
(CDC 2010). An average cigarette yields approximately 1 mg
of absorbed nicotine, a stimulant alkaloid responsible for the
addictive-properties of cigarette smoking (Connolly et al., 2007).
Nicotine is a soluble small molecule that rapidly diffuses through
the BBB and can interact directly with nicotinic acetylcholine
receptors (nAChRs) on BECs (Le, 2003). Preclinical studies using
rodent models of acute and chronic nicotine exposure reported
compromised BBB integrity, marked by Evans blue or [14C]
sucrose leakage into brain parenchyma. This BBB disruption
occurred as early as 2 h after acute nicotine and after 6 weeks
of chronic exposure (Lin et al., 1992; Uzum et al., 1999; Venis-
nik, 2000;Hawkins et al., 2004, 2005). In vitro studies using
either brain microvascular endothelial cells alone or in combi-
nation with C6 astrocytes revealed increases of FITC-Dextran
and [14C]sucrose leakage across the cells after nicotine treat-
ment (Schilling et al., 1992; Abbruscato et al., 2002). Nicotine also
decreases transendothelial electrical resistance in an in vitro BBB
model (Hutamekalin et al., 2008; Rodriguez-Gaztelumendi et al.,
2011). This decrease in resistance is dose-dependent (0.1–100 µM)
and sufficient enough to produce a 60–150% increased invasion
of Escherichia coli across brain microvascular endothelial cells
(Chen et al., 2002). Whole animal studies also revealed nicotine-
induced BBB dysfunction leading to increased transport from
blood to brain of xenobiotics like squanivir, a protease inhibitor
included in anti-retroviral therapy for HIV infection (Manda et al.,
2010a). These studies offer added insight into the consequences
of nicotine use relating to uptake of therapeutics into the CNS.
Finally, both in vitro and in vivo studies report significant loss, or
alterations in, tight junction proteins including ZO-1, claudin-3,
JAMs, and occludin (Abbruscato et al., 2002; Hawkins et al., 2004;
Hutamekalin et al., 2008; Manda et al., 2010b).

In addition to altering BBB tight junctions, nicotine affects
transport and receptor systems involved in normal BBB function.
Nicotine increases the activity of monocarboxylase and organic
cation transporters while decreasing the functional activity of
ion transporters like Na+, K+, 2Cl− co- transporter, and Na+,
K+-ATPase on BECs (Wang et al., 1994; Abbruscato et al., 2004;
Lockman et al., 2005; Paulson et al., 2006; Liou et al., 2007). Nico-
tine treatment produced a 22 and 17% decrease in Na+ and
K+-ATPase activity in the microvasculature and brain, respec-
tively (Wang et al., 1994). Nicotine also inhibited the activity
of P-glycoprotein, an important efflux transporter responsible
for impeding the entry of a range of compounds into the CNS
(Manda et al., 2010a). Changes in transport mechanisms across
the BBB can produce detrimental alterations in ion gradients
and in the nutrients available to the brain (Paulson et al., 2006;
Yang et al., 2006). Nicotine-induced alterations in ion transport
are especially injurious as changes in ion gradients lead to brain
edema lasting for up to 3 weeks after nicotine exposure as well
as increased cerebral ischemic injury (Wang et al., 1997; Paulson
et al., 2010). nAChRs on cells within the BBB are also affected
by nicotine. Chronic nicotine decreases nAChR surface expres-
sion as well as expression of certain nAChR subunits, particularly
the α2 isoform, on BECs (Wang et al., 1994; Abbruscato et al.,
2004; Lockman et al., 2005). While nicotine activity at nAChRs
on BECs alters the BBB, treatment with nAChRs antagonists (e.g.,
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mecamylamine, α-bungarotoxin, and hexamethonium) decreases
nicotine-induced BBB dysfunction. This decrease in BBB disrup-
tion was identified by attenuation of [14C]sucrose leakage into the
brain parenchyma, reversal of ZO-1 loss, and decreased Escherichia
coli invasion in an in vitro BBB model (Abbruscato et al., 2002;
Chen et al., 2002; Conklin et al., 2002; Hawkins et al., 2005; see
Table 4 for a summary of the effects of nicotine on BBB function).

Nicotine can activate inflammatory signals that directly affect
BBB integrity. Studies have highlighted the effects of nicotine on
adhesion molecules necessary for immune cell extravasation from
the blood into the brain. Nicotine enhances peripheral blood
mononuclear cell migration across cerebral vessels through a
cascade promoting increased expression of adhesion molecules
and inflammatory cytokines (Yong et al., 1997; Albaugh et al.,
2004; Bradford et al., 2011). The expression of ICAM-1, VCAM-1,
and P-selectin is increased with chronic nicotine treatment (Yong
et al., 1997; Albaugh et al., 2004). Furthermore, nicotine increases
gene expression of TNFα, IL-18, IL-1β, and chemokines including
CCL2, CCL8, and CXC3CL1 (Bradford et al., 2011). Nicotine also
decreases gene expression of anti-inflammatory factors (e.g., Bcl6,
IL-10, and CCL25; Bradford et al., 2011). These studies indicate
that nicotine increases the expression of inflammatory cytokines
and endothelial adhesion molecules and can enhance leukocyte
migration across the BBB, particularly during neuroinflammation.

Table 4 | Summary of the preclinical and clinical literature on

nicotine-induced BBB dysfunction.

In vitro BBB model Decreased transendothelial resistance (TEER)1,2

Increased leakage of FITC-Dextran,[14]Sucrose, and

toxins3,4,5

Increased transmigration of peripheral blood

mononuclear cells (PBMCs) and expression of

adhesion molecules2,6,7

Decreased expression of zona occludin 1 (ZO-1),

occludin, and cadherins2,4,8

Changes in nicotinic acetylcholine receptors

(nAChR), ion channels, and transporter

systems9,10, 11, 12

Rodent models Increased leakage of Evans Blue,[14]Sucrose, and

peripheral toxins8,12,13, 14,15

Increased edema16,17

Decreased expression of zona occludin 1 (ZO-1),

occludin, and claudin-58,12

Increased expression of pro-inflammatory

cytokines18

Changes in nAChRs, ion channels, and transporter

systems19,20,21

Increased production of reactive oxygen species

(ROS)8,22,23

1Rodriguez-Gaztelumendi et al. (2011); 2Hutamekalin et al. (2008); 3Schilling et al.

(1992); 4Abbruscato et al. (2002); 5Chen et al. (2002); 6Albaugh et al. (2004);
7Speer et al. (2002); 8Manda et al. (2010a,b); 9Liou et al. (2007); 10Yang et al.

(2006); 11Paulson et al. (2006); 12Abbruscato et al. (2004); 13Hawkins et al. (2005);
14Uzum et al. (1999); 15Lin et al. (1992); 16Wang et al. (1997); 17Paulson et al. (2010);
18Bradford et al. (2011); 19Canis et al. (2009); 20Lockman et al. (2005); 21Wang et al.

(1994); 22Gerzanich et al. (2003); 23Yong et al. (1997).

STIMULANT CO-MORBIDITY WITH HIV INFECTION
Mechanisms thought to underlie stimulant-mediated toxicities
parallel those associated with HIV infection. Indeed, the co-
morbidity of stimulant abuse and HIV is well documented. Studies
report that meth abuse is linked with enhanced frequency of
unprotected sex and increased HIV transmission (Semple et al.,
2004; Buchacz et al., 2005). Moreover, the morbidity and mortal-
ity of meth-abusing HIV-positive individuals far exceeds that seen
with either pathology alone.

HIV infects peripheral leukocytes which migrate across the
BBB, thus allowing the virus access to the CNS (An et al.,
1999). This migration occurs early in HIV infection (Risdahl
et al., 1998; Romanelli et al., 2006) though HIV-induced tox-
icity of BECs occurs throughout infection and parallels HIV
toxicity of neurons (Price et al., 2005). Once HIV-infected cells
enter the brain, HIV-produced proteins trigger neuroinflamma-
tion which can exacerbate the neuroinflammatory effects of stim-
ulant drugs. As overviewed above, stimulant drug abuse compro-
mises BBB integrity through decreases in tight junction proteins
and increases in endothelial adhesion molecules which promote
leukocyte extravasation from the blood into the brain.

Meth increases the expression of HIV co-receptors, CXCR4
and CCR5 (Nair et al., 2009), and can significantly increase HIV
replication in astrocytes (Gavrilin et al., 2002). In HIV-positive
meth abusers, meth-induced BBB dysfunction facilitates increased
transport of HIV-infected leukocytes into the brain (Liang et al.,
2008). Moreover, HIV-induced BBB damage might increase the
concentration of meth within the CNS contributing to further
meth-neurotoxicity. Co-treatment of meth and HIV protein gp120
decreases transendothelial electrical resistance across BECs more
than treatment with meth or gp120 alone (Mahajan et al., 2008).
Administration of meth and gp120 or the HIV protein Tat in
combination, further decreased the expression of ZO-1, claudin-3,
claudin-5, and JAM-2 than either treatment alone (Mahajan et al.,
2008; Banerjee et al., 2010). In addition to the effects of meth and
HIV on tight junction proteins, increased levels of MMP-2 and
MMP-9 were reported with meth and Tat treatment in an in vitro
BBB model (Conant et al., 2004) and in the cerebrospinal fluid of
HIV-positive individuals (Conant et al., 1999; Liuzzi et al., 2004).
These peptidases can produce persistent BBB damage, leaving the
brain open to prolonged infiltration of HIV and other peripheral
toxins.

Clinical investigations revealed potential additive and/or syner-
gistic effects of meth and HIV within the CNS. Chang et al. (2005)
found increased neuronal loss in frontal gray matter (−5.7%),
frontal white matter (−6.1%), and basal ganglia (−6%) when
compared with HIV-positive meth-naïve individuals and HIV-
negative meth abusers. These studies also reported increased glial
activation and changes in cellular metabolism in frontal white
matter and basal ganglia in HIV-positive meth abusers (Chang
et al., 2005). Meth-induced glial activation may lead to increased
progression of neuroAIDS in HIV-positive meth abusers (Garden,
2002). DA neurotoxicity is associated with both meth abuse, and
HIV infection appears worsened by the combination (Czub et al.,
2001; Maragos et al., 2002; Theodore et al., 2006). Increased DA
neurotoxicity with meth abuse and HIV/AIDS co-morbidity may
increase the risk of DA-associated disorders like PD. In fact, meth
abusers have a twofold increase in developing PD compared with
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healthy controls or cocaine abusers (Callaghan et al., 2012) and as
many as 10% of patients with HAND also display Parkinsonian
features (Berger and Nath, 1997). In summary, the neuropatholog-
ical features associated with both meth abuse and HIV/AIDS may
be exacerbated through meth-induced BBB dysfunction resulting
in, or worsened by, neuroinflammation.

Similar to meth abuse, individuals abusing MDMA are more
likely to engage in risky sexual behaviors and injection drug use
(Dunn et al., 2010). Indeed, 77% of participants in a clinical inves-
tigation reported not using condoms when under the influence
of MDMA, and of this group, 54% reported having two or more
sexual partners during this time (Dunn et al., 2010). In a simi-
lar clinical study, 9.3% of MDMA users surveyed reported having
unprotected sex with partners who were either HIV-positive or of
unknown HIV status (Klitzman et al., 2002). These behaviors likely
increase HIV transmission within this population (Mitcheson
et al., 2008). Little is currently known about the neurotoxic impli-
cations of MDMA and HIV co-morbidity. As MDMA produces
BBB dysfunction as well as neuroinflammation and oxidative
stress, which both perpetuate BBB damage, MDMA-induced BBB
dysfunction would be expected to increase HIV-infected leukocyte
infiltration into the CNS. The interaction between MDMA and
HIV has not yet been characterized and may represent an unknown
population at risk for HIV and MDMA-associated neurotoxici-
ties. These toxicities may be exacerbated by MDMA-induced BBB
dysfunction leading to increased HIV penetration into the brain.

Early investigations reported cocaine abuse as a risk factor
for increased HIV transmission and a more rapid progression to
AIDS (Fiala et al., 1998; Webber et al., 1999). Cocaine increases
HIV infiltration into the CNS through increased HIV-infected
leukocyte adhesion and transmigration across the BBB endothe-
lium. BBB dysfunction observed following cocaine exposure can
increase the capacity of other immune cells and inflammatory fac-
tors to enter into the brain from the periphery. These features of
cocaine likely promote the neuroinflammation associated neu-
roAIDS. Cocaine also increases HIV replication in monocytes,
macrophages, and astrocytes (Peterson et al., 1991; Roth et al.,
2002; Reynolds et al., 2006). This is especially important as astro-
cytes may act as a reservoir for HIV within the brain (Nath, 2010).
Preclinical studies revealed that cocaine enhances oxidative stress,
neuronal dysfunction, and apoptosis in gp120 and Tat-treated cells
in vitro and in rodents (Koutsilieri et al., 1997; Nath et al., 2000;
Bagetta et al., 2004). Recent findings from Napier et al. (2010)
revealed that cocaine and Tat synergize to over activate cortical
neurons. Like cocaine, Tat can inhibit DAT which may contribute
to HIV-induced DA neurotoxicity (Aksenov et al., 2008). When
combined, cocaine plus Tat may result in DA neurotoxicities which
exacerbate HIV neuropathology. Cocaine-induced BBB dysfunc-
tion leading to increased HIV transmission into the CNS is apt to
contribute to the resulting neurotoxicities associated with cocaine
and HIV co-morbidity.

There are a number of clinical reports documenting the effects
of cocaine and HIV co-morbidity. Cocaine abuse accelerates HIV
disease progression by decreasing CD4+T-cell counts and increas-
ing HIV viral load, independent of anti-retroviral therapies (Baum
et al., 2009). Chaisson et al. (1989) found that daily cocaine
use increased the risk of HIV infection up to sixfold in African

American and Hispanic populations. Persistent cocaine abusers
are also three times more likely to die from AIDS-related compli-
cations than cocaine-naïve individuals (Cook et al., 2008). This
suggests a synergistic interaction between cocaine and HIV which
exacerbates HIV disease progression. Interactions between cocaine
and HIV within the brain parenchyma may be enhanced through
cocaine-induced increases in HIV-infected leukocyte trafficking
across the BBB.

Studies report a 51% or higher cigarette smoking rate among
nationally surveyed HIV-positive individuals (Collins et al., 2001;
Gritz et al., 2004; Burkhalter et al., 2005). Though little is known
about the effects of nicotine on HIV disease progression, smok-
ing increases the likelihood of HIV-related complications (e.g.,
bacterial pneumonia and HIV-associated dementia) and increases
the mortality rate of HIV-positive individuals (Hirschtick et al.,
1995; Conley et al., 1996; Feldman et al., 2006). Furthermore,
nicotine can act as a major immunosuppressive agent by atten-
uating the immune and virological response to anti-retroviral
therapies by up to 40% (Humfleet et al., 2009). Nicotine has
both pro- and anti-inflammatory properties. The immunosup-
pressive effects of nicotine include increasing T-cell unresponsive-
ness, increasing IL-4 production, and inhibiting the production
of certain pro-inflammatory cytokines (Sopori and Kozak, 1998).
Immunosuppressive functions can add to the already detrimen-
tal immune suppression produced by HIV infection leading to
an accelerated progression of HIV-associated complications. The
pro-inflammatory effects of nicotine within the CNS include
increasing the release of pro-inflammatory cytokines and increas-
ing leukocyte transmigration through BECs from blood to brain.
Nicotine may increase HIV viral load within the CNS through
increasing BBB permeability and promoting leukocyte migration
into the brain parenchyma. Nicotine enhances the production
of HIV in macrophages (Abbud et al., 1995) and in activated
microglia (Rock et al., 2008). Similar increases in HIV replication
are also seen with opiate and cocaine abuse which are reported to
promote HIV neuropathology (Nath et al., 2002; Roth et al., 2005).
The scope of what is currently known about the effects of nicotine
on HIV disease progression is limited, though HIV-positive indi-
viduals who smoke cigarettes show a decreased immune response,
poorer responses to anti-retroviral therapies, greater risk of viral
rebound, and an increased probability for HIV-related complica-
tions (Feldman et al.,2006). Nicotine may increase HIV infiltration
into the CNS through nicotine-induced BBB dysfunction and
increase HIV replication within microglia in the brain to accelerate
progression to neuroAIDS.

CONCLUSION
The BBB/neuro(glio)vascular unit plays an important function in
the neurotoxicity of stimulant abuse; both as a factor involved
in the development of neurotoxicities and also in its response
to these toxic effects. This suggests that components within the
BBB and neuro(glio)vascular unit may be potential therapeutic
sites targeted to impede the progression of stimulant-induced
neurotoxicity. Most stimulants dysregulate the BBB through alter-
ations in tight junction complexes or through oxidative stress
and neuroinflammation. Neuroinflammation plays a particularly
important role as it contributes to a feed-forward process between
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BBB dysfunction and neuroinflammation which likely results in
the CNS being more vulnerable to infiltration of pathological
mediators from the periphery. This is especially important in co-
morbid situations of stimulant abuse and immune disorders, like
HIV/AIDS. Stimulants not only increase the migration of periph-
eral HIV-infected leukocytes into the CNS, but once inside the
brain, can accelerate the progression to neuroAIDS.

The effects of stimulant drugs have been extensively researched,
though further studies are required to advance the field toward
identification of therapeutic targets for medication development.
Preclinical studies thus far have revealed a great deal about the
direct and indirect effects of stimulants on the BBB. Future studies
must build upon what is already known using a model of stimu-
lant abuse and co-occurring morbidities, like HIV infection. Such

models of co-morbidity would better emulate the human con-
dition and would allow more direct assessments of the dynamic
interactions between all cells within the BBB/neuro(glio)vascular
unit in these clinically important human scenarios.

ACKNOWLEDGMENTS
The authors gratefully acknowledge support from the Kenneth
Douglas Foundation, the Daniel F. and Ada L. Rice Foundation,
and the Center for Compulsive Behavior and Addiction-Division
for Blood Brain Barrier and Substance Abuse at Rush University,
Chicago, IL, USA. The authors also acknowledge the thoughtful
insight on the link between stimulant abuse and HIV/AIDS neu-
ropathology offered by Dr. Linda Baum, Division of Immunology
and Microbiology, Rush University, Chicago, IL, USA.

REFERENCES
Abbott, N. J., Patabendige, A. A., Dol-

man, D. E., Yusof, S. R., and Begley,
D. J. (2010). Structure and function
of the blood-brain barrier. Neuro-
biol. Dis. 37, 13–25.

Abbruscato, T. J., Lopez, S. P., Mark, K.
S., Hawkins, B. T., and Davis, T. P.
(2002). Nicotine and cotinine mod-
ulate cerebral microvascular per-
meability and protein expression
of ZO-1 through nicotinic acetyl-
choline receptors expressed on brain
endothelial cells. J. Pharm. Sci. 91,
2525–2538.

Abbruscato, T. J., Lopez, S. P., Roder, K.,
and Paulson, J. R. (2004). Regulation
of blood-brain barrier Na,K,2Cl-
cotransporter through phospho-
rylation during in vitro stroke
conditions and nicotine exposure.
J. Pharmacol. Exp. Ther. 310,
459–468.

Abbud, R. A., Finegan, C. K., Guay, L.
A., and Rich, E. A. (1995). Enhanced
production of human immunode-
ficiency virus type 1 by in vitro-
infected alveolar macrophages from
otherwise healthy cigarette smokers.
J. Infect. Dis. 172, 859–863.

Abdul Muneer, P. M., Alikunju, S.,
Szlachetka, A. M., Murrin, L. C.,
and Haorah, J. (2011). Impair-
ment of brain endothelial glucose
transporter by methamphetamine
causes blood-brain barrier dysfunc-
tion. Mol. Neurodegener. 6, 23.

Aksenov, M. Y., Aksenova, M. V., Silvers,
J. M., Mactutus, C. F., and Booze, R.
M. (2008). Different effects of selec-
tive dopamine uptake inhibitors,
GBR 12909 and WIN 35428, on
HIV-1 Tat toxicity in rat fetal mid-
brain neurons. Neurotoxicology 29,
971–977.

Albaugh, G., Bellavance, E., Strande,
L., Heinburger, S., Hewitt, C. W.,
and Alexander, J. B. (2004). Nico-
tine induces mononuclear leukocyte
adhesion and expression of adhe-
sion molecules, VCAM and ICAM,

in endothelial cells in vitro. Ann.
Vasc. Surg. 18, 302–307.

An, S. F., Groves, M., Gray, F., and
Scaravilli, F. (1999). Early entry
and widespread cellular involvement
of HIV-1 DNA in brains of HIV-
1 positive asymptomatic individu-
als. J. Neuropathol. Exp. Neurol. 58,
1156–1162.

Bagetta, G., Piccirilli, S., Del Duca,
C., Morrone, L. A., Rombola, L.,
Nappi, G., De Alba, J., Knowles, R.
G., and Corasaniti, M. T. (2004).
Inducible nitric oxide synthase is
involved in the mechanisms of
cocaine enhanced neuronal apopto-
sis induced by HIV-1 gp120 in the
neocortex of rat. Neurosci. Lett. 356,
183–186.

Bandopadhyay, R., Orte, C., Lawren-
son, J. G., Reid, A. R., De, S. S., and
Allt, G. (2001). Contractile proteins
in pericytes at the blood-brain and
blood-retinal barriers. J. Neurocytol.
30, 35–44.

Banerjee, A., Zhang, X., Manda, K. R.,
Banks, W. A., and Ercal, N. (2010).
HIV proteins (gp120 and Tat)
and methamphetamine in oxidative
stress-induced damage in the brain:
potential role of the thiol antiox-
idant N-acetylcysteine amide. Free
Radic. Biol. Med. 48, 1388–1398.

Barnett, G., Hawks, R., and Resnick,
R. (1981). Cocaine pharmacokinet-
ics in humans. J. Ethnopharmacol. 3,
353–366.

Barroso-Moguel, R., Villeda-
Hernández, J., Méndez-Armenta,
M., and Ríos, C. (1997). Brain capil-
lary lesions produced by cocaine in
rats. Toxicol. Lett. 92, 9–14.

Baum, M. K., Rafie, C., Lai, S., Sales,
S., Page, B., and Campa, A. (2009).
Crack-cocaine use accelerates HIV
disease progression in a cohort of
HIV-positive drug users. J. Acquir.
Immune Defic. Syndr. 50, 93–99.

Bell, R. D., Winkler, E. A., Sagare, A.
P., Singh, I., LaRue, B., Deane, R.,
and Zlokovic, B. V. (2010). Pericytes

control key neurovascular functions
and neuronal phenotype in the adult
brain and during brain aging. Neu-
ron 68, 409–427.

Bennett, B. A., Hyde, C. E., Pecora,
J. R., and Clodfelter, J. E. (1993).
Differing neurotoxic potencies of
methamphetamine, mazindol, and
cocaine in mesencephalic cultures. J.
Neurochem. 60, 1444–1452.

Berger, J. R., and Nath, A. (1997).
HIV dementia and the basal ganglia.
Intervirology 40, 122–131.

Bowyer, J. F., and Ali, S. F. (2006). High
doses of methamphetamine that
cause disruption of the blood-brain
barrier in limbic regions produce
extensive neuronal degeneration in
mouse hippocampus. Synapse 60,
521–532.

Bowyer, J. F., Thomas, M., Schmued, L.
C., and Ali, S. F. (2008). Brain region-
specific neurodegenerative profiles
showing the relative importance of
amphetamine dose, hyperthermia,
seizures, and the blood-brain bar-
rier. Ann. N. Y. Acad. Sci. 1139,
127–139.

Bradford, S. T., Stamatovic, S. M.,
Dondeti, R. S., Keep, R. F., and
Andjelkovic, A. V. (2011). Nicotine
aggravates the brain postischemic
inflammatory response. Am. J. Phys-
iol. Heart Circ. Physiol. 300, H1518–
H1529.

Buch,S.,Yao,H.,Guo,M.,Mori,T.,Su,T.
P., and Wang, J. (2011). Cocaine and
HIV-1 interplay: molecular mech-
anisms of action and addiction. J.
Neuroimmune Pharmacol. 6, 503–
515.

Buchacz, K., McFarland, W., Kellogg, T.
A., Loeb, L., Holmberg, S. D., Dil-
ley, J., and Klausner, J. D. (2005).
Amphetamine use is associated with
increased HIV incidence among
men who have sex with men in San
Francisco. AIDS 19, 1423–1424.

Buckner, D., Wilson, S., Kurk, S., Hardy,
M., Miessner, N., and Jutila, M. A.
(2006). Use of early passage fetal

intestinal epithelial cells in semi-
high-throughput screening assays:
an approach to identify new innate
immune system adjuvants. J. Biomol.
Screen 11, 664–671.

Burkhalter, J. E., Springer, C. M.,
Chhabra, R., Ostroff, J. S., and Rap-
kin, B. D. (2005). Tobacco use and
readiness to quit smoking in low-
income HIV-infected persons. Nico-
tine Tob. Res. 7, 511–522.

Cadet, J. L., Sheng, P., Ali, S. F.,
Rothman, R., Carlson, E., and
Epstein, C. (1994). Attenuation of
methamphetamine-induced neuro-
toxicity in copper/zinc superoxide
dismutase transgenic mice. J. Neu-
rochem. 62, 380–383.

Callaghan, R. C., Cunningham, J. K.,
Sykes, J., and Kish, S. J. (2012).
Increased risk of Parkinson’s disease
in individuals hospitalized with con-
ditions related to the use of metham-
phetamine or other amphetamine-
type drugs. Drug Alcohol Depend.
120, 35–40.

Canis, M., Mack, B., Gires, O., Maurer,
M. H., Kuschinsky, W., Duembgen,
L., and Duelli, R. (2009). Increased
densities of monocarboxylate trans-
port protein MCT1 after chronic
administration of nicotine in rat
brain. Neurosci. Res. 64, 429–435.

Cartier, L., Hartley, O., Dubois-
Dauphin, M., and Krause, K. H.
(2005). Chemokine receptors in the
central nervous system: role in brain
inflammation and neurodegenera-
tive diseases. Brain Res. Brain Res.
Rev. 48, 16–42.

Carvey, P. M., Hendey, B., and Monahan,
A. J. (2009). The blood-brain bar-
rier in neurodegenerative disease: a
rhetorical perspective. J. Neurochem.
111, 291–314.

Chaisson, R. E., Bacchetti, P., Osmond,
D., Brodie, B., Sande, M. A., and
Moss, A. R. (1989). Cocaine use and
HIV infection in intravenous drug
users in San Francisco. JAMA 261,
561–565.

Frontiers in Pharmacology | Neuropharmacology June 2012 | Volume 3 | Article 121 | 8

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Kousik et al. Psychostimulants blood brain barrier neuroinflammation

Chang, L., Ernst, T., Speck, O., and Grob,
C. S. (2005). Additive effects of HIV
and chronic methamphetamine use
on brain metabolite abnormalities.
Am. J. Psychiatry 162, 361–369.

Chang, S. L., Bersig, J., Felix, B.,
Fiala, M., and House, S. D. (2000).
Chronic cocaine alters hemodynam-
ics and leukocyte-endothelial inter-
actions in rat mesenteric venules.
Life Sci. 66, 2357–2369.

Chen, Y. H., Chen, S. H., Jong, A., Zhou,
Z.Y., Li,W., Suzuki, K., and Huang, S.
H. (2002). Enhanced Escherichia coli
invasion of human brain microvas-
cular endothelial cells is associated
with alternations in cytoskeleton
induced by nicotine. Cell. Microbiol.
4, 503–514.

Collins, R. L., Kanouse, D. E., Gifford,
A. L., Senterfitt, J. W., Schuster, M.
A., McCaffrey, D. F., Shapiro, M. F.,
and Wenger, N. S. (2001). Changes in
health-promoting behavior follow-
ing diagnosis with HIV: prevalence
and correlates in a national prob-
ability sample. Health Psychol. 20,
351–360.

Compston, A., and Coles, A. (2008).
Multiple sclerosis. Lancet 372,
1502–1517.

Conant, K., McArthur, J. C., Griffin,
D. E., Sjulson, L., Wahl, L. M., and
Irani, D. N. (1999). Cerebrospinal
fluid levels of MMP-2, 7, and 9 are
elevated in association with human
immunodeficiency virus dementia.
Ann. Neurol. 46, 391–398.

Conant, K., St Hillaire, C., Anderson,
C., Galey, D., Wang, J., and Nath, A.
(2004). Human immunodeficiency
virus type 1 Tat and methampheta-
mine affect the release and activation
of matrix-degrading proteinases. J.
Neurovirol. 10, 21–28.

Conklin, B. S., Zhao, W., Zhong, D.
S., and Chen, C. (2002). Nicotine
and cotinine up-regulate vascular
endothelial growth factor expression
in endothelial cells. Am. J. Pathol.
160, 413–418.

Conley, L. J., Bush, T. J., Buchbinder, S.
P., Penley, K. A., Judson, F. N., and
Holmberg, S. D. (1996). The associ-
ation between cigarette smoking and
selected HIV-related medical condi-
tions. AIDS 10, 1121–1126.

Connolly, G. N., Alpert, H. R., Wayne,
G. F., and Koh, H. (2007). Trends in
nicotine yield in smoke and its rela-
tionship with design characteristics
among popular US cigarette brands,
1997–2005. Tob. Control. 16, e5.

Cook, J. A., Burke-Miller, J. K., Cohen,
M. H., Cook, R. L., Vlahov, D., Wil-
son, T. E., Golub, E. T., Schwartz,
R. M., Howard, A. A., Ponath, C.,
Plankey, M. W., Levine, A., and Grey,

D. D. (2008). Crack cocaine, dis-
ease progression, and mortality in a
multicenter cohort of HIV-1 positive
women. AIDS 22, 1355–1363.

Couraud, P. O. (1998). Infiltration
of inflammatory cells through
brain endothelium. Pathol. Biol. 46,
176–180.

Czub, S., Koutsilieri, E., Sopper, S., Czub,
M., Stahl-Hennig, C., Muller, J. G.,
Pedersen, V., Gsell, W., Heeney, J. L.,
Gerlach, M., Gosztonyi, G., Riederer,
P., and ter Meulen, V. (2001).
Enhancement of central nervous
system pathology in early simian
immunodeficiency virus infection
by dopaminergic drugs. Acta Neu-
ropathol. 101, 85–91.

de la Monte,S. M.,Longato,L.,Tong,M.,
DeNucci, S., and Wands, J. R. (2009).
The liver-brain axis of alcohol-
mediated neurodegeneration: role of
toxic lipids. Int. J. Environ. Res. Pub-
lic Health 6, 2055–2075.

Deli, M. A., Dehouck, M. P., Cecchelli,
R., Abraham, C. S., and Joo, F.
(1995). Histamine induces a selec-
tive albumin permeation through
the blood-brain barrier in vitro.
Inflamm. Res. 44(Suppl. 1), S56–S57.

Dhillon, N. K., Peng, F., Bokhari, S.,
Callen, S., Shin, S. H., Zhu, X., Kim,
K. J., and Buch, S. J. (2008). Cocaine-
mediated alteration in tight junc-
tion protein expression and mod-
ulation of CCL2/CCR2 axis across
the blood-brain barrier: implica-
tions for HIV-dementia. J. Neuroim-
mune Pharmacol. 3, 52–56.

Diaz-Flores, L., Gutierrez, R., Varela, H.,
Rancel, N., and Valladares, F. (1991).
Microvascular pericytes: a review of
their morphological and functional
characteristics. Histol. Histopathol. 6,
269–286.

Dunn, M., Day, C., Bruno, R., Degen-
hardt, L., and Campbell, G. (2010).
Sexual and injecting risk behaviours
among regular ecstasy users. Addict.
Behav. 35, 157–160.

Farkas, E., and Luiten, P. G. (2001).
Cerebral microvascular pathology in
aging and Alzheimer’s disease. Prog.
Neurobiol. 64, 575–611.

Feldman, J. G., Minkoff, H., Schneider,
M. F., Gange, S. J., Cohen, M., Watts,
D. H., Gandhi, M., Mocharnuk, R. S.,
and Anastos, K. (2006). Association
of cigarette smoking with HIV prog-
nosis among women in the HAART
era: a report from the women’s inter-
agency HIV study. Am. J. Public
Health 96, 1060–1065.

Fiala, M., Eshleman, A. J., Cashman, J.,
Lin, J., Lossinsky, A. S., Suarez, V.,
Yang, W., Zhang, J., Popik, W., Singer,
E., Chiappelli, F., Carro, E., Weinand,
M., Witte, M., and Arthos, J. (2005).

Cocaine increases human immun-
odeficiency virus type 1 neuroin-
vasion through remodeling brain
microvascular endothelial cells. J.
Neurovirol. 11, 281–291.

Fiala, M., Gan, X. H., Newton, T.,
Chiappelli, F., Shapshak, P., Ker-
mani, V., Kung, M. A., Diagne, A.,
Martinez, O., Way, D., Weinand, M.,
Witte, M., and Graves, M. (1996).
Divergent effects of cocaine on
cytokine production by lympho-
cytes and monocyte/macrophages:
HIV-1 enhancement by cocaine
within the blood-brain bar-
rier. Adv. Exp. Med. Biol. 402,
145–156.

Fiala, M., Gan, X. H., Zhang, L., House,
S. D., Newton, T., Graves, M. C.,
Shapshak, P., Stins, M., Kim, K.
S., Witte, M., and Chang, S. L.
(1998). Cocaine enhances mono-
cyte migration across the blood-
brain barrier. Cocaine’s connec-
tion to AIDS dementia and vas-
culitis? Adv. Exp. Med. Biol. 437,
199–205.

Fiala, M., Singer, E. J., Commins,
D., Mirzapoiazova, T., Verin, A.,
Espinosa, A., Ugen, K., Bernas, M.,
Witte, M., Weinand, M., and Lossin-
sky, A. S. (2008). HIV-1 Anti-
gens in neurons of cocaine-abusing
patients. Open Virol. J. 2, 24–31.

Fletcher, N. F., Bexiga, M. G., Bray-
den, D. J., Brankin, B., Willett, B.
J., Hosie, M. J., Jacque, J. M., and
Callanan, J. J. (2009). Lymphocyte
migration through the blood-brain
barrier (BBB) in feline immun-
odeficiency virus infection is sig-
nificantly influenced by the pre-
existence of virus and tumour necro-
sis factor (TNF)-alpha within the
central nervous system (CNS): stud-
ies using an in vitro feline BBB
model. Neuropathol. Appl. Neuro-
biol. 35, 592–602.

Gan, X., Zhang, L., Berger, O., Stins,
M. F., Way, D., Taub, D. D.,
Chang, S. L., Kim, K. S., House,
S. D., Weinand, M., Witte, M.,
Graves, M. C., and Fiala, M. (1999).
Cocaine enhances brain endothe-
lial adhesion molecules and leuko-
cyte migration. Clin. Immunol. 91,
68–76.

Gandhi, N., Saiyed, Z. M., Napuri,
J., Samikkannu, T., Reddy, P. V.,
Agudelo,M.,Khatavkar,P.,Saxena,S.
K., and Nair, M. P. (2010). Interactive
role of human immunodeficiency
virus type 1 (HIV-1) clade-specific
Tat protein and cocaine in blood-
brain barrier dysfunction: impli-
cations for HIV-1-associated neu-
rocognitive disorder. J. Neurovirol.
16, 294–305.

Garden, G. A. (2002). Microglia in
human immunodeficiency virus-
associated neurodegeneration. Glia
40, 240–251.

Gerzanich,V., Ivanova, S., and Simard, J.
M. (2003). Early pathophysiological
changes in cerebral vessels predis-
posing to stroke. Clin. Hemorheol.
Microcirc. 29, 291–294.

Gavrilin, M. A., Mathes, L. E., and
Podell, M. (2002). Methampheta-
mine enhances cell-associated feline
immunodeficiency virus replica-
tion in astrocytes. J. Neurovirol. 8,
240–249.

Goncalves, J., Baptista, S., Martins, T.,
Milhazes, N., Borges, F., Ribeiro,
C. F., Malva, J. O., and Silva,
A. P. (2010). Methamphetamine-
induced neuroinflammation and
neuronal dysfunction in the mice
hippocampus: preventive effect of
indomethacin. Eur. J. Neurosci. 31,
315–326.

Goncalves, J., Martins, T., Ferreira, R.,
Milhazes, N., Borges, F., Ribeiro,
C. F., Malva, J. O., Macedo,
T. R., and Silva, A. P. (2008).
Methamphetamine-induced early
increase of IL-6 and TNF-alpha
mRNA expression in the mouse
brain. Ann. N. Y. Acad. Sci. 1139,
103–111.

Gritz, E. R., Vidrine, D. J., Lazev, A. B.,
Amick, B. C. III, and Arduino, R.
C. (2004). Smoking behavior in a
low-income multiethnic HIV/AIDS
population. Nicotine Tob. Res. 6,
71–77.

Gu,Y., Zheng, G., Xu, M., Li,Y., Chen, X.,
Zhu, W., Tong, Y., Chung, S. K., Liu,
K. J., and Shen, J. (2012). Caveolin-
1 regulates nitric oxide-mediated
matrix metalloproteinases activity
and blood-brain barrier permeabil-
ity in focal cerebral ischemia and
reperfusion injury. J. Neurochem.
120, 147–156.

Guilarte, T. R., Nihei, M. K., McGlothan,
J. L., and Howard, A. S. (2003).
Methamphetamine-induced deficits
of brain monoaminergic neuronal
markers: distal axotomy or neu-
ronal plasticity. Neuroscience 122,
499–513.

Hawkins, B. T., Abbruscato, T. J., Egle-
ton, R. D., Brown, R. C., Huber,
J. D., Campos, C. R., and Davis,
T. P. (2004). Nicotine increases
in vivo blood-brain barrier perme-
ability and alters cerebral microvas-
cular tight junction protein distrib-
ution. Brain Res. 1027, 48–58.

Hawkins, B. T., and Davis, T. P.
(2005). The blood-brain bar-
rier/neurovascular unit in health
and disease. Pharmacol. Rev. 57,
173–185.

www.frontiersin.org June 2012 | Volume 3 | Article 121 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Kousik et al. Psychostimulants blood brain barrier neuroinflammation

Hawkins, B. T.,Egleton, R. D., and Davis,
T. P. (2005). Modulation of cere-
bral microvascular permeability by
endothelial nicotinic acetylcholine
receptors. Am. J. Physiol. Heart Circ.
Physiol. 289, H212–H219.

Hirschtick, R. E., Glassroth, J., Jor-
dan, M. C., Wilcosky, T. C., Wal-
lace, J. M., Kvale, P. A., Markowitz,
N., Rosen, M. J., Mangura, B. T.,
and Hopewell, P. C. (1995). Bacte-
rial pneumonia in persons infected
with the human immunodeficiency
virus. Pulmonary Complications of
HIV Infection Study Group. N. Engl.
J. Med. 333, 845–851.

Humfleet, G. L., Delucchi, K., Kel-
ley, K., Hall, S. M., Dilley, J., and
Harrison, G. (2009). Characteristics
of HIV-positive cigarette smokers:
a sample of smokers facing multi-
ple challenges. AIDS Educ. Prev. 21,
54–64.

Hutamekalin, P., Farkas, A. E., Orbok,
A., Wilhelm, I., Nagyoszi, P.,
Veszelka, S., Deli, M. A., Buzas, K.,
Hunyadi-Gulyas, E., Medzihradszky,
K. F., Meksuriyen, D., and Krizbai,
I. A. (2008). Effect of nicotine
and polyaromtic hydrocarbons on
cerebral endothelial cells. Cell Biol.
Int. 32, 198–209.

Iadecola, C. (2004). Neurovascular reg-
ulation in the normal brain and in
Alzheimer’s disease. Nat. Rev. Neu-
rosci. 5, 347–360.

Janzer, R. C., and Raff, M. C. (1987).
Astrocytes induce blood-brain bar-
rier properties in endothelial cells.
Nature 325, 253–257.

Kiyatkin, E. A., Brown, P. L., and
Sharma, H. S. (2007). Brain edema
and breakdown of the blood-brain
barrier during methamphetamine
intoxication: critical role of brain
hyperthermia. Eur. J. Neurosci. 26,
1242–1253.

Kiyatkin, E. A., and Sharma, H. S.
(2009). Acute methamphetamine
intoxication: brain hyperthermia,
blood-brain barrier, brain edema,
and morphological cell abnormali-
ties. Int. Rev. Neurobiol. 88, 65–100.

Kiyatkin, E. A., and Sharma, H. S.
(2011). Expression of heat shock
protein (HSP 72 kDa) during
acute methamphetamine intoxica-
tion depends on brain hyperther-
mia: neurotoxicity or neuroprotec-
tion? J. Neural. Transm. 118, 47–60.

Klitzman, R. L., Greenberg, J. D., Pol-
lack, L. M., and Dolezal, C. (2002).
MDMA (“ecstasy”) use, and its asso-
ciation with high risk behaviors,
mental health, and other factors
among gay/bisexual men in New
York City. Drug Alcohol Depend. 66,
115–125.

Koehler, R. C., Roman, R. J., and Harder,
D. R. (2009). Astrocytes and the
regulation of cerebral blood flow.
Trends Neurosci. 32, 160–169.

Kousik, S. M., Graves, S. M., Napier,
T. C., Zhao, C., and Carvey, P. M.
(2011). Methamphetamine-induced
vascular changes lead to striatal
hypoxia and dopamine reduction.
Neuroreport 22, 923–928.

Koutsilieri, E., Gotz, M. E., Sopper, S.,
Sauer, U., Demuth, M., ter Meulen,
V., and Riederer, P. (1997). Regula-
tion of glutathione and cell toxicity
following exposure to neurotropic
substances and human immunode-
ficiency virus-1 in vitro. J. Neurovi-
rol. 3, 342–349.

Krasnova, I. N., and Cadet, J. L.
(2009). Methamphetamine toxicity
and messengers of death. Brain Res.
60, 379–407.

Krueger, M., and Bechmann, I. (2010).
CNS pericytes: concepts, miscon-
ceptions, and a way out. Glia 58,
1–10.

Kuhn, D. M., Francescutti-Verbeem,
D. M., and Thomas, D. M. (2006).
Dopamine quinones activate
microglia and induce a neurotoxic
gene expression profile: relationship
to methamphetamine-induced
nerve ending damage. Ann. N. Y.
Acad. Sci. 1074, 31–41.

Kuroda, K. O., Ornthanalai, V. G.,
Kato, T., and Murphy, N. P.
(2010). FosB null mutant mice
show enhanced methamphetamine
neurotoxicity: potential involve-
ment of FosB in intracellular feed-
back signaling and astroglial func-
tion. Neuropsychopharmacology 35,
641–655.

Lai, Y. T., Tsai, Y. P., Cherng, C. G.,
Ke, J. J., Ho, M. C., Tsai, C. W.,
and Yu, L. (2009). Lipopolysaccha-
ride mitagates methamphetamine-
induced striatal dopamine depletion
via modulating local TNF-alpha and
dopamine transporter expression. J.
Neural Transm. 116, 405–415.

Le, H. J. (2003). Role of nicotine phar-
macokinetics in nicotine addiction
and nicotine replacement therapy: a
review. Int. J. Tuberc. Lung Dis. 7,
811–819.

Lecrux, C., and Hamel, E. (2011). The
neurovascular unit in brain function
and disease. Acta Physiol. (Oxf.) 203,
47–59.

Lee, Y. W., Hennig, B., Fiala, M., Kim, K.
S., and Toborek, M. (2001). Cocaine
activates redox-regulated transcrip-
tion factors and induces TNF-alpha
expression in human brain endothe-
lial cells. Brain Res. 920, 125–133.

Letendre, S., Paulino,A. D., Rockenstein,
E., Adame, A., Crews, L., Cherner,

M., Heaton, R., Ellis, R., Everall, I.
P., Grant, I., and Masliah, E. (2007).
Pathogenesis of hepatitis C virus
coinfection in the brains of patients
infected with HIV. J. Infect. Dis. 196,
361–370.

Letendre, S. L., Cherner, M., Ellis, R.
J., Marquie-Beck, J., Gragg, B., Mar-
cotte, T., Heaton, R. K., McCutchan,
J. A., and Grant, I. (2005). The effects
of hepatitis C, HIV, and metham-
phetamine dependence on neu-
ropsychological performance: bio-
logical correlates of disease. AIDS
19(Suppl. 3), S72–S78.

Liang, H., Wang, X., Chen, H., Song, L.,
Ye, L., Wang, S. H., Wang, Y. J., Zhou,
L., and Ho, W. Z. (2008). Metham-
phetamine enhances HIV infection
of macrophages. Am. J. Pathol. 172,
1617–1624.

Lin, S. J., Hong, C. Y., Chang, M.
S., Chiang, B. N., and Chien, S.
(1992). Long-term nicotine expo-
sure increases aortic endothelial cell
death and enhances transendothe-
lial macromolecular transport
in rats. Arterioscler. Thromb. 12,
1305–1312.

Liou, H. H., Hsu, H. J., Tsai, Y. F.,
Shih, C. Y., Chang, Y. C., and Lin,
C. J. (2007). Interaction between
nicotine and MPTP/MPP+ in rat
brain endothelial cells. Life Sci. 81,
664–672.

Liuzzi, G. M., Mastroianni, C. M.,
Latronico, T., Mengoni, F., Fasano,
A., Lichtner, M.,Vullo,V., and Riccio,
P. (2004). Anti-HIV drugs decrease
the expression of matrix metallopro-
teinases in astrocytes and microglia.
Brain 127, 398–407.

Lockman, P. R., Van der Schyf, C. J.,
Abbruscato, T. J., and Allen, D. D.
(2005). Chronic nicotine exposure
alters blood-brain barrier perme-
ability and diminishes brain uptake
of methyllycaconitine. J. Neurochem.
94, 37–44.

Madsen, S. J., and Hirschberg, H.
(2010). Site-specific opening of the
blood-brain barrier. J Biophotonics 3,
356–367.

Mahajan, S. D., Aalinkeel, R., Sykes,
D. E., Reynolds, J. L., Bindukumar,
B., Adal, A., Qi, M., Toh, J., Xu,
G., Prasad, P. N., and Schwartz, S.
A. (2008). Methamphetamine alters
blood brain barrier permeability via
the modulation of tight junction
expression: Implication for HIV-1
neuropathogenesis in the context
of drug abuse. Brain Res. 1203,
133–148.

Manda, V. K., Mittapalli, R. K., Bohn,
K. A., Adkins, C. E., and Lockman,
P. R. (2010a). Nicotine and cotinine
increases the brain penetration of

saquinavir in rat. J. Neurochem. 115,
1495–1507.

Manda, V. K., Mittapalli, R. K., Gelden-
huys, W. J., and Lockman, P. R.
(2010b). Chronic exposure to
nicotine and saquinavir decreases
endothelial Notch-4 expression
and disrupts blood-brain bar-
rier integrity. J. Neurochem. 115,
515–525.

Maragos, W. F., Young, K. L., Turchan,
J. T., Guseva, M., Pauly, J. R., Nath,
A., and Cass, W. A. (2002). Human
immunodeficiency virus-1 Tat pro-
tein and methamphetamine inter-
act synergistically to impair stri-
atal dopaminergic function. J. Neu-
rochem. 83, 955–963.

Mark, K. S., and Davis, T. P. (2002).
Cerebral microvascular changes in
permeability and tight junctions
induced by hypoxia-reoxygenation.
Am. J. Physiol. Heart Circ. Physiol.
282, H1485-H1494.

Martins, T., Baptista, S., Goncalves, J.,
Leal, E., Milhazes, N., Borges, F.,
Ribeiro, C. F., Quintela, O., Lendoiro,
E., Lopez-Rivadulla, M., Ambro-
sio, A. F., and Silva, A. P. (2011).
Methamphetamine transiently
increases the blood-brain barrier
permeability in the hippocampus:
role of tight junction proteins and
matrix metalloproteinase-9. Brain
Res. 1411, 28–40.

McCann, U. D., Kuwabara, H., Kumar,
A., Palermo, M., Abbey, R., and Bra-
sic, J. (2008). Persistent cognitive
and dopamine transporter deficits in
abstinent methamphetamine users.
Synapse 62, 91–100.

Mitcheson, L., McCambridge, J., Byrne,
A., Hunt, N., and Winstock, A.
(2008). Sexual health risk among
dance drug users: cross-sectional
comparisons with nationally repre-
sentative data. Int. J. Drug Policy 19,
304–310.

Monks, T. J., Jones, D. C., Bai,
F., and Lau, S. S. (2004). The
role of metabolism in 3,4-(+)-
methylenedioxyamphetamine
and 3,4-(+)-
methylenedioxymethamphetamine
(ecstasy) toxicity. Ther. Drug. Monit.
26, 132–136.

Morgan, M. E., and Gibb, J. W. (1980).
Short-term and long-term effects
of methamphetamine on biogenic
amine metabolism in extra-striatal
dopaminergic nuclei. Neuropharma-
cology 19, 989–995.

Morganti-Kossman, M. C., Lenzlinger,
P. M., Hans, V., Stahel, P., Csuka,
E., Ammann, E., Stocker, R., Trentz,
O., and Kossmann, T. (1997). Pro-
duction of cytokines following brain
injury: beneficial and deleterious for

Frontiers in Pharmacology | Neuropharmacology June 2012 | Volume 3 | Article 121 | 10

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Kousik et al. Psychostimulants blood brain barrier neuroinflammation

the damaged tissue. Mol. Psychiatry
2, 133–136.

Nair, M. P., Saiyed, Z. M., Nair, N.,
Gandhi, N. H., Rodriguez, J. W.,
Boukli, N., Provencio-Vasquez, E.,
Malow, R. M., and Miguez-Burbano,
M. J. (2009). Methamphetamine
enhances HIV-1 infectivity in mono-
cyte derived dendritic cells. J Neu-
roimmune Pharmacol 4, 129–139.

Nair, M. P., Schwartz, S. A., Mahajan, S.
D., Tsiao, C., Chawda, R. P., Whitney,
R., Don Sykes, B. B., and Hewitt, R.
(2004). Drug abuse and neuropatho-
genesis of HIV infection: role of DC-
SIGN and IDO. J. Neuroimmunol.
157, 56–60.

Napier, T. C., Zhang, J., and Hu, X.
T. (2010). HIV-1 Tat Dysregulates
Activity of Rat mPFC Pyramidal Neu-
rons via Up-Regulating L-Type Cal-
cium Channels. Program No. 764.2.
2010 Neuroscience Meeting Planner.
San Diego, CA: Society for Neuro-
science.

Nash, J. F., and Yamamoto, B. K.
(1992). Methamphetamine neuro-
toxicity and striatal glutamate
release: comparison to 3,4-
methylenedioxymethamphetamine.
Brain Res. 581, 237–243.

Nath, A. (2010). Human immunode-
ficiency virus-associated neurocog-
nitive disorder: pathophysiology in
relation to drug addiction. Ann. N.
Y. Acad. Sci. 1187, 122–128.

Nath, A., Haughey, N. J., Jones, M.,
Anderson, C., Bell, J. E., and Geiger,
J. D. (2000). Synergistic neurotox-
icity by human immunodeficiency
virus proteins Tat and gp120: pro-
tection by memantine. Ann. Neurol.
47, 186–194.

Nath, A., Hauser, K. F., Wojna, V., Booze,
R. M., Maragos, W., Prendergast, M.,
Cass, W., and Turchan, J. T. (2002).
Molecular basis for interactions of
HIV and drugs of abuse. J. Acquir.
Immune Defic. Syndr. 31(Suppl. 2),
S62–S69.

Nath, A., Maragos, W. F., Avison, M.
J., Schmitt, F. A., and Berger, J.
R. (2001). Acceleration of HIV
dementia with methamphetamine
and cocaine. J. Neurovirol. 7, 66–71.

Ohtsuki, S. (2004). Physiological func-
tion of blood-brain barrier trans-
porters as the CNS supporting and
protecting system. Yakugaku Zasshi
124, 791–802.

Orio, L., O’Shea, E., Sanchez, V.,
Pradillo, J. M., Escobedo, I.,
Camarero, J., Moro, M. A., Green, A.
R., and Colado, M. I. (2004). 3,4-
Methylenedioxymethamphetamine
increases interleukin-1beta levels
and activates microglia in rat
brain: studies on the relationship

with acute hyperthermia and 5-
HT depletion. J. Neurochem. 89,
1445–1453.

O’Shea, E., Sanchez, V., Orio, L.,
Escobedo, I., Green, A. R.,
and Colado, M. I. (2005). 3,4-
Methylenedioxymethamphetamine
increases pro-interleukin-1beta
production and caspase-1 protease
activity in frontal cortex, but not
in hypothalamus, of dark agouti
rats: role of interleukin-1beta in
neurotoxicity. Neuroscience 135,
1095–1105.

Paulson, J. R., Roder, K. E., McAfee, G.,
Allen, D. D., Van der Schyf, C. J., and
Abbruscato, T. J. (2006). Tobacco
smoke chemicals attenuate brain-to-
blood potassium transport mediated
by the Na,K,2Cl-cotransporter dur-
ing hypoxia-reoxygenation. J. Phar-
macol. Exp. Ther. 316, 248–254.

Paulson, J. R., Yang, T., Selvaraj, P. K.,
Mdzinarishvili, A., Van der Schyf, C.
J., Klein, J., Bickel, U., and Abbrus-
cato, T. J. (2010). Nicotine exacer-
bates brain edema during in vitro
and in vivo focal ischemic condi-
tions. J. Pharmacol. Exp. Ther. 332,
371–379.

Peppiatt, C. M., Howarth, C., Mobbs, P.,
and Attwell, D. (2006). Bidirectional
control of CNS capillary diameter by
pericytes. Nature 443, 700–704.

Perdisky, Y., Ho, W., Ramirez, S. H.,
Potula, R., Abood, M. E., Unter-
wald, E., and Tuma, R. (2011).
HIV-1 infection and alcohol
abuse: neurocognitive impairment,
mechanisms of neurodegeneration
and therapeutic interventions.
Brain Behav. Immun. 25(Supp. 1),
S61–S70.

Peterson, P. K., Gekker, G., Chao, C. C.,
Schut, R., Molitor, T. W., and Balfour,
H. H. Jr. (1991). Cocaine potentiates
HIV-1 replication in human periph-
eral blood mononuclear cell cocul-
tures. Involvement of transforming
growth factor-beta. J. Immunol. 146,
81–84.

Petty, M. A., and Lo, E. H. (2002).
Junctional complexes of the blood-
brain barrier: permeability changes
in neuroinflammation. Prog. Neuro-
biol. 68, 311–323.

Price, T. O., Ercal, N., Nakaoke, R.,
and Banks, W. A. (2005). HIV-1
viral proteins gp120 and Tat induce
oxidative stress in brain endothelial
cells. Brain Res. 1045, 57–63.

Quinton, M. S., and Yamamoto, B. K.
(2006). Causes and consequences
of methamphetamine and MDMA
toxicity. AAPS J. 8, E337–E347.

Ramirez,S. H.,Potula,R.,Fan,S.,Eidem,
T., Papugani, A., Reichenbach, N.,
Dykstra, H., Weksler, B. B., Romero,

I. A., Couraud, P. O., and Persid-
sky, Y. (2009). Methamphetamine
disrupts blood-brain barrier func-
tion by induction of oxidative stress
in brain endothelial cells. J. Cereb.
Blood Flow Metab. 29, 1933–1945.

Ramsauer, M., Krause, D., and Der-
mietzel, R. (2002). Angiogenesis of
the blood-brain barrier in vitro and
the function of cerebral pericytes.
FASEB J. 16, 1274–1276.

Ransohoff, R. M., Kivisakk, P., and Kidd,
G. (2003). Three or more routes for
leukocyte migration into the central
nervous system. Nat. Rev. Immunol.
3, 569–581.

Reynolds, J. L., Mahajan, S. D., Binduku-
mar, B., Sykes, D., Schwartz, S.
A., and Nair, M. P. (2006). Pro-
teomic analysis of the effects of
cocaine on the enhancement of
HIV-1 replication in normal human
astrocytes (NHA). Brain Res. 1123,
226–236.

Ricaurte, G., Bryan, G., Strauss, L., Sei-
den, L., and Schuster, C. (1985).
Hallucinogenic amphetamine selec-
tively destroys brain serotonin nerve
terminals. Science 229, 986–988.

Ricaurte, G. A., Forno, L. S., Wil-
son, M. A., DeLanney, L. E.,
Irwin, I., Molliver, M. E., and
Langston, J. W. (1988). (±)3,4-
Methylenedioxymethamphetamine
selectively damages central sero-
tonergic neurons in nonhuman
primates. JAMA 260, 51–55.

Ricaurte, G. A., Schuster, C. R., and
Seiden, L. S. (1980). Long-term
effects of repeated methylampheta-
mine administration on dopamine
and serotonin neurons in the rat
brain: a regional study. Brain Res.
193, 153–163.

Risdahl, J. M., Khanna, K. V., Peterson,
P. K., and Molitor, T. W. (1998). Opi-
ates and infection. J. Neuroimmunol.
83, 4–18.

Rock, R. B., Gekker, G., Aravalli, R.
N., Hu, S., Sheng, W. S., and
Peterson, P. K. (2008). Potentiation
of HIV-1 expression in microglial
cells by nicotine: involvement of
transforming growth factor-beta
1. J. Neuroimmune Pharmacol. 3,
143–149.

Rodriguez-Gaztelumendi, A., Alvehus,
M., Andersson, T., and Jacobsson, S.
O. (2011). Comparison of the effects
of nicotine upon the transcellular
electrical resistance and sucrose per-
meability of human ECV304/rat C6
co-cultures and human CaCo cells.
Toxicol. Lett. 207, 1–6.

Romanelli, R. M., Pinto, J. A., Melo, L.
J., Vasconcelos, M. A., and Pereira, R.
M. (2006). Effectiveness of dual and
triple antiretroviral therapy in the

treatment of HIV-infected children.
J. Pediatr. (Rio J) 82, 260–265.

Roth, M. D., Tashkin, D. P., Choi,
R., Jamieson, B. D., Zack, J. A.,
and Baldwin, G. C. (2002). Cocaine
enhances human immunodeficiency
virus replication in a model of
severe combined immunodeficient
mice implanted with human periph-
eral blood leukocytes. J. Infect. Dis.
185, 701–705.

Roth, M. D., Whittaker, K. M., Choi,
R., Tashkin, D. P., and Baldwin,
G. C. (2005). Cocaine and sigma-1
receptors modulate HIV infection,
chemokine receptors, and the HPA
axis in the huPBL-SCID model. J.
Leukoc. Biol. 78, 1198–1203.

Rothman, R. B., and Baumann, M.
H. (2003). Monoamine transporters
and psychostimulant drugs. Eur. J.
Pharmacol. 479, 23–40.

Rothman, R. B., Baumann, M. H., Der-
sch, C. M., Romero, D. V., Rice, K.
C., Carroll, F. I., and Partilla, J. S.
(2001). Amphetamine-type central
nervous system stimulants release
norepinephrine more potently than
they release dopamine and sero-
tonin. Synapse 39, 32–41.

Samii, A., Nutt, J. G., and Ransom, B. R.
(2004). Parkinson’s disease. Lancet
363, 1783–1793.

Sandoval, K. E., and Witt, K. A. (2008).
Blood-brain barrier tight junction
permeability and ischemic stroke.
Neurobiol. Dis. 32, 200–219.

Schep, L. J., Slaughter, R. J., and Beasley,
D. M. (2010). The clinical toxicol-
ogy of metamfetamine. Clin. Toxicol.
(Phila.) 48, 675–694.

Schilling, L., Bultmann, A., and Wahl,
M. (1992). Lack of effect of topi-
cally applied nicotine on pial arte-
riole diameter and blood-brain bar-
rier integrity in the cat. Clin. Investig.
70, 210–217.

Semple, S. J., Patterson, T. L., and
Grant, I. (2004). The context of sex-
ual risk behavior among heterosex-
ual methamphetamine users. Addict.
Behav. 29, 807–810.

Sharma, H. S., and Ali, S. F. (2006).
Alterations in blood-brain barrier
function by morphine and metham-
phetamine. Ann. N. Y. Acad. Sci.
1074, 198–224.

Sharma, H. S., and Ali, S. F. (2008).
Acute administration of 3,4-
methylenedioxymethamphetamine
induces profound hyperthermia,
blood-brain barrier disruption,
brain edema formation, and cell
injury. Ann. N. Y. Acad. Sci. 1139,
242–258.

Sharma, H. S., and Kiyatkin, E.
A. (2009). Rapid morphologi-
cal brain abnormalities during

www.frontiersin.org June 2012 | Volume 3 | Article 121 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Kousik et al. Psychostimulants blood brain barrier neuroinflammation

acute methamphetamine intoxi-
cation in the rat: an experimental
study using light and electron
microscopy. J. Chem. Neuroanat. 37,
18–32.

Sharma, H. S., Muresanu, D., Sharma,
A., and Patnaik, R. (2009). Cocaine-
induced breakdown of the blood-
brain barrier and neurotoxicity. Int.
Rev. Neurobiol. 88, 297–334.

Sopori, M. L., and Kozak, W. (1998).
Immunomodulatory effects of cig-
arette smoke. J. Neuroimmunol. 83,
148–156.

Speer, P., Zhang, Y., Gu, Y., Lucas, M.
J., and Wang, Y. (2002). Effects of
nicotine on intercellular adhesion
molecule expression in endothelial
cells and integrin expression in neu-
trophils in vitro. Am. J. Obstet.
Gynecol. 186, 551–556.

Stewart, P. A., Hayakawa, K., Akers, M.
A., and Vinters, H. V. (1992). A mor-
phometric study of the blood-brain
barrier in Alzheimer’s disease. Lab.
Invest. 67, 734–742.

Stolp, H. B., and Dziegielewska,
K. M. (2009). Review: Role of
developmental inflammation
and blood-brain barrier dys-
function in neurodevelopmental
and neurodegenerative diseases.
Neuropathol. Appl. Neurobiol. 35,
132–146.

Strazza, M., Pirrone,V., Wigdahl, B., and
Nonnemacher, M. R. (2011). Break-
ing down the barrier: the effects of
HIV-1 on the blood-brain barrier.
Brain Res. 1399, 96–115.

Sulzer, D., Sonders, M. S., Poulsen, N.
W., and Galli, A. (2005). Mecha-
nisms of neurotransmitter release
by amphetamines: a review. Prog.
Neurobiol. 75, 406–433.

Theodore, S., Cass, W. A., and Mara-
gos, W. F. (2006). Methamphet-
amine and human immunodefi-
ciency virus protein Tat synergize to
destroy dopaminergic terminals in
the rat striatum. Neuroscience 137,
925–935.

Torres, E., Gutierrez-Lopez, M. D.,
Mayado, A., Rubio, A., O’Shea,
E., and Colado, M. I. (2011).
Changes in interleukin-1 signal
modulators induced by 3,4-
methylenedioxymethamphetamine
(MDMA): regulation by CB2
receptors and implications for
neurotoxicity. J. Neuroinflammation
8, 53.

Uzum, G., Diler, A. S., and Ziylan, Y.
Z. (1999). Chronic nicotine pre-
treatment protects the blood-brain
barrier against nicotine-induced
seizures in the rat. Pharmacol. Res.
40, 263–269.

Venisnik, K. M. (2000). Nicotine and
cotinine modulate in vitro and
in situ blood–brain barrier perme-
ability. Proc. Western Pharm. Soc. 43,
128.

Verma, S., and Szmitko, P. E. (2006).
The vascular biology of peroxi-
some proliferator-activated recep-
tors: modulation of atherosclerosis.
Can. J. Cardiol. 22(Suppl. B), 12B-
17B.

Wang, L., Kittaka, M., Sun, N.,
Schreiber, S. S., and Zlokovic, B.
V. (1997). Chronic nicotine treat-
ment enhances focal ischemic brain
injury and depletes free pool of brain
microvascular tissue plasminogen
activator in rats. J. Cereb. Blood Flow
Metab. 17, 136–146.

Wang, L., McComb, J. G., Weiss, M. H.,
McDonough, A. A., and Zlokovic,
B. V. (1994). Nicotine downregulates
alpha 2 isoform of Na,K-ATPase at
the blood-brain barrier and brain
in rats. Biochem. Biophys. Res. Com-
mun. 199, 1422–1427.

Webber, M. P., Schoenbaum, E. E.,
Gourevitch, M. N., Buono, D., and
Klein, R. S. (1999). A prospective
study of HIV disease progression in
female and male drug users. AIDS
13, 257–262.

Wisor, J. P., Schmidt, M. A., and
Clegern, W. C. (2011). Cere-
bral microglia mediate sleep/wake

and neuroinflammatory effects of
methamphetamine. Brain Behav.
Immun. 25, 767–776.

Yamamoto, B. K., and Bankson, M. G.
(2005). Amphetamine neurotoxic-
ity: cause and consequence of oxida-
tive stress. Crit. Rev. Neurobiol. 17,
87–117.

Yamamoto, B. K., and Raudensky, J.
(2008). The role of oxidative stress,
metabolic compromise, and inflam-
mation in neuronal injury produced
by amphetamine-related drugs of
abuse. J. Neuroimmune Pharmacol.
3, 203–217.

Yamamoto, Y., Yoshikawa, H., Nagano,
S., Kondoh, G., Sadahiro, S., Gotow,
T., Yanagihara, T., and Sakoda, S.
(1999). Myelin-associated oligoden-
drocytic basic protein is essential for
normal arrangement of the radial
component in central nervous sys-
tem myelin. Eur. J. Neurosci. 11,
847–855.

Yang, T., Roder, K. E., Bhat, G. J.,
Thekkumkara, T. J., and Abbrus-
cato, T. J. (2006). Protein kinase
C family members as a target
for regulation of blood-brain bar-
rier Na,K,2Cl-cotransporter during
in vitro stroke conditions and nico-
tine exposure. Pharm. Res. 23,
291–302.

Yang, Y., Yao, H., Lu, Y., Wang, C.,
and Buch, S. (2010). Cocaine
potentiates astrocyte toxicity
mediated by human immunod-
eficiency virus (HIV-1) protein
gp120. PLoS ONE 5, e13427.
doi:10.1371/journal.pone.0013427

Yao, H., Kim, K., Duan, M., Hayashi, T.,
Guo, M., Morgello, S., Prat,A.,Wang,
J., Su, T. P., and Buch, S. (2011).
Cocaine hijacks sigma1 receptor to
initiate induction of activated leuko-
cyte cell adhesion molecule: implica-
tion for increased monocyte adhe-
sion and migration in the CNS. J.
Neurosci. 31, 5942–5955.

Yenari, M. A., and Han, H. S. (2012).
Neuroprotective mechanisms

of hypothermia in brain
ischaemia. Nat. Rev. Neurosci. 13,
267–278.

Yong, T., Zheng, M. Q., and Linthicum,
D. S. (1997). Nicotine induces
leukocyte rolling and adhesion in
the cerebral microcirculation of
the mouse. J. Neuroimmunol. 80,
158–164.

Zhang, L., Looney, D., Taub, D., Chang,
S. L., Way, D., Witte, M. H., Graves,
M. C., and Fiala, M. (1998). Cocaine
opens the blood-brain barrier to
HIV-1 invasion. J. Neurovirol. 4,
619–626.

Zhang, X., Banerjee, A., Banks, W.
A., and Ercal, N. (2009). N-
Acetylcysteine amide protects
against methamphetamine-induced
oxidative stress and neurotoxicity
in immortalized human brain
endothelial cells. Brain Res. 1275,
87–95.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 16 April 2012; accepted: 06 June
2012; published online: 29 June 2012.
Citation: Kousik SM, Napier TC and
Carvey PM (2012) The effects of psy-
chostimulant drugs on blood brain
barrier function and neuroinflamma-
tion. Front. Pharmacol. 3:121. doi:
10.3389/fphar.2012.00121
This article was submitted to Frontiers
in Neuropharmacology, a specialty of
Frontiers in Pharmacology.
Copyright © 2012 Kousik, Napier and
Carvey. This is an open-access article
distributed under the terms of the Cre-
ative Commons Attribution Non Com-
mercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

Frontiers in Pharmacology | Neuropharmacology June 2012 | Volume 3 | Article 121 | 12

http://dx.doi.org/10.1371/journal.pone.0013427
http://dx.doi.org/10.3389/fphar.2012.00121
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Neuropharmacology/archive
http://creativecommons.org/licenses/by-nc/3.0/

	The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation
	Introduction
	Components of the BBB
	Neurovascular Coupling at the BBB Interface
	Functions of the BBB

	Stimulant Drugs and the BBB
	Methamphetamine
	MDMA (Ecstasy)
	Cocaine
	Nicotine

	Stimulant co-morbidity with HIV Infection
	Conclusion
	Acknowledgments
	References


