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Eosinophils are effector cells that migrate toward several mediators released at
inflammatory sites to perform their multiple functions. The mechanisms driving eosinophil
selective accumulation in sites of allergic inflammation are well-established and involve
several steps controlled by adhesion molecules, priming agents, chemotactic, and
surviving factors. Even though the majority of studies focused on role of protein
mediators like IL-5 and eotaxins, lipid mediators also participate in eosinophil recruitment
and activation. Among the lipid mediators with distinguish eosinophil recruitment
and activation capabilities are platelet activating factor and the eicosanoids, including
leukotriene B4, cysteinyl leukotrienes, and prostaglandin D2. In this review, we focused
on the role of these four lipid mediators in eosinophil recruitment and activation, since
they are recognized as key mediators of eosinophilic inflammatory responses.
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Eosinophils are nowadays considered as multifunctional cells that
have long been associated with allergy and parasitic infections.
They are immunomodulatory cells that participate both in innate
and adaptive immune response via expression of various recep-
tors and secretion of a variety of mediators. To perform their
functional activities, first eosinophils must migrate to sites of
inflammatory reaction. Over the last years, a number of medi-
ators and receptors involved in the regulation of eosinophil
recruitment have been identified. Besides adhesion molecules
and cytokines, eosinophil mobilization is mostly coordinated
by a broad range of bioactive mediators known as chemokines.
These molecules are an increasing family of small proteins with
common structural motifs that via activation of their specific
receptors play an important role not only in selective recruit-
ment of eosinophils but also in subsequent eosinophil activation
in sites of eosinophilic inflammation. Even though the main
efforts in this research area are directed toward peptidic media-
tors, like chemokines, a growing body of data has unveiled key
roles of lipid mediators in regulating eosinophil migration and
activation. Among bioactive lipids, eicosanoids are a large fam-
ily of distinctive mediators derived from arachidonic acid (AA)
metabolization regularly found at high levels in inflammatory
sites. Displaying from pro- to anti-inflammatory, pro-resolution,
and even immunomodulatory functions, these molecules are key
mediators in the pathogenesis of diverse inflammatory diseases,

such as asthma, infection, and cancer. This review will first
explore the role of some of the most well-studied lipid media-
tors on eosinophil migration. Then, it will summarize the impact
of a varied of these mediators on eosinophil activation, focus-
ing on eosinophil secretory function of leukotriene C4 (LTC4)
synthesis/release.

HOW DO LIPID MEDIATORS IMPACT EOSINOPHIL
MIGRATION?
Eosinophilia is a classical feature of allergic inflammatory
responses, therefore regulation of eosinophil migration to the
inflammatory focus is a critical stage in the processes of
chronic inflammation that affect, for instance, asthmatic airways.
Eosinophil recruitment into the tissues after immune or chemi-
cal stimuli requires the production of chemoattractants by several
cells such as macrophages, mast cells, or lymphocytes. Briefly,
local increase in the secretion of eosinophilotactic molecules, leads
to eosinophil adhesion to the endothelium through interaction
with selectins expressed on the vascular endothelium followed
by firm adhesion through interaction with integrins. Subse-
quent transmigration through the endothelial cell monolayer is
followed by chemotaxis in the tissue, a process known to be
largely controlled by chemokines such eotaxina-1, 2, 3, and
RANTES and their specific receptors, especially CCR3 (Simson
and Foster, 2000). However, both in vivo and in vitro, eosinophils
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also migrate toward different factors distinct from chemokines
such as C5a (Klebanoff et al., 1977), interleukin-5 (IL-5; Wang
et al., 1989), granulocyte-macrophage colony-stimulating factor
(GM-CSF; Secor et al., 1990), and lipid mediators. Indeed, AA
metabolites as leukotrienes and prostaglandins (PGs), as well as,
platelet activating factor (PAF) are considered major players in the
pathogenesis of asthma and other forms of allergic inflammation,
in part because they control eosinophil influx and activation.

Within a variety of cell types, phospholipase A2-driven AA
mobilization followed by the oxidative metabolism of free AA
mediated by either two cyclooxygenases (COX, PG H synthase)
or a family of lipoxygenase (LO) enzymes culminate with the
generation of bioactive lipid mediators with roles in eosinophilic
inflammation. Specifically concerning those with ability to elicit
eosinophil recruitment, newly synthesized lipid mediators may
comprise:

LEUKOTRIENE B4

Leukotriene B4 (LTB4) is a lipid mediator with potent chemoat-
tractant properties that is rapidly generated from activated innate
immune cells such as neutrophils, macrophages, and mast cells.
Elevated levels of LTB4 have been reported in various allergic
diseases and these levels have been related to disease activity
and eosinophilia (O’Driscoll et al., 1984; Wardlaw et al., 1989;
Shindo et al., 1993). LTB4 can bind to two highly conserved G
protein-coupled receptors (GPCRs), LTB4 receptor 1 (BLT1) and
the considered low-affinity BLT2 (Toda et al., 2002; Yokomizo,
2011). LTB4 serves as a potent chemoattractant through liga-
tion of BLT1 on target cells. Expression and function of LTB4

receptors on eosinophils remained for long time controversial,
in part because LTB4-driven activity seemed to have some selec-
tivity toward neutrophils. However, while strong demonstration
of BLT1 expression in human eosinophils is still pending, func-
tional assays using LTB4 as agonist and specific BLT1 antagonists
have provided evidences of expression of active BLT1 on human
eosinophils. For instance, it has been shown a BLT1-driven LTB4

ability to trigger calcium influx in human eosinophils (Murray
et al., 2003a). On the other hand, murine (m)BLTR was cloned
while searching for novel chemoattractant receptors in murine
eosinophils and demonstrated that it encodes a functional recep-
tor for LTB4 which are able to trigger chemotaxis of mouse
eosinophils (Figure 1, left panel; Spada et al., 1997; Huang et al.,
1998). Reinforcing both in vitro data and in vivo assays with BLT1
antagonists, in vivo studies using BLT1-deficient mice have con-
firmed that ligation of BLT1 by LTB4 is a key event for recruitment
of eosinophils (Tager et al., 2000) However, it is noteworthy that
while mouse eosinophils may generate only negligible amounts of
LTB4, human eosinophils are not LTB4 producers, representing
major cellular sources of cysteinyl LTs (Weller et al., 1983). Based
on the prominent eosinophil feature of recurrently depend on
autocrine/paracrine stimulation to regulate their own functions,
it seemd to be potentially more important the role of cysteinyl LTs
in inducing eosinophilic responses, including autocrine/paracrine
roles in induction of eosinophil chemotaxis and activation.

CYSTEINYL LEUKOTRIENES
Leukotriene C4 and its extracellular derivatives LTD4 and LTE4

have many well recognized actions as mediators of allergic
response, causing bronchoconstriction, mucous hypersecretion,
increased microvascular permeability, and bronchial hyperre-
sponsiveness. Additional but not as well-established effect is the
ability of cysteinyl LTs to control eosinophil activities, includ-
ing those related to tissue infiltration. Involvement of cysteinyl
LTs in eosinophil influx is an in vivo phenomenon which was
firstly demonstrated in guinea-pigs (Chan et al., 1990), but also
observed in human (Laitinen et al., 1993) and reinforced by the
anti-allergic effects of CysLT1 antagonists which, in addition to
inhibiting allergic symptoms, also inhibit eosinophil recruitment
during airway allergic inflammation (Peters-Golden, 2008). Even
though cysteinyl LTs display negligible eosinophilotactic activity
in vitro (Figure 1, left panel; Fregonese et al., 2002), cysteinyl
LTs contribute to several mechanisms involved in mouting tissue

FIGURE 1 | Schematic mechanisms of LTB4-, LTC4-, PAF-, or

PGD2-induced eosinophil chemotaxis and LTC4 synthesis. Left eosinophil
scheme displays the ability of the four lipid mediators to trigger eosinophil
chemotaxis by activating receptor-mediated distinct intracellular signaling. In
contrast, the right eosinophil scheme shows that only PGD2 and PAF are

capable of activating LTC4 synthesizing machinery, yet again by eliciting
distinct signaling, but both by a lipid body-dependent mechanism. The right
scheme also illustrates that both leukotrienes LTB4 and LTC4, even thought
activate their specific receptors in eosinophils (see left panel), failed to trigger
lipid body biogenesis or LTC4 synthesis.
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eosinophilia, since: (i) cysteinyl receptor CysLT1 appears to play a
role in eosinophilopoeisis, inasmuch as CysLT1 antagonism in vivo
limits IL-5-responsive eosinophil differentiation and maturation
(Saito et al., 2004); (ii) cysteinyl LTs are able to significantly up-
regulate adhesion molecules, such as Mac-1 expression (Fregonese
et al., 2002; Saito et al., 2004); (iii) direct administration of LTC4

induce a rapid and significant reduction in leukocyte rolling veloc-
ity, further increasing cell adherence odds (Kanwar et al., 1995);
(iv) cysteinyl LTs induce RANTES production from isolated lung
cells, which in turn might cause RANTES-driven migration of
eosinophils into airways (Kawano et al., 2003).

PLATELET ACTIVATING FACTOR
One major chemoattractant for eosinophils is the ether-
linked phospholipid, PAF. PAF (1-O-alkyl-2-acetyl-sn-glycero-3-
phosphocholine) is another potent lipid mediator synthesized by
a range of cell types, including monocytes/macrophages, mast
cells, platelets, neutrophils, endothelial cells as well as eosinophils.
PAF is capable of eliciting both chemokinesis and chemotaxis
in vitro and triggering eosinophil influx and accumulation in
vivo (Wardlaw et al., 1986; Kimani et al., 1988; Martins et al.,
1989; Kato et al., 2004). Acting via a single class of identified
receptor – named PAFR – a seven–trans-membrane G protein-
coupled receptor, PAF evokes not only migration-related activities
but also a variety of eosinophilic functional responses (Grigg,
2012). Of note, while it became more and more clear that
human and mouse eosinophils shared profound dissimilarities
(Lee et al., 2012), both express functional active PAFR which
mediates eosinophilotactic activity of PAF in human and mouse
cells by a pertussis toxin (PTX)-sensitive manner. Several studies
have tryed to characterize the signaling pathways involved in PAF-
induced eosinophil chemotaxis, and although still controversial,
it is now recognized that eosinophilotactic responses triggered by
PAF depend on activation of mitogen-activated protein (MAP)
kinases, while upstream signaling events are regulated by acti-
vation of phosphoinositide 3-kinase (PI3K; Figure 1, left panel;
Dent et al., 2000; Miike et al., 2000). Indeed, these findings are
in agreement with the demonstration that PI3K inhibitors sup-
press PAF-mediated tissue eosinophilia in diseases such as asthma
(Mishra et al., 2005).

PROSTAGLANDIN D2

Prostaglandin D2 has emerged as a key mediator of allergic diseases
such as asthma (Matsuoka et al., 2000), in part due to its now well-
characterized ability to promote potent eosinophil chemotaxis and
activation (Powell, 2003). PGD2-driven cellular functions are all
mediated by high-affinity interaction with two receptors, namely
D prostanoid receptor 1 (DP1) and chemoattractant receptor-
homologous molecule expressed on T helper type 2 cell (Th2) cells
(CRTh2, also known as DP2). Whilst DP1 is coupled to Gαs pro-
tein and signals through elevation of intracellular levels of cyclic
adenosine monophosphate (cAMP), DP2 is coupled to Gαi and
its activation leads to elevation of intracellular calcium, reduc-
tion in cAMP (Sawyer et al., 2002) and downstream activation
of PI3K (Xue et al., 2007). Eosinophils co-express both the classic
DP1 receptors coupledto adenylyl cyclase, as well as, PTX-sensitive
DP2 (Monneret et al., 2001).

Prostaglandin D2-mediated eosinophilotactic effect is due to
direct activation of the DP2 receptor expressed on eosinophil
surface (Monneret et al., 2003). Several pharmacological studies
show the involvement of DP2 in the establishment of eosinophilia
in models of allergic inflammation. For instance, intratracheal
injection of PGD2 or selective DP2 agonist induced eosinophilia
in rats, whereas the use of selective DP1 agonist failed to trigger
eosinophil accumulation (Emery et al., 1989). Likewise, intratra-
cheal administration of DP2 agonist or PGD2 induced specific
airway eosinophilia in mice previously exposed to the allergen or
IL-5 (Shiraishi et al., 2005). DP2 antagonist abrogated the PGD2-
induced mobilization of eosinophils from the bone marrow of the
guinea-pig confirming a crucial role of DP2 in this response (Royer
et al., 2008). A specific DP2 agonist not only increased eosinophil
recruitment at inflammatory sites but also the pathology in two
in vivo models of allergic inflammation: atopic dermatitis and
allergic asthma (Spik et al., 2005). Concurring, selective DP2, but
not DP1 antagonists were capable to inhibit eosinophil accu-
mulation in a model of PGD2-induced eosinophilic pleurisy
(Mesquita-Santos et al., 2011). In vitro, PGD2 is able to promote
additional migration-related activities, such as increased expres-
sion of cell adhesion molecules CD11b and L-selectin, calcium
mobilization, actin polymerization, chemokinesis and a rapid
change in eosinophil morphology (Gervais et al., 2001; Monneret
et al., 2001). Of note and as illustrated in Figure 1 (left panel),
these and other in vitro studies have collectively unveiled that
PGD2-driven eosinophil chemotaxis may be determined by a bal-
ance between opposing downstream signaling pathways: cAMP-
dependent inhibitory DP1 versus prevailing stimulatoryDP2 intra-
cellular effects (Monneret et al., 2003; Ulven and Kostenis, 2006;
Sandig et al., 2007). However, further studies appears to be still
needed to fully explain PGD2 mechanisms of actions, since
recently it has been shown that DP1and DP2may form heteromers
representing a distinct functional signaling unit on eosinophil
membrane with non-changed ligand-binding features (Sedej et al.,
2012). In fact, these are not the first findings showing the ability
of DP1 receptors to amplify the biological response to DP2 acti-
vation in eosinophils (Mesquita-Santos et al., 2011) a process that,
although may not play roles in eosinophil migration, it appears to
be critical to PGD2-induced eosinophil activation (see below).

DO LIPID MEDIATORS ACTIVATE EOSINOPHIL EFFECTOR
FUNCTIONS?
At the sites of eosinophilic accumulation, through their ability
to secrete a range of cytokines, basic proteins, reactive oxygen
species as well as lipid mediators, eosinophils contribute to the
physiopathology of a growing list of conditions including clas-
sical eosinophil-related diseases such as bronchial asthma, novel
and quite surprising pathologies such as cancer, multiple sclero-
sis, Duchene muscular dystrophy as well as physiological process
such as mammary development (Jacobsen et al., 2012). While the
regulation of eosinophil migration to the inflammatory focus is a
critical stage in eosinophilic pathologies, understanding the mech-
anisms by which eosinophil activation is stimulated and its conse-
quences appear to be even more important in defining potential
targets for therapeutic interventions, since the specific stimulatory
molecules, its receptors and signaling pathways involved in
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eosinophil activation and subsequent mediator secretion may each
be susceptible to inhibition. Indeed among different parameters
of eosinophil activation, eosinophil secretory activity may rep-
resent the most attractive target to development of therapeutical
maneuvers. Upon activation, eosinophil may engage both in secre-
tion of pre-formed granule-stored contents, including eosinophil
specific toxic proteins, enzymes, cytokines, chemokines, and
other bioactive mediators, as well as de novo synthesized/released
molecules including oxygen free radicals but prominently lipidic
AA-derived mediators. The unique eosinophil pattern of oxida-
tive metabolism of AA generates a specific array of eicosanoids.
Eosinophils can synthesize lipoxin A4 (LXA4) and the aptly named
after eosinophils, eoxin C4(EXC4), besides the prostanoids throm-
boxane B2 (TXB2), PGE2 and the recently identified PGD2.
However, when properly stimulated, eosinophils prominently syn-
thesize cysteinyl LTs. Of note, eosinophils are a major cellular
source of cysteinyl LTs and have been identified as the princi-
pal LTC4 synthase expressing cells in bronchial mucosal biopsies
of asthmatic subjects (Bandeira-Melo and Weller, 2003). Hence,
much interest in understanding the regulation of eicosanoid for-
mation in eosinophils has focused on the mechanisms that regulate
eosinophil cysteinyl LTs formation and release. Briefly, free AA can
be metabolized within eosinophils by 5-LO, which is the limit-
ing enzyme of leukotriene synthesis. 5-LO catalyzes a two-step
reaction. First, 5-LO targets free AA in concert with the 5-LO-
activating protein (FLAP) to insert one oxygen molecule into the
5 position of AA to form 5S-hydroperoxyeicosatetraenoic acid
(HPETE), then transforms 5-HPETE into an unstable allylic epox-
ide, named LTA4. The subsequent metabolism of LTA4 also differs
between leukocytes. In neutrophils, for instance, LTA4 hydro-
lase enzymatically hydrolyses 5-LO-metabolite LTA4 to LTB4. In
contrast within human eosinophils, which do not express LTA4

hydrolase and therefore are incapable of LTB4 synthesis, a spe-
cific glutathione S-transferase, named LTC4 synthase (LTC4S),
catalyzes the adduction of reduced glutathione (a tripeptide com-
posed by glutamic acid, glycine, and cysteine) to LTA4 to form
LTC4. After energy-dependent export, LTC4 is converted to LTD4

and LTE4 through sequential enzymatic removal of the glutamic
acid by γ-glutamyl transpeptidases and then the glycine by dipep-
tidases. Therefore, because these LTs share a cysteine, LTC4 and
its extracellular derivatives LTD4 and LTE4 are collectively called
cysteinyl LTs.

Similar to how we presented the roles of lipid mediators
in inducing eosinophil migration, here we will also summa-
rize some activating roles of LTB4, cysteinyl LTs, PAF and
PGD2, but we will give special emphasis to a prototype param-
eter of eosinophil activation: eosinophil ability to activate LTC4

synthesizing machinery.

LEUKOTRIENE B4

Even though LTB4 receptors have been indirectly and directly
found to be expressed on human and murine eosinophils, respec-
tively, there are not many successful studies reporting LTB4-driven
eosinophil activation. Mainly using as cell model guinea-pig
eosinophils, it has been shown that LTB4 was capable of stimulat-
ing eosinophil recruitment, release of AA, homotypic eosinophil
aggregation, as well as, rapid and transient activation of the

NADPH oxidase (Faccioli et al., 1991; Lindsay and Giembycz,
1997; Teixeira et al., 1999). Of note, the intracellular mechanisms
that mediate LTB4-induced NADPH oxidase activation involve
mediation by lyn kinase, PKC, and PLA2, but occurs essentially
independently of changes in the intracellular calcium, phospho-
lipase D, PI3K, and ERK1/2 (Perkins et al., 1995; Lindsay et al.,
1998a,b; Lynch et al., 1999) Specifically regarding induction of
LTC4 synthesizing function, stimulation of human eosinophils
with LTB4 failed to mount a LTC4 synthesizing response (Figure 1,
right panel). In addition, eosinophil stimulation with LTB4 was
also unable to trigger synthesis of other eicosanoids such as PGE2

or even the biogenesis of lipid bodies – organelles, which compart-
mentilize AA metabolism within eosinophils and other cell types,
and that are promptly assembled under stimulation that leads to
eicosanoid synthesis (Bozza et al., 1997b).

PLATELET ACTIVATING FACTOR
Human eosinophils are prominent among cell populations that
respond to PAF stimulation displaying, besides chemotaxis,
numerous PAF-driven functions, including migration-related
activities such as adhesion and expression of cell surface molecules,
as well as, secretory functions, including superoxide production
and release of cationic granule proteins and stored cytokines
(Wardlaw et al., 1986; Kroegel et al., 1989; Zoratti et al., 1991;
Takizawa et al., 2002; Dyer et al., 2010). Equally important is
the notion that although only one PAFR has been identified,
PAF-driven signaling has emerged as a complex phenomenon,
displaying differences between eosinophil chemotactic versus
secretory functions and therefore suggesting the existence of yet
non-characterized receptors (Kato et al., 2004).

It is noteworthy that PAF was the first stimulus to have its lipid
body-dependent mechanism of eliciting LTC4 synthesis charac-
terized. PAF, acting via its G-protein-linked receptor induces lipid
body formation via a downstream signaling involving PKC and
phospholipase C (PLC) activation (Figure 1, right panel; Bozza
et al., 1996, 1997a, 1998). Even more relevant to PAF ability of
inducing LTC4 synthesis, it was the demonstration that the major
enzymes involved in the enzymatic conversion of AA into LTC4,
5-LO, and LTC4 synthase, were found compartmentalized within
PAF-induced newly assembled eosinophil lipid bodies (Bozza et al.,
1997a, 1998) and that these enzymes were functional and produc-
ing LTC4 within theses organelles (Bandeira-Melo et al., 2001).

CYSTEINYL LEUKOTRIENES
Cysteinyl leukotrienes exert their actions by engaging specific
receptors. Al least two cysLT receptors (cysLTRs) have been
cloned and characterized, the CysLT1 and CysLT2 receptors (Lynch
et al., 1999; Sarau et al., 1999; Heise et al., 2000; Nothacker et al.,
2000). These receptors can be distinguished with pharmaco-
logic inhibitors and by their differing ligand-binding affinities. In
addition, various findings suggest the existence of other, not yet
cloned, cysLTR (Panettieri et al., 1998; Ravasi et al., 2000; Mellor
et al., 2002).

Inasmuch as eosinophils express functional receptors for cys-
teinyl LTs, it has been investigated their potential role as stimuli of
eosinophil activation. Indeed, a series of reports showed cysteinyl
LTs ability to affect various eosinophil responses. For instance,
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cysteinyl LTs promote CysLT1-dependent calcium influx on HL-
60 (Thivierge et al., 2000; Murray et al., 2003b). We have also
shown that LTC4, LTD4, and LTE4 induced a dose- and time-
dependent, vesicular transport-mediated release of pre-formed
IL-4 from eosinophils derived in vitro from human cord blood
progenitors (Bandeira-Melo et al., 2002a). Although some con-
troversy exist (Murray et al., 2003b), cysteinyl LTs also appear to
be able to induce in vitro survival of human eosinophils by acti-
vation of CysLT1 receptors (Lee et al., 2000; Becler et al., 2002).
It is noteworthy that in addition to their recognized activities as
paracrine mediators, eicosanoids like cysteinyl LTs are now also
recognized to display autocrine effects. Indeed, eosinophil-derived
cysteinyl LTs exert autocrine effects to enhance eosinophil survival
triggered by GM-CSF, as well as, mast cell- and lymphocyte-
derived molecules (Lee et al., 2000). Moreover, the capacity of
eotaxin to stimulate the vesicular transport-mediated release of
pre-formed IL-4 from human eosinophil granules is dependent
of an endogenous LTC4, formed at eosinophil lipid bodies, that
acting as an intracrine signaling molecule regulates this CCR3-
elicited IL-4 release (Bandeira-Melo et al., 2002c). Thus, LTC4

may act intracellularly as intracrine signal transducing mediators.
Indeed, cysteinyl LTs-responsive receptors have been identified on
the membranes of intracellular eosinophil granule organelles and
appear to function mediating cysteinyl LTs-stimulated secretion
from within eosinophil granules, including those granules found
extracellularly (Neves et al., 2010). On the other hand ans as illus-
trated in Figure 1 (right panel), specifically regarding the ability
of activating LTC4 synthesis, none endogenous or exogenous cys-
teinyl LTs displayed the ability to trigger lipid body biogenesis or
to elicit their own synthesis (Bandeira-Melo et al., 2002c).

PROSTAGLANDIN D2

Besides migration-related cell functions, it is now well-
characterized that PGD2 is a potent inducer of eosinophil acti-
vation, being capable of promoting eosinophil secretory activity.
For instance, PGD2 is capable of triggering eosinophil degranu-
lation, which appears to be induced by the selective DP2 agonist
but not by selective DP1 agonist, suggesting for DP2 a role in
modulating, not only eosinophil migration, but also activation
(Gervais et al., 2001). We have also shown that, in addition
to its eosinophilotactic activity, PGD2 controls allergy-relevant
eosinophil activation parameter: the increased LTC4-synthesizing
capacity of these cells (Mesquita-Santos et al., 2006). Indeed, other
eosinophilotactic mediators, including eotaxin, RANTES, and
PAF are capable of triggering LTC4 synthesis within eosinophils
through activation of their cognate Gαi-coupled chemotactic
receptors (e.g., CCR3; Bozza et al., 1996; Bandeira-Melo et al.,
2001). However, PGD2-induced LTC4 synthesis, surprisingly
and distinctly from other parameters of eosinophil activation
evoked by PGD2, was not mediated by the stimulatory activa-
tion of DP2 receptors while being counter-balanced by a parallel
inhibitory cAMP-dependent DP1 receptor activation. On con-
trary, it does depend on a novel kind of interaction between
the PGD2 receptor types expressed on eosinophils (Figure 1,
right panel). Eosinophil LTC4 synthesis triggered by PGD2 is
controlled by complementary stimulatory events between DP1

receptor-activated lipid bodies and concurrent DP2 receptor

signaling (Mesquita-Santos et al., 2011). While PGD2 emerges
as a potent inflammatory mediator of allergic disorders and
as an interesting therapeutic target, because of the manda-
tory dual activation of DP1 and DP2 receptors for increasing
eosinophil LTC4 synthesis, either DP1 or DP2 receptor antago-
nists might be highly effective candidates as anti-allergic tools
to control cysteinyl LTs production regulated by the activation
of eosinophils at sites of allergic reactions. On the top of that,
we had recently also found out that upon proper stimulation,
both human and mouse eosinophils can produce significant
amounts of biologically relevant PGD2 (Luna-Gomes et al., 2011).

PGD2 intracellular synthesis within eosinophils led to PGD2

receptor-mediated paracrine/autocrine functions, contributing to
eosinophil activation. Indeed, eosinophil-derived PGD2 appears
to be capable of regulating both eosinophil motility, as well as,
lipid body-driven LTC4 synthesis within eosinophils stimulated
with eotaxin, for instance.

FINAL REMARKS
It is clear that several relevant aspects of lipid mediator impact
on eosinophil biology need to be further characterized, how-
ever knowledge on this subject had evolved dramatically in
the last decades. Among the most significant advances on
eosinophil/lipid mediator axis are: (i) the recognition that
eosinophils express the multitude of lipid mediator receptors on
their surface, even those receptor pairs with apparently oppos-
ing functional outcomes under activation; (ii) the appreciation
that not only eosinophil migration is elicited by lipid media-
tors, but maybe even more therapeutically relevant, activation
of eosinophil secretory functions; and (iii) the acknowledg-
ment of a wide-ranging induced signaling and consequently
functional potentiality for lipid mediator-stimulated eosinophils
that have still unpredicted impact to surrounding eosinophilic
immuno-pathologies.

Still of special interest for eosinophil biology with roles in
maximizing eosinophil functional potentialities is the rising obser-
vations unraveling intricate interactions between lipid mediators
(such as LTC4 and PGD2) and eosinophil-relevant chemokines
and other proteic stimuli. Possibly the most illustrative exam-
ple of such cross-talking is eosinophil stimulation by eotaxin, a
key mediator in the development of allergic eosinophilia that is
known by its potent eosinophilotactic activity and has emerged
as a potent mediator of eosinophil activation. Among a num-
ber of data on eotaxin/AA metabolites interdependency, some
hallmarks are the sequencial events: (i) eotaxin particular ability
to acutely enhance PGD2 synthesis by eosinophils by stimulat-
ing CCR3 receptors (Mesquita-Santos et al., 2006; Luna-Gomes
et al., 2011); (ii) the subsequent autocrine/paracrine induction
of lipid body biogenesis and lipid body-located LTC4 synthesis
by eosinophil-derived PGD2 (Luna-Gomes et al., 2011); followed
by (iii) LTC4-driven intracrine induction of piecemeal degran-
ulation of granule-stored IL-4 by eotaxin-stimulated eosinophils
(Bandeira-Melo et al., 2002c). Nevertheless, eotaxin is not the only
example of such lipid/protein cooperation. It is still noteworthy
that cell types other than eosinophils also undergo such lipid medi-
ator/protein mediator cross-talking in regulating cell activation.
Either infection-elicited or oxLDL-driven MCP1, for instance,
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besides its known CCR2-driven chemotactic function, appear as a
key activator of lipid body biogenic and leukotriene synthesizing
machineries within macrophagic cells (Pacheco et al., 2007; Silva
et al., 2009). Once more specifically regarding eosinophils, syn-
ergistic effects on eliciting eosinophil chemotaxis have been also
described between PGD2 and at least the cytokines IFN-γ and
TNF-α (El-Shazly et al., 2011), as well as, between DP2 activation

and vasoactive intestinal peptide VIP (El-Shazly et al., 2013).
Moreover, RANTES, IL-16 and MIF are also proteic mediators
capable of activating eicosanoid synthesizing machinery within
eosinophils culminating with the generation of LTC4 and PGD2,
that in turn intracrinally or autocrinally mediate eosinophil secre-
tory functions (Bandeira-Melo et al., 2002b,c; Vieira-de-Abreu
et al., 2011).
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