{frontiers in

PHARMACOLOGY

REVIEW ARTICLE
published: 23 April 2013
doi: 10.3389/fphar.2013.00040

=

Genetic influences on cystic fibrosis lung disease severity

Colleen A. Weiler' and Mitchell L. Drumm??*

" Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
2 Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA

Edited by:

Marc Chanson, University of Geneva,

Switzerland

Reviewed by:

Burkhard Tiimmler, Medizinische

Hochschule Hannover, Germany

Sabina Gallati, University of Bern,
Switzerland

*Correspondence:

Mitchell L. Drumm, Department of
Pediatrics, Case Western Reserve
University, 724 Biomedical Research
Building, 10900 Euclid Avenue,
Cleveland, OH 44106-4948, USA.
e-mail: mitchell.drumm@case.edu

Understanding the causes of variation in clinical manifestations of disease should allow for
design of new or improved therapeutic strategies to treat the disease. If variation is caused
by genetic differences between individuals, identifying the genes involved should present
therapeutic targets, eitherin the proteins encoded by those genes or the pathways in which
they function. The technology to identify and genotype the millions of variants present in
the human genome has evolved rapidly over the past two decades. Originally only a small
number of polymorphisms in a small number of subjects could be studied realistically, but
speed and scope have increased nearly as dramatically as cost has decreased, making it
feasible to determine genotypes of hundreds of thousands of polymorphisms in thousands
of subjects. The use of such genetic technology has been applied to cystic fibrosis (CF) to
identify genetic variation that alters the outcome of this single gene disorder. Candidate
gene strategies to identify these variants, referred to as “modifier genes,” has yielded
several genes that act in pathways known to be important in CF and for these the clinical
implications are relatively clear. More recently, whole-genome surveys that probe hundreds
of thousands of variants have been carried out and have identified genes and chromosomal
regions for which a role in CF is not at all clear. Identification of these genes is exciting, as

it provides the possibility for new areas of therapeutic development.
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CYSTIC FIBROSIS BACKGROUND

Cystic fibrosis (CF) is the most common lethal autosomal recessive
disease in Caucasians, affecting an estimated 1 in 3,300 live-born
infants (Davis et al., 1996). Affected individuals have variants in
both copies of the 230-kb CF transmembrane conductance regu-
lator gene (CFTR), that result in significant reduction or absence
of CFTR function. The CFTR gene is located on the long arm of
chromosome 7 at position 7q31and encodes a 1,480 amino acid
protein (Riordan et al., 1989; Rommens et al., 1989) with cAMP-
dependent anion channel activity (Bear et al., 1992) found in the
apical membranes of epithelial cells in the lungs, olfactory sinuses,
pancreas, intestines, vas deferens, and sweat ducts, as well as non-
epithelial cells such as immune cells (myeloid and lymphocytes)
and various muscle cell types (Yoshimura et al., 1991; Krauss et al.,
1992; McDonald et al., 1992; Dong et al., 1995; Moss et al., 2000,
Robert et al., 2005; Di et al., 2006; Vandebrouck et al., 2006; Divan-
gahi et al., 2009; Lamhonwah et al., 2010). Low or absent CFTR
function in the airway epithelium not only results in decreased
chloride permeability, but also in increased sodium absorption
across the epithelium, impairing hydration of the airway mucosal
surface and resulting in thick, sticky mucus and an environment
for bacteria to thrive. Thus, typical clinical features of CF include
chronic infection and inflammation of the airways. Accordingly, a
hallmark characteristic of the CF airways is progressive bronchiec-
tasis; this destruction and dilation of the airways is the primary
cause of morbidity and mortality of CF patients. In addition to the
airway manifestations, most CF patients will experience exocrine
pancreatic insufficiency, males are most often sterile, and other
co-morbidities such as liver disease and diabetes are common as

well. Previously considered almost exclusively a pediatric disease,
CF babies now have a predicted median survival of nearly 40 years
(Cystic Fibrosis Foundation Patient Registry, 2009).

HETEROGENEITY OF CFTR

To date, over 1,800 CF-associated mutations have been described’
and the effects of these mutations have been grouped into six gen-
eral classes based on the consequence to CFTR message and/or
protein (Zielenski, 2000). These range from complete absence of
full-length, functional CFTR protein (class I), proteins that do not
traffic to the membrane well due to misfolding (class II), pro-
teins that reach the membrane but do not respond to activation
stimuli such as phosphorylation (class III), proteins that reach the
membrane and activate, but do not conduct anions sufficiently to
prevent disease (class IV), mutations that reduce the amount of
functional CFTR, such as by gene expression regulation or protein
trafficking (class V), and proteins that are unstable and experience
increased turnover in the plasma membrane (class VI). It should
be noted that these classes are not mutually exclusive, as a single
change may have multiple effects on the protein.

Given the diversity of mutations, it is perhaps not surpris-
ing that there is a wide range of phenotypic variability in CF
simply due to variation in CFTR. Many reports of correlations
between CFTR genotype and clinical phenotype exist (Kerem etal.,
1990a; Stuhrmann et al., 1991; The Cystic Fibrosis Genotype-
Phenotype Consortium, 1993; Tsui and Durie, 1997; Zielenski,
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2000), with the most extensive catalog to date carried out as an
international effort? and currently includes data on over 35,000
patients. Because most CF mutations are rare, surveying such a
large number of individuals makes it possible to most reliably
assess the phenotypic effects associated with a genotype, rather
than extrapolate from individual cases.

In addition to CFTR genotype, there is evidence that gender
contributes to phenotypic variability (Davis, 1999). Females are
reported to have a reduced median survival age (by approximately
3 years), an earlier average age of Pseudomonas aeruginosa infec-
tion in the lungs, greater rates of pulmonary decline, and elevated
resting energy expenditure when compared to males (Demko et al.,
1995; Corey et al., 1997; Allen et al., 2003). Although some cur-
rent studies replicate these findings (Barr et al., 2011; Reid et al,,
2011), others show no evidence of a gender gap and propose that
phenotypic variability could be attributed to non-uniformity of
care or the need to account for other factors such as body habitus,
presence of diabetes, or the finding that females are more likely to
be diagnosed later in life than males (Widerman et al., 2000; Milla
et al., 2005; Rodman et al., 2005; Verma et al., 2005; Stern et al.,
2008; Fogarty et al., 2012).

GENOMIC HETEROGENEITY AND CLINICAL VARIATION
Even among patients with the same CFTR genotype, there is a
wide range of phenotypic variability (Kerem et al., 1990a; Tsui and
Durie, 1997). Perhaps most notably, there is remarkable variation
of pulmonary phenotype, with some patients maintaining normal
lung function well into adolescence and adulthood while others do
quite poorly even at a very young age (Kerem et al., 1990a). Under-
standing the causes of this variation is important, as it provides
insight into developing new therapies, or improving existing ones.
Clearly environmental factors contribute to clinical variation;
exposure to tobacco smoke, bacterial infections, and socioeco-
nomic status have all been implicated as having detrimental effects
on pulmonary phenotype of CF patients (Kerem et al., 1990b;
Rubin, 1990; Corey and Farewell, 1996; Schechter et al., 2001;
O’Connor et al,, 2003) while improvement of nutritional status,
through aggressive treatment, has been associated with improve-
ments in pulmonary phenotype (Steinkamp and von der Hardt,
1994). Each of the environmental sources of clinical variation pro-
vide potential intervention points, but it is also clear that there
are heritable sources (Mekus et al., 2000; Vanscoy et al., 2007) of
variation as well and that may provide insight into even more
therapeutic targets.

EVIDENCE OF GENETIC MODIFIERS OF DISEASE

Human twin and sibling studies have been useful in verifying the
role of modifier genes, and quantifying their contribution to phe-
notypic variation. Mekus et al. (2000) found in a survey of 277
sibling pairs, with 29 monozygous and 12 dizygous pairs, that a
combined index of lung function and body mass was more concor-
dantamong monozygous twins (sharing 100% of genetic material)
than dizygous twins or other sibling pairs (sharing 50% of genetic
material), pointing to a genetic etiology of variation. Similarly,
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Vanscoy et al. (2007) examined the pulmonary phenotype of 57
twin pairs and 231 sibling pairs with CE. Lung function measure-
ments were significantly more concordant between monozygous
twins than dizygous twins, also indicating the presence of genetic
modifiers. The similarity in lung function between sibling pairs
was compared to the similarity in lung function in unrelated
patients, and again was found to be more similar. Heritability
estimates were calculated from these data, and it was determined
that non-CFTR genetic variation could account for approximately
50-80% of the pulmonary phenotypic variability in CF patients
with the same CFTR genotype (homozygous F508del) (Vanscoy
et al., 2007).

GENETIC APPROACHES

With a genetic component established, the next task at hand was to
identify the genes responsible. There are two fundamental strate-
gies by which to accomplish this. One requires family information
and is often referred to as linkage analysis. Through this approach,
one determines whether a polymorphism’s genotype is concordant
in siblings with similar clinical profiles, discordant when clinical
features are discordant or show no pattern. The other approach
is association, determining if particular alleles of a polymorphism
are distributed randomly among patients or have skewed distribu-
tions that track with clinical characteristics. These two approaches
are outlined in Figure 1 and the findings that these strategies have
produced are listed in Table 1 with several examples described in
more detail below.

The vast majority of studies have been of the association design,
predominantly due to the small number of families with multiple,
affected children. These studies have evolved over time; cost and
time restricted most early studies to screen for potential disease-
modifying genes by candidate gene approaches with later studies
utilizing array-based methods and soon whole-genome sequenc-
ing will be the state of the art. These three approaches are compared
in Figure 2.

PHENOTYPIC CONSIDERATIONS

As lung disease is the major source of CF-related mortality, most
studies have focused on some measure of lung function as a phe-
notype to examine for association. As most CF care centers carry
out standard pulmonary function tests, spirometry has most com-
monly been used. Other tests may, in fact, be more specific for
particular modifying functions, such as lung clearance index, but
these are not as widely used and thus less practical for multi-center
studies.

CANDIDATE GENES

Candidate genes are those suspected to have a role in some
aspect of CF pathophysiology and variants in those genes are
then tested for association with disease manifestations. Those
traits may be represented by a continuum of values (lung disease
severity, for example) or discrete traits, such as the occurrence
of intestinal obstruction. Candidate gene selections for study
involved many areas because of the complex pathophysiology of
CE including bacterial infections, inflammation, and lung remod-
eling/deterioration. This approach yielded multiple reports of
putative modifiers of the CF pulmonary phenotype. For exam-
ple, mannose-binding lectin (MBL), a gene involved in innate
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FIGURE 1 | Linkage analysis tracks alleles of polymorphisms through
families to determine if an allele is linked to a phenotype. In this example,
alleles of gene 1, 1,4, 15, 1¢, and 1p, track with severity (black, severe; gray,
mild), showing concordant genotypes between siblings with similar
phenotypes (left pedigree) and discordant genotypes when phenotypes are
dissimilar (right pedigree). In contrast, genotype and phenotype show no
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relationship at polymorphism 2. Association studies examine a population of
unrelated individuals to determine if particular alleles of a polymorphism are
found in different proportions, depending on the disease profile. In the
example here, alleles 1, and 15 have equal frequencies in the population, but
14 is much higher in the severely affected subjects (black) and 1g higher in the
mildly affected subset (gray).

immunity, was one of the first potential modifier genes described.
Low-expressing MBL alleles were found to associate with a more
severe pulmonary disease course than those with higher expres-
sion (Garred et al., 1999). HLA haplotypes were also investigated
as modifiers due to the role of the genes in this complex in innate
defense and inflammation. Carriers of the HLA II DR7 haplotype
were found to have a higher incidence of P. aeruginosa colonization
(Aron et al., 1999).

Polymorphisms within cytokines and other inflammatory
mediators were investigated as potential modifiers of CF pul-
monary disease due to their role in immune response as well.
Tumor necrosis factor alpha (TNFa) is a pro-inflammatory
cytokine that is stimulated by NF-kB as a first line of defense
against infection. The minor allele of a TNFa promoter poly-
morphism associated with worse pulmonary function in a small
set of CF patients (Hull and Thomson, 1998). Interestingly, the
TNFa minor allele that associated with a worse CF prognosis
was also associated with an increase in mRNA expression level
when measured using a reporter construct (Wilson et al., 1992).
Interleukin-10 (IL-10), an anti-inflammatory cytokine was also
investigated. Like TNFa, an IL-10 promoter polymorphism was
also associated with differences in IL-10 expression (Turner et al.,
1997). In this case, the lower expressing IL-10 allele was associated
with worse CF disease. These studies supported a model in which
higher levels of the pro-inflammatory cytokine TNFa, and lower
levels of the anti-inflammatory cytokine IL-10 contribute to more
severe CF lung disease.

CHALLENGES OF EARLY CANDIDATE GENE MODIFIER STUDIES

Early studies that attempted to identify potential modifiers were
challenged by small numbers of study subjects. Typically, pul-
monary function data using standard spirometry are not available
on children younger than age 6, and multiple measures over
time are needed to assess a subject’s trajectory, as an indicator of

current and future disease severity. Nonetheless, numerous stud-
ies compared pulmonary function of subjects over a range of ages,
statistically adjusting for age. Younger patients were included in
order to maximize participation, but epidemiologic studies indi-
cated that much of the pulmonary phenotypic variability was not
present until after puberty (Zemel et al., 2000).

An additional constraint is that not all mutations in CFTR have
the same consequences on protein function and thus it is likely to
confound interpretation if CFTR genotype is not accounted for.
Consequently, after limiting to patients with sufficient lung func-
tion measurements and comparable CFTR genotypes, the number
of available subjects is low, making it unfeasible for any single cen-
ter to carry out an association study that would have the statistical
power to detect anything but a very major effect of a modifier gene.

CONSORTIUM APPROACHES

The ability to effectively carry out genetic studies is limited by
numbers of subjects. As a means to increase numbers, the Euro-
pean CF Twin and Sibling Study mentioned earlier was conceived
and compared morphometric and pulmonary function indices
of sib pairs. Using lung function measurements from patients in
North America and Europe, this study was the first to compare
lung function using a CF population for reference (Mekus et al.,
2000).

Subsequently, the CF Gene Modifier Study (GMS) was con-
ceived in 1999 to carry out a genetic study on a large group of
patients for which longitudinal lung function data were available
and genotype was restricted. In its inception, the study design was
to use a candidate gene approach to search for potential genetic
modifiers of CF pulmonary disease. The unique study design
reduced genetic heterogeneity by using only patients who were
homozygous for F508del (commonly referred to as AF508), and
maximized the number of patients available by including patients
from CF centers nationwide, comparing the most mild and most
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A Candidate gene approach (samples < 0.01% of genomic variation)

Gene 1 Gene 2

B SNP-Based GWAS approach (samples ~1-5% of genomic variation)

B OUPUOLH IO AL OIPIONI ORI U0 AIDON PO OMIROLON OO AN SOOI 000D W0 00NN 0 t00
100,000-2,000,000 SNPs surveyed across the genome

C Genome sequence approach (samples ~100% of genomic variation)

/
GCACTTCGACTCACTGTCAGCTCCATCGGCTACTCGATCAGCTTTCACCAGCTAC...

FIGURE 2 | Candidate gene approaches (A) have only involved a few
variants in one to several dozen genes. Given a genome of roughly
25,000 genes, this represents a very small sampling (~0.01% or less).
GWAS (B) samples a much larger component of the genome, probing more
than 90% of the genes, but it still only examines less than 5% of the over
50 million reference SNPs (http://www.ncbi.nIm.nih.gov/mailman/
pipermail/dbsnp-announce/2012g2/000123.html) curated as of June, 2012.
As costs come down, exome (not shown) and whole-genome sequencing
(C) provide the potential to capture all variation in study subjects.

severe patients for differences in allele or genotype frequencies of
single nucleotide polymorphisms (SNPs) or other gene-associated
variants as markers of potential modifier genes.

Phenotypic categories of disease severity were defined using
a patient’s forced expiratory volume in 1s (FEV}), a pulmonary
function index based on age, sex, and height, and used clinically to
monitor CF disease progression and therapeutic efficacy. Subjects
with FEV; values in the upper quintile were classified as “mild”
and those in the lower quintile as “severe.” Those subjects sur-
viving beyond the age of 34 were classified as mild regardless of
pulmonary function, as they represented the upper quintile of
their birth cohort (Schluchter, 1992; Schluchter et al., 2002). DNA
was obtained from these individuals and genotyped for a variety of
variants in or near genes that were considered candidate modifiers.

In the initial candidate gene approach, 1,064 SNPs were tested
in over 300 genes/gene regions that were chosen in the following
ways: (1) they were SNPs that had previously been reported in the
literature as associating with CF phenotype, (2) they were SNPs
that were reportedly associated with similar pulmonary disease
phenotypes, (3) they were genes that were known to play a key
role in CF pathophysiology (Drumm et al., 2005).

Experience using this approach has shed light on the challenges
involved in conducting modifier studies. Early studies struggled to
achieve statistical power due to small sample sizes. Long and Lan-
gley (1999) calculated that the sample size must include at least
500 individuals in order to detect a causative polymorphism and
for its association to be replicable. To accommodate the ability
to replicate and maximize power, the GMS expanded to a North
American Consortium that included a family-based genetic study
at the Johns Hopkins University and a population-based study of
Canadian CF patients being led by investigators at the University
of Toronto and the Hospital for Sick Kids (Taylor et al., 2006). This

consortium grew from the need to increase sample size and carry
out replication studies and demonstrated its utility in a report
that showed variants in the TGFBI gene associate with pulmonary
disease (Drumm et al., 2005) (discussed in more detail below).

The union of the three large studies provided a cohort of
unprecedented size for studying modifiers of a single gene disorder,
but also presented logistical issues due to the nature of the designs
as each group had developed their own methods for assessing pul-
monary phenotypes. Kulich et al. (2005) generated CF-specific
reference equations for FEV; that compare a CF subject’s lung
function to CF subjects of the same age, sex, and height, as a more
appropriate reference than the non-CF population and those val-
ues, adjusted for survival, were used to develop a phenotypic index
that all three designs could incorporate.

The candidate gene approach showed the effectiveness of
genetic studies, but a limitation is that it does not identify genetic
locations other than those suspected to influence disease. That is, it
will not detect modifying genes or pathways beyond those involved
in our limited understanding of the disease. Understanding the
functional effects of a modifier and its protein product fuel future
studies to provide mechanistic insight of disease pathophysiology
and how it might be dealt with (Cutting, 2010).

ASSOCIATING GENES AND INSIGHT INTO THEIR MODIFYING
MECHANISMS

One of the powerful attributes of genetics is that it allows one to
identify clinically relevant genes, proteins, or pathways by virtue
of the effect that variation in the gene produces on a clinical trait.
However, the mechanisms by which genetic variation acts on the
phenotype is not necessarily obvious. Thus, for any associating
gene an obligatory step is to carry out functional studies to under-
stand how it imparts its effect on disease presentation or outcome.
Some examples are given below.

ASSOCIATING GENES: MBL

Mannose-binding lectin is a serum protein involved in innate
immunity. MBL enhances phagocytosis of infectious organisms,
especially during infancy, when adaptive immune response is
immature (Eisen and Minchinton, 2003). Variant alleles that
decrease MBL serum levels increase risk for many different infec-
tions (Garred et al., 1995, 1997; Summerfield et al., 1995, 1997) and
have been shown to play a role in autoimmune diseases (Davies
et al., 1995; Graudal et al., 1998). MBL has been suggested to reg-
ulate inflammatory responses, perhaps by delaying one of the first
steps in inflammation or by reducing the levels of inflammatory
cytokines (Jack et al., 2001). MBL is an attractive CF modifier can-
didate because it protects against infection and has some role in
modulating inflammation.

Three amino acid substitutions in exon 1 (alleles B, C, and D)
each contribute to decreased MBL plasma concentrations and are
collectively referred to as 0, or null, alleles with the functional allele,
containing none of the above variants, designated A. There are also
variants with quantitative effects on mRNA expression, termed X,
that also result in low MBL serum levels. Genotypes resulting in
low MBL levels are designated low-producing or deficient alleles,
but there are also genotype combinations associated with high and
intermediate serum levels of MBL as well. Using the rationale that
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MBL protects against bacterial infection or somehow suppresses
inflammation, then MBL deficiency alleles would be predicted to
associate with a more severe CF lung disease.

In support of such a model, Garred et al. (1999) found that
patients with higher expression MBL genotypes had a higher FEV,
and forced vital capacity (FVC). In other words, there was an addi-
tive effect of poor pulmonary function in the presence of an X
allele. After further analysis, the cumulative adverse effects of low
expression alleles were restricted to patients with chronic P. aerug-
inosa and were more pronounced in adults. MBL deficiency did
not significantly associate with chronic colonization of P. aerugi-
nosa. A study by Gabolde et al. found that cirrhosis of the liver was
more common in CF patients carrying deficiency alleles, but other
sources are conflicting about the association with CF liver disease
(Gabolde et al., 2001; Bartlett et al., 2009; Tomaiuolo et al., 2009).

Several studies agree that MBL low expression alleles associate
with lung function (Gabolde et al., 1999; Davies et al., 2004; Yarden
et al., 2004; Trevisiol et al., 2005; Choi et al., 2006; Buranawuti
et al., 2007; Dorfman et al., 2008), but there is no consensus as
to whether this effect is only seen in patients colonized with P.
aeruginosa, and whether a heterozygous genotype is sufficient to
cause such impairment. Two studies found an association with
chronic P. aeruginosa colonization (Trevisiol et al., 2005; McDou-
gal et al., 2010), whereas others failed to detect an association
between MBL alleles and colonization of any kind. Buranawuti
et al. (2007) found that MBL high expression alleles predicted
survival; the null genotype was underrepresented in adult popula-
tions and over represented in patients who died late in adolescence.
This is consistent with multiple observations that the adverse effect
of deficiency alleles is more pronounced in adults (Garred et al.,
1999; Yarden et al., 2004; Buranawuti et al., 2007). In fact, a study
by Davies et al. (2004) found no association between pulmonary
function and MBL genotype in children. Despite replications, not
all studies have detected associations between MBL alleles and lung
disease severity (Carlsson et al., 2005; Drumm et al., 2005; Faria
et al., 2009; McDougal et al., 2010).

ASSOCIATING GENES: TGFB1

As alluded to above, the first significant association identified
by the consortium approach demonstrated that severity of pul-
monary disease tracked with variants in the TGFBI gene (Drumm
et al., 2005). TGFBI encodes transforming growth factor beta-
1 (TGFp1), a protein with complex function, involved in several
cellular processes from differentiation and proliferation to innate
immunity, and has been studied in relation to many disorders
including Alzheimer’s disease, cancer, Marfan disease, and heart
disease (Waltenberger et al., 1993; Yamamoto et al., 1993; Dickson
et al., 2005; Brooke et al., 2008). Interest in investigating TGFf 1
as a potential modifier of CF pulmonary disease stemmed from
both its biologic plausibility, and its identification as a modifier of
asthma and chronic obstructive pulmonary disease (COPD) (Pul-
leyn et al., 2001; Celedon et al., 2004; Silverman et al., 2004; Wu
etal., 2004).

TGFB1 is biologically relevant to CF for several reasons. Leuko-
cytes secrete TGFB1 in response to infectious agents. TGFP1 par-
ticipates in the immune process by regulating the production of
cytokines, and is generally thought to be pro-inflammatory in

nature (Omer et al., 2003). TGFB1 also increases the formation
of extracellular tissue during injury repair by increasing produc-
tion of connective tissue by altered gene regulation (Bartram and
Speer, 2004). Post-injury repair in the lung is a delicate balance;
inadequate remodeling leads to poor wound healing, whereas
excessive remodeling leads to pathogenic fibrosis and scarring.
There is strong evidence to suggest that the difference between
these outcomes is at least in part related to TGFB1 expression
levels (Bartram and Speer, 2004).

Variation in TGFB1 has been shown to modify asthma and
COPD. A variant in the promoter region (C-509T), thought to
be associated with increased TGFBI expression, was studied as a
potential contributor to asthma disease severity. In two separate
studies homozygosity for the T allele (associated with increased
TGFB1 production) was found to be more common among severe
asthmatics when compared to mild asthmatics or healthy controls
(Pulleyn et al., 2001; Silverman et al., 2004). Variation in codon 10
was studied in patients with COPD. In this case, the allele associ-
ated with increased TGFB1 production was found more commonly
in control patients, suggesting a protective role for TGFS1 in
COPD (Wu et al.,, 2004). Contrasting with associations found in
asthma patients, the T allele of -509 was more prevalent in those
with mild COPD (Celedon et al., 2004).

The TGFp I variants that have been implicated in other airway
diseases have become a source of interest in CF as well. A study
by Arkwright et al. (2000) found that the T allele (high producer
genotype) in codon 10 associated with more rapid deterioration
in lung function, while the genotype at codon 25 did not correlate
with survival or lung function. Another study confirmed the codon
10 association found by Arkwright but interestingly, it was the C
allele (low producer genotype) that prevailed in severe patients
(Drumm et al., 2005). This finding, replicated in a second popula-
tion of 498 patients, is counterintuitive given the protective role of
TGEFB1 in COPD. The same study, by Drumm et al. found that the
-509 T allele also associated with a severe pulmonary phenotype,
which is the same adverse effect seen in asthma populations. There
have been several attempts to resolve these conflicting data (Ark-
wright et al., 2000, 2003; Drumm et al., 2005; Brazova et al., 2006;
Buranawuti et al., 2007; Bremer et al., 2008; Corvol et al., 2008;
Faria et al., 2009), but only one study has used a relatively large
cohort to accommodate the statistical power needed. It found that
a haplotype of a 3’ C allele (rs8179181), -509 C, and codon 10 T
associated with improved lung function to a greater degree than
any SNP alone (Bremer et al., 2008). It would appear from these
studies that CF more closely mimics the type of disease seen in
asthma and that the same polymorphisms may be protective or
adverse, depending on the genetic and environmental context.

ASSOCIATING GENES: /IFRD1

Guetal. (2009) applied a novel strategy by pooling equal amounts
of DNA from similarly affected subjects into “mild” and “severe”
pools and examined 320 patients in the GMS population (160 with
severe lung disease, 160 with mild lung disease) with much lower
cost and time than the other efforts. By quantifying the signal for
each allele (rather than a yes/no output) the genotyping arrays
were used to estimate allele frequencies in the pools. Discordant
allele frequencies were identified between the pools using this
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strategy (Gu et al., 2009) and indicated that alleles of IFRDI1 may
contribute to pulmonary disease severity. In a subsequent study,
however, IFRD]I variants did not significantly associate with lung
disease (Wright et al., 2011).

The IFRD1 protein acts in a histone deacetylase (HDAC)-
dependent manner to regulate gene expression (Vietor et al., 2002)
and the IFRDI gene is up-regulated during cell differentiation and
regeneration in response to stress (Vietor and Huber, 2007). Previ-
ous studies found high expression in human blood cells (SymAtlas,
2008) and Gu et al. found highest expression in neutrophils, where
up-regulation occurs during the final differentiation steps (Ehrn-
hoefer, 2009; Gu et al., 2009). The authors suggested that IFRD1
modulates CF lung disease through the regulation of neutrophil
effector function, but that other explanations, involving different
cell types, should not be ignored.

GENOME-WIDE ASSOCIATION STUDIES

Although the cost of large-scale genotyping had fallen more than
a 1000-fold since these studies were initiated, genome sequencing
was still well out of range by price and feasibility. Thus, it became
feasible to think about whole genome, or genome-wide association
studies (GWAS). A GWAS would rapidly interrogate hundreds of
thousands of SNPs for association in large populations (Manolio,
2010) without bias imposed by pre-existing models and provide
the opportunity to identify novel genes, regulatory loci, and path-
ways not previously considered. The disadvantage to testing so
many variants is that there are statistical penalties that increase
as the number of comparisons rises, and thus power is a major
limitation (Cutting, 2010). This is less of a concern if the effect
of a locus is large, but as common population variants are being
examined in these studies, it is likely that the effects of any one
locus are not large, perhaps with each accounting for only a few
percent of the variation, for example (Long and Langley, 1999).
It is an important concept to understand that these studies are
conceptually analogous to those designed to find disease-causing
genes, which would have major effects if they do, in fact, cause
disease.

GWAS-IDENTIFIED ASSOCIATIONS

In a combined GWAS and family-based (linkage) study, 3,467 CF
patients were tested for associations between lung disease sever-
ity and more than half a million SNPs (Wright et al., 2011). To
accommodate the various study designs and data acquisition pro-
tocols, yet another method to examine pulmonary function, with
age-specific CF percentile values of FEV; (Kulich et al., 2005; Tay-
lor et al., 2011), was developed and which accounted for mortality
and longitudinal changes. With this phenotype and over 500,000
common genetic variants to assess for association, two new loci,
one on chromosome 11p13 and one on chromosome 20q13 were
identified as having variants that associate with lung function
in CF.

The region on chromosome 11p13 of most significant asso-
ciation lies between two annotated genes, APIP and EHF. APIP
encodes Apaf-1-interacting protein and EHF is a member of the
epithelial-specific Ets transcription factors, both of which pro-
vide interesting candidates as disease modifiers, but through very
different models, all of which must yet be worked out. It is

important to understand that despite the power of genetics to
identify such disease-relevant locations in the genome, it does
not provide information regarding mechanisms and these must
be examined empirically. APIP, for example, has been shown to
suppress apoptosis in the presence of hypoxia (Cho et al., 2007), a
context experienced by CF tissues. At this point, it is not clear if the
adverse allele provides less or greater activity than the protective
allele, but one could construct models either way. For example,
one hypothesis is that excessive anti-apoptotic activity, resulting
from increased APIP, could prolong neutrophilic inflammation
and therefore lead to more severe lung disease (Wright etal., 2011).
Similarly, EHF is reported to serve as a regulator of epithelial
cell differentiation under conditions of stress and inflammation
(Tugores et al., 2001; Wright et al., 2011) and thus could be mod-
eled to have very important effects during airway development or
remodeling from disease-related damage. Finally, it must be con-
sidered that the modifying locus could be working at a distance,
involving a regulatory site such as a transcriptional enhancer or
non-coding RNA.

The other associating region on chromosome 20 was detected
by linkage analysis and then refined by association. The link-
age signal includes several genes including MC3R, encoding
the melanocortin-3 receptor, CBLN4 encoding cerebellin-like 4,
CASS4, encoding Crk-associated substrate scaffolding (CASS) 4,
and AURKA, encoding Aurora kinase A (Wright et al., 2011). With
the exception of MC3R, which is a receptor involved in metabolic
control, models to explain the other candidates are not presently
clear.

Certainly functional studies will help sort out which genes
in these associating intervals are responsible for their modifying
effects, but these findings illustrate both the power and some of the
challenges of genetic studies. On one hand, the unbiased approach
provides the opportunity to identify novel disease modulators, but
on the other hand identifying the source of the modifying effect
and the mechanisms through with it acts are challenging tasks.

THE IMPACT OF DISEASE-MODIFYING GENES

The implications of disease-modifying genes are multiple. First,
understanding the genetic contribution to phenotypic variation
has the potential to provide insight into prognosis. Second,
understanding the mechanisms by which these genes and their
alleles are exerting their effects will likely suggest new therapeu-
tic approaches or ways to optimize existing ones. Third, it opens
the door to personalized medicine, as a given patient’s treatment
regimen could conceivably be developed around a genetic pro-
file. Using inflammation as an example, one could imagine a
patient whose modifier panel predicts a lessened inflammatory
response, and another patient whose modifier panel predicts a
heightened inflammatory response. Inflammation is part of the
immune response that is necessary to fight infection, however its
prolonged state in CF patients can cause lung damage. The patient
with the heightened response may benefit from anti-inflammatory
drugs earlier, and the patient with the reduced inflammatory
response may benefit from increased antibiotic usage. Both are
common treatments for CF, but they may be used more bene-
ficially with the help of modifier identification and mechanistic
understanding.
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SUMMARY

Cystic fibrosis is a simple, Mendelian disorder with complex clini-
cal manifestations that are consequences of CFTR genotype, envi-
ronmental factors (Boyle, 2007), and heterogeneity throughout
the entire genome. The discovery of genetic modifiers may help
account for the broad spectrum of disease severity observed in
patients, especially those with the same CFTR genotype. Mod-
ifying loci identified thus far each appear to contribute only a
small percentage to overall disease profile and thus it is likely the
combination of these variants in different permutations shape
an individual’s outcome, an outcome that is also significantly
influenced by non-genetic factors, as well as the interaction of

genetic and non-genetic factors. There are few genes whose mod-
ifying effects withstand the test of replication and further studies
must elucidate the role of each one in CF. Additional research about
gene-environment interactions and gene—gene interactions will
certainly demonstrate how complex these genetic effects are. With
the careful use of candidate gene approaches and now, genome-
wide scans (and soon whole-genome sequencing), it is realistic to
believe that modifiers of CF disease will be identified and from
which interventions tailored around an individual’s genetic pro-
file will be developed. This fine-tuning of therapeutic strategies
could contribute to better quality of life and ultimately, improved
survival in CE.
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