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Metabotropic glutamate receptors (mGluRs) have well-established roles in cognition and
social behavior in mammals. Whether or not these roles have been conserved throughout
evolution from invertebrate species is less clear. Mammals have eight mGluRs whereas
Drosophila has a single DmGluRA, which has both Gi and Gq coupled signaling activity.
We have utilized Drosophila to examine the role of DmGluRA in social behavior and various
phases of memory. We have found that flies that are homozygous or heterozygous for
loss of function mutations of DmGluRA have impaired social behavior in male Drosophila.
Futhermore, flies that are heterozygous for loss of function mutations of DmGluRA have
impaired learning during training, immediate-recall memory, short-term memory, and long-
term memory as young adults. This work demonstrates a role for mGluR activity in both
social behavior and memory in Drosophila.
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INTRODUCTION
The Metabotropic glutamate receptors (mGluRs) in mammals
have been shown to be involved in memory formation, long-
term depression (LTD), long-term potentiation in mammals and
linked to autism spectrum disorders (ASDs) in humans (Ser-
ajee et al., 2003; Mukherjee and Manahan-Vaughan, 2012). In
mammals there are eight mGluRs, which are divided into three
groups. Canonically, previous studies have established that group
I mGluRs in mammals activate the Gq pathway, while group
II and group III mGluRs activate the Gi/Go signaling pathway
(Niswender and Conn, 2010; Chaki et al., 2012; Mukherjee and
Manahan-Vaughan, 2012). However, there is accumulating evi-
dence that in mammals, due to promiscuity of coupling to Gi

and Gq, group II mGluRs may activate the Gq signaling pathway
and induce LTD in a manner dependent on phospholipase C (PLC)
and inositol trisphosphate receptor (InsP3R) activity (Huang et al.,
1997, 1999a,b; Otani et al., 1999, 2002), and group I mGluRs are
capable of activating Gi (Kreibich et al., 2004). In Drosophila there
is only one mGluR, DmGluRA, which is coupled to Gi and Gq
signaling (McBride et al., 2005; Pan and Broadie, 2007; Pan et al.,
2008; Gatto and Broadie, 2009; Tessier and Broadie, 2012). Gi cou-
pled signaling is able to engage and activate both the PI3K and ERK
signaling cascades as well as increase glycogen synthase kinase-3
beta (GSK-3beta) activity and Gq mediated mGluR activation is
also able to activate GSK-3beta activity (Fan et al., 2004; Huang
et al., 2006; Beaulieu et al., 2009; Yuskaitis et al., 2010).
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Drosophila DmGluRA expression has been demonstrated in the
brain including expression in areas critically involved in short-
term memory such as the antennal lobes (ALs) and mushroom
bodies (MBs; McBride et al., 1999; Zars et al., 2000; Yu et al.,
2004; Pesavento et al., 2008) and long-term memory in the MBs
(McBride et al., 1999; Pascual and Preat, 2001) where expression
is particularly heavy (Ramaekers et al., 2001; Pan and Broadie,
2007; Pan et al., 2008). More recently a detailed analysis of
DmGluRA protein expression in the central complex has been
published, a region of the brain where the expression of several
other metabotropic receptors implicated in mammalian learn-
ing was found (Kahsai et al., 2012). The MBs in the insect are
thought to be analogous to the mammalian hippocampus as first
postulated from structural similarity to the human hippocam-
pus in 1850 by the French physiologist and anatomist DuJarin
(Dujardin, 1850; Davis, 1993, 2011; Busto et al., 2010; Skoulakis
and Grammenoudi, 2006). Additionally, DmGluRA protein has
been demonstrated to play a role in signaling at the presynapse of
the NMJ in Drosophila and therefore could be similarly affecting
signaling at the presynapse in the brain (Pan and Broadie, 2007;
Pan et al., 2008; Banerjee et al., 2010).

The role of DmGluRA in cognition has been previously demon-
strated in studies of Drosophila models of Fragile X syndrome and
Alzheimer’s disease. Fragile X is the leading inherited cause of
intellectual disability and the leading known genetic cause of ASD.
A fly model is based on loss of the of the fly dfmr1 gene, the
ortholog of the human FMR1 gene, whose lack of expression leads
to Fragile X syndrome. The Fragile X fly model has several behav-
iors in common with human symptoms including impairments in
social interactions (Dockendorff et al., 2002) and cognitive impair-
ments (McBride et al., 2005). Pharmacological blockade of the
DmGluRA protein activity was able to rescue social interaction,
immediate-recall memory and short-term memory in the Fragile
X model representing the first time pharmacologic treatment res-
cued social impairments in an animal model of autism or memory
impairments in an animal model of intellectual disability (Rubin,
1999b; McBride et al., 2005, 2012). Additionally, in this study,
treatments initiated in development as well as those initiated in
adulthood demonstrated efficacy in rescuing social interactions
and memory.

DmGluRA has also been implicated in having a role in a
Drosophila model of Alzheimer’s disease that is based on mutations
of the presenilin gene (McBride et al., 2010). The underlying nature
of signaling alterations arising from the mutations in presenilin 1
or presenilin 2 genes that give rise to familial Alzheimer’s disease
(FAD) in humans are unclear (Saura et al., 2004; Walker et al., 2005;
Qi-Takahara et al., 2005; Kumar-Singh et al., 2006; Sambamurti
et al., 2006; De Strooper, 2007; Hardy, 2007; Isoo et al., 2007; Shen
and Kelleher, 2007; Wolfe et al., 2007). Studies in model organisms
indicate that the FAD-linked mutations lead to an impairment of
presenilin 1 or presenilin 2 function (De Strooper, 2007; Kelleher
and Purcell, 2008). This possibility suggests that some phenotypes
associated with Alzheimer’s disease, including age-onset cognitive
loss, may be attributable to a reduction in overall presenilin pro-
tein activity levels. In the Drosophila Alzheimer’s model young
adult Drosophila (under 10 days of age, post-eclosion) have intact
learning-during-training (LDT), immediate-recall memory and

short-term memory, but have age dependent impairments in LDT
and short-term memory at 30 days of age (McBride et al., 2010).
Pharmacologic treatment with mGluR antagonists starting before
cognitive impairments begin prevents cognitive impairment. Fur-
thermore, treatment with mGluR antagonists starting after the
onset of cognitive impairments reverses cognitive impairments in
this model, indicating mGluR involvement in modulating synaptic
plasticity well into adulthood (McBride et al., 2010). This indi-
cates that in the Alzheimer’s fly model, just as in the Fragile X
fly model over active mGluR activity is contributing to memory
impairment. More recently, under active mGluR activity has been
implicated in phenotypes exhibited by tuberous sclerosis type 2
model mice (Auerbach et al., 2011). In spite of these findings, the
involvement of DmGluRA in social interactions and memory in
otherwise normal flies has remained unexplored in Drosophila.
The purpose of this study was to examine the role of DmGluRA in
social interactions and memory in Drosophila.

RESULTS
Social interaction can be examined in Drosophila in an etho-
logically relevant context by observing male courtship behavior
directed toward female targets. Courting Drosophila males per-
form a characteristic sequence of behaviors: orienting toward and
following the female, tapping her with his forelegs, vibrating one
wing, licking her genitalia, and attempting to copulate (Bastock,
1955, 1956; Sturtevant, 1915). The percentage of time that the male
spends performing any of these behaviors toward a target female
during a defined period of time is referred to as the courtship index
(CI; Siegel and Hall, 1979).

We first examined the ability of young adult (6–10 days post-
eclosion) homozygous null DmGluRA112 flies to perform naïve
courtship with virgin female targets as well as the DmGluRA2b, a
precise excision control line. We found courtship behavior to be
significantly impaired in the DmGluRA homozygous mutant flies,
with the flies demonstrating almost no courtship activity (CIs of
3.2 ± 0.4), whereas the genetic background control flies demon-
strated intact courtship behavior (CIs of 12.1 ± 0.8; Figure 1A).
This demonstrated that the DmGluRA activity is required for
social interaction since there was a significant impairment in naïve
courtship behavior compared to the control strain.

The low courtship activity of the DmGluRA mutants pre-
vented us from examining memory in the homozygous mutant
mGluR flies. Therefore to explore a possible role of DmGluRA
in memory, we examined courtship and memory in flies het-
erozygous for this mutation. To do this we crossed both the
DmGluRA null mutant (DmGluRA112) and precise excision con-
trol (DmGluRA2b) lines to Oregon R flies. We found that in the
heterozygous state there was still an impairment in social inter-
action of the DmGluRA112 heterozygous flies compared to the
DmGluRA2b controls, 65.2 ± 5.3 vs 85.3 ± 6.2, again indicating
a role for DmGluRA function in social interactions in Drosophila
(Figure 1B). It should be noted that courtship in the OreR back-
ground is significantly higher than in the original background,
mainly due to visual acuity differences in detecting motion, since
the original background is white eyed. The OreR/OreR controls,
the precise excision heterozygotes (DmGluRA2b/OreR) controls
and the mutant heterozygotes (DmGluRA112/OreR) all had similar
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FIGURE 1 | Social interaction (Naïve courtship) is impaired in

homozygous and heterozygous DmGluRA112 mutant flies.

Naïve courtship of DmGluRA, DmGluRA112 homozygous mutant flies,
control DmGluRA2b precise excision homozygous flies, DmGluRA112

heterozygous mutant flies, control DmGluRA2b precise excision
heterozygous flies and control OreR background flies were used. Panel (A)

Filled black bars indicate control homozygous males (DmGluRA2b precise
excision, 2b/2b) and open bars indicate DmGluRA112 homozygous mutant

males (112/112). Panel (B) Filled black bars indicate control heterozygous
males (DmGluRA2b precise excision, 2b/OreR); Open bars indicate
DmGluRA112 heterozygous mutant males (112/OreR); Striped bars indicate
OreR background males. Mean CIs (± SEM) are plotted; Ns are indicated
above each bar for all groups. For levels of significance, *p < 0.01;
***p < 0.001. DmGluRA112 homozygous and heterozygous mutant males
court virgin females less vigorously compared to control flies within the same
genetic backgrounds.

eye color. Furthermore, both control genotypes displayed similar
levels of naïve courtship activity.

Although the heterozygous DmGluRA mutant flies displayed
reduced naïve courtship activity, they still retained enough
courtship activity to examine learning and various forms of
memory using the conditioned courtship memory paradigm, an
associative memory paradigm. In conditioned courtship, a male
fly learns to modify his courtship behavior after experience with
an unreceptive female (Siegel and Hall, 1979; Hall, 1994). Virgin
females generally respond to a courting male by mating. However,
recently mated females are unreceptive, display rejecting behaviors
toward advances made by the male and have an overlapping but
altered pheromonal profile that naïve males find less provocative
than that of virgin female targets (Ejima et al., 2007). Normally,
naïve male paired with a mated female target will initially court
her, but his courtship activity soon decreases. This LDT is quanti-
fied, by comparing the CI during the first 10 min to the CI of the
last 10 min period of a 1 h pairing with a previously mated female.
In this paradigm wild-type flies typically show a ≥40% decrease
in courtship activity (Joiner and Griffith, 1997; Kane et al., 1997).
Hence, LDT is a form of behavioral plasticity but is distinct and
separate from courtship suppression assayed after training, which
is a form of associative memory (Tompkins et al., 1983; Ackerman
and Siegel, 1986). When a male is paired with a virgin female after
1 h pairing experience with a mated female, his courtship remains
depressed for 2–3 h (Siegel and Hall, 1979). This effect is not a
general suppression of all courtship activity, because trained males
do not modify their courtship of other pheromonally distinct tar-
gets (Ejima et al., 2005; Siwicki et al., 2005). After training with

a mated female, memory is measured as a decrease in CI toward
virgin females in trained males relative to naïve (sham trained)
controls.

In Drosophila, five phases of memory have been elucidated
by a combination of genetic and pharmacological dissection.
There is an immediate-recall memory (immediate memory) at 0–
2 min after training, short-term memory out to 1 h post-training,
medium-term memory out to 6 h post-training, anesthesia-
resistant memory out to 2 days post-training, and long-term
memory lasting up to 9 days after training that appears to
be dependent on protein synthesis (Skoulakis and Gramme-
noudi, 2006). Intact short-term memory is dependent on intact
immediate recall. However, immediate recall and short-term
memory are distinct from LDT. Therefore, intact memory can
occur without LDT, and LDT can occur without post-training
memory (Joiner and Griffith, 1997; Kane et al., 1997; McBride
et al., 2005). Hence, in this study we chose to examine LDT,
immediate-recall memory, short-term memory and long-term
memory.

To assess LDT, a male fly was placed in a training chamber with
a previously mated female for 1 h, and the amount of time the male
spent courting in the initial 10 min interval was compared with the
time spent engaged in courtship in the final 10 min interval. Het-
erozygous DmGluRA112 mutants display impaired LDT as young
adults (Figure 2), similar to what he been previously observed
in older DmGluRA112 mutant flies at 30 days of age (McBride
et al., 2010). In contrast heterozygous DmGluRA2b controls and
the OreR/OreR controls displayed intact LDT. This demonstrates
a requirement for DmGluRA function in LDT.
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FIGURE 2 |The learning-during-training phase of conditioned

courtship is impaired in heterozygous DmGluRA112 mutant flies. Mean
CIs (± SEM) are plotted; Ns are indicated above each bar for all groups. For
levels of significance, ***p < 0.001. The initial and final courtship levels of
control DmGluRA2b precise excision heterozygous flies (filled black bars),
DmGluRA112 heterozygous mutant flies (open bars) and OreR background
flies (striped bars) are compared. Control DmGluRA2b flies and control
OreR background flies exhibited intact learning-during- training as
demonstrated by a significant depression of courtship activity from the
initial to the final interval of the training session, whereas heterozygous
DmGluRA112 mutant flies did not demonstrate learning-during-training.

To assess immediate-recall memory, a male fly was placed in a
training chamber with a previously mated female for 1 h, and sub-
sequently paired with a virgin female within 2 min of completing
training. A lower CI compared to naïve trained (untrained) flies
is indicative of memory. Heterozygous DmGluRA112 mutants dis-
play impaired immediate-recall memory as young adults, as they
are not able to suppress their courtship upon subsequent pairing
with a virgin female target (Figure 3). In contrast heterozygous
DmGluRA2b controls and the OreR/OreR controls displayed intact
immediate-recall memory. This demonstrates a requirement for
DmGluRA function in immediate-recall memory.

To assess short-term memory, a male fly was placed in a training
chamber with a previously mated female for 1 h, and subsequently
paired with a virgin female 60 min after completing training. A
lower CI compared to naïve-trained flies is indicative of memory.
Heterozygous DmGluRA112 mutants do not demonstrate a sup-
pression of their courtship upon subsequent pairing with a virgin
female target, therefore they do not demonstrate short-term mem-
ory (Figure 4). In contrast heterozygous DmGluRA2b controls and
the OreR/OreR controls displayed a suppression of courtship after
training and therefore demonstrated short-term memory. This

FIGURE 3 | Immediate-recall memory of conditioned courtship is

impaired in heterozygous DmGluRA112 mutant flies. Immediate-term
memory was measured by placing a trained male in a holding chamber for
0–2 min after training, then subsequently placing him in a testing chamber
with a virgin female target for a 10 min courtship interval. The resulting CI is
compared to the CI obtained for naïve courtship. Mean CIs (± SEM) are
plotted; Ns are indicated above each bar for all groups. For levels of
significance, ***p < 0.001. Control DmGluRA2b flies (filled black bars)
and control OreR background flies (striped bars) exhibited intact
immediate-recall memory as demonstrated by a significant depression of
courtship activity in the trained versus the naïve groups. The DmGluRA112

mutant flies (open bars) did not demonstrate a suppression of courtship
activity after training and therefore had impaired immediate-recall memory.

demonstrates a requirement for DmGluRA function in short-term
memory.

Finally we examined if DmGluRA function was required for
long-term memory (McBride et al., 1999; Banerjee et al., 2010). To
assess long-term memory, a male fly was placed in a training cham-
ber containing food with a previously mated female for 7 h, and
subsequently paired with a virgin female 4 days after completing
training (McBride et al., 1999; Banerjee et al., 2010). Again, a lower
CI compared to sham trained (naïve-trained) flies is indicative of
memory. Heterozygous DmGluRA112 mutants do not demonstrate
a suppression of their courtship upon subsequent pairing with
a virgin female target, therefore they do not demonstrate long-
term memory (Figure 5). In contrast heterozygous DmGluRA2b

controls and the OreR/OreR controls displayed a suppression of
courtship after training and therefore demonstrated long-term
memory. This demonstrates a requirement for DmGluRA function
in the formation of long-term memory.

To ensure that the decreased courtship activity of the homozy-
gous and heterozygous DmGluRA112 mutants was not the result
of specific impairment in not being able to complete the
various phases of courtship, we measured the percentage of flies
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FIGURE 4 |The short-term memory of conditioned courtship is

impaired in heterozygous DmGluRA112 mutant flies. Short-term
memory was measured by placing a trained male in a holding chamber for
60 min, then subsequently placing him in a testing chamber with a virgin
female target for a 10 min courtship interval. The resulting CI is compared
to the CI obtained for naïve courtship. Mean CIs ( ± SEM) are plotted; Ns
are indicated above each bar for all groups. For levels of significance,
***p < 0.001. Control DmGluRA2b flies (filled black bars) and control OreR
background flies (striped bars) exhibited intact short-term memory as
demonstrated by a significant depression of courtship activity in the trained
versus the naïve groups. The DmGluRA112 mutant flies (open bars) did not
demonstrate a suppression of courtship activity after training and therefore
had impaired short-term memory.

that progressed through the stages of courtship. The homozy-
gous DmGluRA112 mutants demonstrated the ability to progress
through all of the stages of courtship in a 10 min testing period.
Both the homozygous DmGluRA112 mutants and the homozygous
control precise excision DmGluRA2b had a significantly lower per-
centage of flies progressing to the licking/attempted copulation
stage compared to the flies that were crossed to the OreR back-
ground (p < 0.05 by chi square). However, the DmGluRA112

mutants and the homozygous control precise excision DmGluRA2b

did not differ from each other in the percentage of flies that
reached this final step (Figure 6A). Both of the heterozygous
lines as well as the OreR background control reached similar per-
centages of achieving all stages of courtship (Figure 6A). Since
both the homozygous and heterozygous DmGluRA112 mutant flies
were observed to be capable of performing all of the steps of
courtship, the lack of courtship activity does not appear to be
secondary to some type of impairment that is rendering them
incapable of completing all of the steps of courtship behavior.
To ensure that the decreased courtship activity of the homozygous

FIGURE 5 |The long-term memory of conditioned courtship is

impaired in heterozygous DmGluRA112 mutant flies. For long-term
memory, males were either paired with a non-receptive female for 7 h or
sham trained (also referred to as naïve trained) in the absence of a female
for the same period. The males from both training classes were then kept
in isolation for 4 days then paired with a virgin female, and monitored for
courtship activity. The resulting CI after training is compared to the CI
obtained for naïve courtship. Mean CIs (± SEM) are plotted; Ns are
indicated above each bar for all groups. For levels of significance,
***p < 0.001. Control DmGluRA2b flies (filled black bars) and control OreR
background flies (striped bars) exhibited intact long-term memory as
demonstrated by a significant depression of courtship activity in the trained
versus the naïve groups. The DmGluRA112 mutant flies (open bars) did not
demonstrate a suppression of courtship activity after training and therefore
had impaired long-term memory.

and heterozygous DmGluRA112 mutants was not the result of loco-
motor activity impairments, we examined locomotor function in
the dishes utilized for the conditioned courtship testing (McBride
et al., 2005, 2010). We did not find differences in spontaneous
line crossing between homozygous or heterozygous DmGluRA112

mutant flies vs homozygous or heterozygous DmGluRA2b control
flies or the OreR/OreR control flies (Figure 6B). Additionally
neither the homozygous or heterozygous flies in any of the
genotypes displayed gross impairments in olfaction or vision
(Figures 6C,D).

DISCUSSION
Although a role for mGluRs signaling is well established in mem-
ory processes in mammals, the role of the only Drosophila mGluR,
DmGluRA, has remained relatively unstudied with regard to
social interaction or memory (Serajee et al., 2003; Mukherjee and
Manahan-Vaughan, 2012). The expression of DmGluRA in the
Drosophila brain is in areas critically involved in social behavior
and memory including the ALs and the MBs, thus may contribute
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FIGURE 6 | Analysis of courtship quality, locomotor activity, olfaction,

and visual acuity in DmGluRA mutants. (A–D) The Ns for all genotypes in
all panels is >19. Filled black bars indicate control homozygous males
(DmGluRA2b precise excision, 2b/2b); Open bars indicate DmGluRA112

homozygous mutant males (112/112); Striped bars indicate control
heterozygous males (DmGluRA2b precise excision, 2b/OreR); Stippled bars
indicate DmGluRA112 heterozygous mutant males (112/OreR); Gray bars
indicate OreR background males. (A) The quality of courtship that was
performed by naïve males was further analyzed by binning the number of
males that advanced to particular phases of courtship for each genotype that
was shown in Figure 1. All of the genotypes demonstrated that they could
perform each phase of courtship. The DmGluRA112 homozygous mutant
males (112/112) did not demonstrated as much wing extension as the control
males (p < 0.05) and neither the homozygous control males (DmGluRA2b

precise excision, 2b/2b) or the DmGluRA112 homozygous mutant males
(112/112) progressed to the final stage of courtship as often as the control
heterozygous males (DmGluRA2b precise excision, 2b/OreR), DmGluRA112

heterozygous mutant males (112/OreR), or the OreR background males
(p < 0.05). (B) Locomotor activity was measured by a line crossing assay
(Griffith et al., 1993; McBride et al., 2005). Mean CIs (± SEM) are plotted; No
significant differences were detected between any of the genotypes. (C) To
measure olfactory capabilities we used the olfactory trap assay (Orgad et al.,
2000; McBride et al., 2005). No differences were found between any of the
genotypes tested with this assay at the 36 or 60 h time points. (D) To
examine the visual capabilities of the genotypes and various treatment
groups, we used the Y maze test (Orgad et al., 2000; McBride et al., 2005).
No significant difference in the ability of the flies to detect light was observed
in any of the genotypes.
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to these behavioral and cognitive processes (Ramaekers et al., 2001;
Pan and Broadie, 2007; Pan et al., 2008).

Herein, we demonstrate that the DmGluRA activity is required
for social interaction. We found that in the homozygous and
heterozygous DmGluRA112 mutants have impairments in social
behavior. This data fits well with the previous finding that a muta-
tion in mGluR8 is linked to autism in humans (Serajee et al., 2003).
Heterozygous DmGluRA112 mutants display impaired learning
during training as young adults, thereby demonstrating a require-
ment for DmGluRA function in LDT, which may be analogous to
working memory in mammals. Also heterozygous DmGluRA112

mutants display impairments in immediate-recall-memory, short-
term memory, and long-term memory as young adults. These
findings fit well with the known role of mGluRs in short-term
and long-term memory formation in mammals (Mukherjee and
Manahan-Vaughan, 2012). In our study the deficits in social
behavior and memory did not appear to be caused by impairments
in vision, olfaction, locomotion, or the capability to perform com-
plicated coordinated motor tasks such as copulation or flight, thus
DmGluRA function appears to be specific for social and cognitive
tasks.

This study illustrates an evolutionarily conserved role of the
mGluRs in synaptic plasticity and memory formation which is
an important finding in the context of using lower organisms
to model cognitive diseases such as Fragile X or Alzheimer’s dis-
ease. Indeed, these are two disease models where antagonizing
the Drosophila DmGluRA has been demonstrated to rescue social
and/or memory impairments (McBride et al., 2005, 2010; Choi
et al., 2010). It was in the Drosophila model of Fragile X that
pharmacological blockage of DmGluRA protein function was first
demonstrated to rescue social interaction, immediate-recall mem-
ory and short-term memory representing the first time pharmaco-
logic treatment rescued social impairments in an animal model of
autism or memory impairments in an animal model of intellectual
disability (Rubin, 1999b; McBride et al., 2005, 2012). Addition-
ally, it was demonstrated that treatments initiated in development
as well as in adulthood demonstrated efficacy in rescuing social
interactions and memory. The finding that adulthood treatments
could ameliorate phenotypes associated with developmental dis-
orders was paradigm shifting (Rubin, 1999a; State, 2010) and has
now been demonstrated in other models of developmental disor-
ders (Rubin, 1999c; Li et al., 2005; Guy et al., 2007). This strategy
of decreasing mGluR activity to rescue cognition in the Fragile X
model was later confirmed in mouse model of Fragile X by genetic
and pharmacologic manipulation (Yan et al., 2005; Dolen et al.,
2007; Choi et al., 2011) and has met with some early success in trials
with Fragile X patients (Jacquemont et al., 2011). This demon-
strates the important role of DmGluRA function not just in devel-
opment, but also in adulthood, warranting additional studies.

In Drosophila or cell culture models of Alzheimer’s disease
antagonizing mGluRs has been efficacious in rescuing pheno-
types associated with the models including cognitive impairment
and Abeta secretion (Kim et al., 2010; McBride et al., 2010). Fur-
thermore, both agonist and antagonists of mGluRs are under
development for the treatment of depression in humans (Chaki
et al., 2012; Mukherjee and Manahan-Vaughan, 2012). The current
work along with the extensive mammalian literature on the

involvement of mGluRs in memory illustrate that caution should
be observed when looking at the mGluRs as receptors to modulate
for the rescue of disease specific symptoms, because they may have
unwanted effects on other aspects of cognition.

At first pass our results demonstrating that reduction of
DmGluRA activity negatively impacts social behavior and cog-
nition may seem counterintuitive, because antagonism of this
receptors signaling can enhance memory in specific disease mod-
els. First, we have previously found that treatment with mGluR
antagonists does not enhance memory in wild-type flies, indeed
they impair memory and social activity (McBride et al., 2005; Choi
et al., 2010). Also, toward this point it is important to keep in mind
the way the molecular signaling occurs during memory formation.
DmGluRA is predominantly coupled to Gi, thereby suppressing
cAMP signaling. There is well documented literature in the fly
field that indicates that cognition is impaired if cAMP levels are
either too high, or too low. The dnc mutant has severe memory
impairments and results from too much cAMP. The dnc mutation
would be analogous to the DmGluRA mutants, with too much
cAMP. In contrast the rut mutation leads to too little cAMP and
also results in memory impairment (Skoulakis and Grammenoudi,
2006). This would be analogous to the fly models of Alzheimer’s
disease and fragile X syndrome, where the problem is too little
cAMP and it is corrected by treatment with mGluR antagonists
which should correct the cAMP to a level were normal memory
can occur (McBride et al., 2005, 2010; Choi et al., 2010, 2011).

In conclusion, this work demonstrates that in Drosophila,
just as in mammals, proper DmGluRA function is required for
social behavior and various aspects of cognition including LDT,
immediate-recall memory, short-term memory, and long-term
memory.

MATERIALS AND METHODS
BEHAVIORAL TRAINING AND TESTING
Virgin male flies were collected under ether anesthesia within 4 h
of eclosion. Virgin XX, y, f (attached X) females were collected on
the day of eclosion and kept in food vials in groups of 10–15. Flies
were aged in a 12 h light/dark cycle before behavioral training and
testing. All testing was performed during the relative light phase.
Mated females were 5 days old and observed to mate with a male
the night before training. The virgin females that were used as
targets were 4 days old (Joiner and Griffith, 1997; McBride et al.,
1999, 2005).

For courtship behavior testing, males of the appropriate geno-
types were collected within 4 h of eclosion and kept in isolation
before testing. All flies were kept in 12 h light/dark cycles at 25◦C
and 50–75% relative humidity and were aged 6–10 days post-
eclosion before training. All male subjects were transferred to fresh
control food the day before testing (McBride et al., 1999, 2005,
2010). Male flies were assigned to random groups for behavior
training and testing, which was performed blind (Siegel and Hall,
1979; Kane et al., 1997; McBride et al., 1999). The total amount of
time a male was engaged in courtship activity while paired with an
unanesthetized target female during a test period of 10 min or until
successful copulation occurred was scored. A CI was calculated as
the percentage of total observation time spent courting (Siegel
and Hall, 1979). Testing of naïve courtship, LDT, immediate-recall
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and short-term memory were performed as previously described
(McBride et al., 1999, 2005). For the naïve courtship analysis, the
male was sham trained for 1 h in the training chamber without
the addition of the female. The male was then transferred to the
mating chamber containing a virgin female. Males were moni-
tored for courtship activity that included orienting, following of
the female, wing extension and vibration, tapping of female with
his foreleg, genital licking and attempted copulation for a period
of 10 min, or until copulation occurred.

Measurement of immediate-recall was made by pairing a naïve
male with a non-receptive female for a single 1 h training ses-
sion and then placing him in a second chamber with a receptive
female within 2 min of completing training. Short-term mem-
ory was assessed by taking a male that had been trained with a
non-receptive female for 1 h and placing him in isolation for 1 h
before pairing with a virgin, receptive, female. At least 16 animals
were tested for each genotype during analyses of naïve courtship,
learning during training, immediate recall, short-term memory,
and long-term memory.

The training paradigm for assessment of long-term memory is
derived from McBride et al. (McBride et al., 1999; Banerjee et al.,
2010). Males were paired with a non-receptive female for seven
continuous hours and then kept in isolation for 4 days before test-
ing. Sham-trained males were treated identically, except for the
exposure to the training female. The observers were blind to the
genotypes of the animals for all courtship studies (Banerjee et al.,
2010; Sidyelyeva et al., 2010). Locomotor, olfaction, and visual
acuity testing was done as in the study by McBride et al. (Griffith
et al., 1993; McBride et al., 2005; Orgad et al., 2000).

Drosophila STRAINS
The Drosophila strains were cultured as in the study by McBride
et al. (2005). The DmGluRA mutant and control lines used during
this study are white eyed and have been previously described and
utilized, they are the previously described null allele of DmGluRA
(DmGluRA112) and precise excision wild-type allele (DmGluRA2b)
that provides an appropriate background control for the null
allele (Bogdanik et al., 2004). Heterozygous versions of the mutant
and control were obtained by crossing males to Oregon R virgin
females. Heterozygous DmGluRA112 and DmGluRA2b F1 males
were selected from the resultant progeny (McBride et al., 2010).
The DmGluRA locus is on the 4th chromosome.

STATISTICAL ANALYSES
Courtship index of tested males were subjected to arcsin square
root transformations to approximate normal distributions since
not all of the sets of data were normal distributions, as is com-
mon in conditioned courtship data sets (Joiner and Griffith, 1997;
McBride et al., 1999, 2005). For statistical comparison between the
genotypes and treatments, Two Way ANOVA was used for geno-
type and treatment, with genotype resulting in a p value of 0.0001
and treatment resulting in a p value of 0.0001. The interaction p
value was 0.0001. The post hoc analysis used for the comparison
for the figures was the Bonferroni analysis (Villella and Hall, 1996;
McBride et al., 1999, 2005; Ejima et al., 2007). For the figures we
have placed asterisks according to the post hoc Bonferroni analysis
since this is demonstrating memory or no memory within a spe-
cific genotype according to the provided experience (treatment) of
the flies (Villella and Hall, 1996; McBride et al., 1999, 2005, 2010;
Ejima et al., 2007). For line crossing experiments standard student
t test was used and for Figure 6 binning analysis, olfaction and
vision studies chi squared analysis was performed (McBride et al.,
2005). All statistics were performed using both Statview 3.0 and
Prism 5.0.
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