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Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant.
Due to its activity as an antioxidant, as well as through other mechanisms, cocoa
consumption has been reported to be beneficial for cardiovascular health, brain functions,
and cancer prevention. Furthermore, cocoa influences the immune system, in particular the
inflammatory innate response and the systemic and intestinal adaptive immune response.
Preclinical studies have demonstrated that a cocoa-enriched diet modifies T cell functions
that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard,
it seems that a cocoa diet in rats produces changes in the lymphocyte composition of
secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest
that it is possible that cocoa could inhibit the function of T helper type 2 cells, and in
line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model
has been reported, which opens up new perspectives when considering the beneficial
effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality
of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal
microbiota. The mechanisms involved in these influences are discussed here. Further
research may elucidate the cocoa compounds involved in such an effect and also the
possible medical approaches to these repercussions.
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INTRODUCTION
In addition to the beneficial effects on oxidative stress, car-
diovascular health, nervous system diseases, aging, and cancer
prevention, cocoa has been revealed as a food with immunoregula-
tory properties. In the following sections, the influence of cocoa or
its flavonoids on the innate and adaptive immunity are reviewed.
Firstly, the anti-inflammatory properties of cocoa are briefly sum-
marized, and secondly, the effects of cocoa on the adaptive immune
system and intestinal immunity are reported.

To achieve this objective, a systematic search in SCOPUS-V.4
(Elsevier) – SciVerse was conducted for the following key terms:
“cocoa” AND “lymphocyte” OR “immun*” OR “inflammation”
OR “microbiota.” In order to prevent potential misclassification
of relevant articles no exclusion criteria were used. The search
included the period from January 1990 to March 2013.

ANTI-INFLAMMATORY POTENTIAL OF COCOA
Inflammation is the response of tissues to an aggression caused by
pathogens, chemicals or wounding. Inflammation involves a com-
plex network of reactions initially designed to protect the host from
injury and to heal damaged tissue. The activation and migration of
leukocytes to the site of the lesion and the release of growth factors,
cytokines, reactive oxygen species (ROS), and nitric oxide (NO)
are known to play a crucial role in the inflammatory response.
Constant overproduction of pro-inflammatory molecules leads to
chronic inflammation.

In general, flavonoids are associated with anti-inflammatory
properties. In this regard, the flavanols contained in cocoa have

been the subject of both in vitro and in vivo studies (reviewed
in Pérez-Cano et al., 2010). Many studies have reported cocoa’s
ability to reduce cytokines, chemokines, ROS, NO, etc. involved in
inflammatory response. However, few studies have focused on the
in vivo anti-inflammatory activity of cocoa.

COCOA EFFECTS ON INFLAMMATORY CELLS
Cocoa extracts or single flavonoids, both as monomers (epicate-
chin, catechin) or polymers (procyanidins) have demonstrated in
vitro their anti-inflammatory potential, although there have been
some controversial results.

A cocoa flavonoid-enriched extract and the monomers epicat-
echin and isoquercitrin were able to decrease the production of
inflammatory molecules such as tumor necrosis factor (TNF)-α
and monocyte chemoattractant protein (MCP)-1 by macrophages
under stimulation with lipopolysaccharide (LPS; Ramiro et al.,
2005a). Similarly, epicatechin in stimulated whole blood cells
culture suppressed the production of interleukin (IL)-6 and IL-
8 (Al-Hanbali et al., 2009). However, monomer to pentamer units
and longer chain fractions of cocoa flavanols increased the secre-
tion of TNF-α, IL-1, and IL-6 in LPS-stimulated peripheral blood
mononuclear cells (PBMC; Mao et al., 2002; Kenny et al., 2007;
Wisman et al., 2008).

Aside from cytokines, other inflammatory molecules can be
influenced by cocoa. Epicatechin, procyanidin B1, procyanidin B2,
and a cocoa extract reduced NO release by stimulated macrophages
(Ono et al., 2003; Ramiro et al., 2005a; Hämäläinen et al., 2007).
Likewise, the in vitro treatment with cocoa fractions or flavonoids
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alone decreased the production of ROS from several kinds of
cells (Sanbongi et al., 1997; Erlejman et al., 2006; Granado-Serrano
et al., 2007; Ramiro-Puig et al., 2009).

Neutrophils also play an important role during inflammation.
It has been demonstrated that cocoa has the potential to posi-
tively modulate the neutrophil inflammatory activity. In this sense,
certain flavanols and procyanidins isolated from cocoa moder-
ated some signaling pathways induced by LPS on neutrophils,
particularly those of oxidative bursts and activation markers,
and cocoa could influence selected apoptosis mechanisms (Kenny
et al., 2009).

Regarding the mechanisms of action, it has been reported that
hexameric cocoa procyanidins have the capacity to modulate TNF-
α-induced NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells) activation in intestinal epithelial cells (Erlejman
et al., 2008). NF-κB is a transcription factor involved in the regu-
lation of genes encoding cytokines (IL-1, IL-2, IL-6, IL-8, TNF-α,
among others), adhesion molecules (e.g., intercellular adhesion
molecule 1, vascular cell adhesion molecule 1, and endothelial
leukocyte adhesion molecule 1), acute phase proteins, inducible
enzymes [inducible NO synthase (iNOS) and cyxlooxygenase 2
(COX-2)], etc. (Pahl, 1999).

ANTI-INFLAMMATORY POTENTIAL OF COCOA IN HEALTHY
CONDITIONS
In a more physiological approach, using cells isolated from humans
or animals fed with diets containing cocoa, the in vitro ability to
produce inflammatory mediators and the serum concentrations
of inflammatory molecules has been studied.

Some studies have focused on the in vitro response of
macrophages isolated from rats fed cocoa. It has been demon-
strated that these cells produced lower amounts of TNF-α, IL-6,
NO, and ROS (Ramiro-Puig et al., 2007a; Castell et al., 2009). Sim-
ilarly, serum concentration of MCP-1 decreased after a cocoa diet
in rats (Ramos-Romero et al., 2012a).

With regard to studies in humans, it has been reported that
a supplementation with cocoa products in healthy humans did
not affect inflammation markers (Mathur et al., 2002); however,
a cross-sectional analysis showed that the regular intake of dark
chocolate by a healthy population in Southern Italy was inversely
related to serum C-reactive protein concentration (di Giuseppe
et al., 2008). In addition, cocoa consumption for 4 weeks decreased
some adhesion molecules involved in the recruitment of inflam-
matory cells (Monagas et al., 2009). More recently, leukocytes from
healthy volunteers showed a decrease in the activation of NF-κB
and also in the serum concentrations of some adhesion molecules,
such as intercellular adhesion molecule 1 and E-selectin, 6 h after
receiving 40 g of cocoa powder (Vázquez-Agell et al., 2013).

COCOA DIET AND INFLAMMATORY DISEASES
Although at present no human intervention studies applying cocoa
treatment in inflammatory conditions have been reported, some
studies in animal models of diseases suggest the anti-inflammatory
effect of cocoa. In this context, the oral administration of a
cocoa polyphenolic fraction to mice has seen to inhibit ear
edema in a dose-dependent manner (Lee et al., 2006a). More-
over, rats that received cocoa for a week (4.8 g/kg/day) developed

a lower paw edema induced by carrageenan and by bradykinin
(Ramos-Romero et al., 2008; Castell et al., 2009).

The anti-inflammatory activity of cocoa has been extended to
inflammatory bowel disease (IBD). Using IBD models, a num-
ber of flavonoids, such as quercitrin, rutin, diosmin, hesperidin,
morin, and silymarin have demonstrated anti-inflammatory activ-
ity (reviewed in Comalada et al., 2013). However, a study using
a cocoa diet in a dextran sodium sulfate (DSS) model demon-
strated that cocoa intake did not improve clinical colitis, although
it certainly contributed to reducing colonic oxidative activity and
serum inflammatory mediator concentrations (Pérez-Berezo et al.,
2012a). These results agree with those obtained with luteolin and
with a lemon verbena infusion rich in polyphenolic compounds
(Karrasch et al., 2007; Lenoir et al., 2011). More interestingly, it has
recently been reported that a polyphenol-enriched cocoa extract
was able to decrease acute DSS colitis in mice (Andújar et al., 2011),
thus evidencing the need for a high polyphenol content in the
cocoa to achieve anti-inflammatory activity in the IBD.

The effect of a cocoa diet on in vivo models of neuronal inflam-
mation and systemic chronic inflammation such as adjuvant
arthritis (AA) and collagen-induced arthritis (CIA) has also been
reported. Rats fed a diet enriched with cocoa produced a decrease
in the inflammatory response to an acute and chronic noxious
stimulus of trigeminal ganglion neurons (Cady and Durham,
2010).

In AA, a cocoa-enriched diet was able to decrease the synthe-
sis of antibodies against the pathology inducer, and to reduce the
proportion of Th lymphocytes in blood and regional lymphoid
tissues, but the cocoa diet produced only a tendency to modu-
late hind-paw swelling (Ramos-Romero et al., 2012b). It must be
added that the oral administration of some flavonoids such as
quercetin and hesperidin were only able to partially reduce AA
swelling (Mamani-Matsuda et al., 2006; Li et al., 2010) or only
slightly decreased this chronic inflammatory model (Rovenský
et al., 2009). However, a cocoa diet was able to reduce the oxidative
stress associated with AA (Ramos-Romero et al., 2012c).

Concerning the CIA model in rats, a diet enriched in cocoa
beginning 2 weeks before CIA induction and given throughout
the process, has been applied. Although arthritic cocoa-fed rats
decreased specific autoantibody titers, the production of pro-
inflammatory mediators from peritoneal macrophages, and the
Th proportion in lymph nodes, they developed a similar hind-
paw swelling as the reference arthritic animals (Ramos-Romero
et al., 2012a). On the contrary, Miyake et al. (2008) reported that
the oral administration of highly oligomeric procyanidins isolated
from Jatoba (Hymenaea courbaril) ameliorated CIA in mice and
also decreased the serum concentrations of some specific autoan-
tibodies. Similarly, the oral consumption of an extract of green
tea polyphenols reduced the incidence, the arthritis index and
the autoantibody concentration of CIA in mice (Haqqi et al.,
1999). Similarly, single flavonoids administered orally, such as
hesperidin, resulted in preventive and therapeutic effects in mice
CIA (Kawaguchi et al., 2006).

COCOA AND LYMPHOID TISSUES
Primary and secondary lymphoid tissues constitute two major
categories of lymphoid organs. The formation of the primary
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repertoire of lymphocytes takes place in the primary tissues such
as thymus and bone marrow. Secondary lymphoid tissues are
responsible for the coordination of immune responses by spa-
tially organizing the interaction of immune effector cells (Drayton
et al., 2006). By means of preclinical studies in rats, it has been
evidenced that a cocoa diet can induce changes in the cell com-
position of both primary and secondary lymphoid organs. In
particular, a cocoa diet has an influence on the proportion of
B lymphocytes and T cell subsets, i.e., T cell receptor (TCR) αβ+
cells, TCRγδ+ cells, T helper (Th), cells and T cytotoxic (Tc) cells
(Figure 1).

A cocoa diet influences antioxidant status and the cell com-
position of rat thymus. A diet containing 10% cocoa in rats
increased the thymic content of catalase and superoxide dismutase
and promoted the progression of immature thymocytes (double
negative TCRαβlow and double positive TCRαβlow cells) toward
more mature T cell stages (CD4+CD8− TCRαβhigh cells; Ramiro-
Puig et al., 2007b). Similarly, a diet with 10% cocoa was able
to influence a secondary lymphoid tissue such as the rat spleen
and lymph nodes (Figure 1). Young rats fed cocoa decreased
the spleen percentage of Th cells while increasing that of B cells
(Ramiro-Puig et al., 2007a). Additionally, adult Louvain rats fed
10% cocoa for 6 weeks reduced the proportion of TCRαβ+ cells
in inguinal lymph nodes (Ramos-Romero et al., 2012a). Likewise,
the percentage of Th cells was reduced in mesenteric lymph nodes
(MLNs) at the expense of Tc cells that increased in young Wistar
rats fed 10% cocoa for 3 weeks, but not 4% cocoa (Ramiro-
Puig et al., 2008; Figure 1). A high-cocoa diet also affects the
lymphocyte composition of intestinal Peyer’s patches (PPs). In
particular, cocoa intake reduced the TCRαβ+ cell percentage,
mainly due to a decrease in the Th cell proportion, and increased
B cell and TCRγδ+ cell percentages (Ramiro-Puig et al., 2008;
Figure 1). The increase in TCRγδ+ cell percentages in PPs and
MLNs induced by cocoa is similar to the effects of apple polyphe-
nol intake in healthy mice (Akiyama et al., 2005) and could be
especially important during childhood, when the immune system
is maturing (Pérez-Cano et al., 2005), or in the prevention of food
allergies.

FIGURE 1 | Summary of the effects of a 10% cocoa diet in rats on

lymphocyte proportion in secondary lymphoid tissues (based on

Ramiro-Puig et al., 2007a, 2008). MLN, mesenteric lymph nodes; PP,
Peyer’s patches.

INFLUENCE OF COCOA ON ADAPTIVE IMMUNE RESPONSE
The adaptive immune response is an intricate reaction comprising
a number of intracellular and intercellular events from the antigen
entry until the development of effector mechanisms. Dendritic
cells (DC), acting as antigen-presenting cells, take up, process
and present antigen to TCR-specific Th lymphocytes. The inter-
action between DC and Th cells involves a lot of co-stimulatory
molecules thus forming the immune synapses (Dustin and Groves,
2012). Next, Th lymphocytes proliferate and differentiate, becom-
ing effector cells such as Th1, Th2, Th17, or regulatory T cells that
produce cytokines. Some of these cytokines involve the activation
of other antigen-specific cells such as Tc cells or B cells. Activated
B cells differentiate into plasma cells, which synthesize antibodies
that specifically bind the antigen that has triggered the adaptive
immune response.

The first event in adaptive response refers to Th cell activa-
tion. Specific recognition of antigenic peptide by TCR together
with co-stimulatory molecules causes production of IL-2 (Malek,
2008). IL-2 binds to a receptor consisting of the subunits α, β,
and γ (CD25, CD122, and CD132, respectively) to produce cell
proliferation (Boyman and Sprent, 2012). CD25 is expressed after
Th cell activation. The binding of IL-2 to its receptor leads to the
stimulation of complex transduction signals involving mitogen-
activated protein kinase (MAPK), Janus kinase/signal transducer
and activator of transcription (JAK/STAT), and phosphatidyli-
nositide 3-kinase (PI3K)/Akt pathways that eventually mediates
multiple biological processes including T cell and B cell growth
and differentiation (Malek, 2008; Boyman and Sprent, 2012).

COCOA AND Th CELL ACTIVATION
IL-2 and CD25 are markers of early lymphocyte T activation.
Some in vitro studies have reported the effect of isolated cocoa
flavonoids and cocoa extracts in the synthesis of IL-2. San-
bongi et al. (1997) found that cocoa liquor polyphenols inhibited
both IL-2 gene expression and IL-2 secretion in human blood
T cells. Likewise, Mao et al. (1999, 2000) showed that a crude
cocoa extract and pentamer, hexamer and heptamer procyanidins
from cocoa also reduced IL-2 transcription in phytohemagglu-
tinin (PHA)-stimulated human PBMC. Similarly, in a lymphoid
cell line activated with phorbol 12-myristate 13-acetate (PMA)
and IL-1 and cultured in the presence of epicatechin or a cocoa
extract, it has been established that cocoa flavonoids were able
to decrease the expression of surface CD25 and to diminish IL-2
secretion (Ramiro et al., 2005b). The ability of the cocoa extract
to decrease CD25 expression was higher than that of epicatechin
alone, which may be due to the effect of other cocoa flavanols
(Ramiro et al., 2005b). Overall, these in vitro studies agree that
cocoa flavonoids can decrease IL-2 production in Th cells. These
results are also in line with those described with other flavonoids,
such as genistein (Atluru et al., 1991) and Pycnogenol® (Cho et al.,
2001). How cocoa flavonoids modulate IL-2 gene is not known but
it has been demonstrated that epicatechin and dimeric procyani-
dins decrease NF-κB activation on PMA-activated Jurkat cells, a
lymphoid cell line (Mackenzie et al., 2004). The inhibition of NF-
κB might mediate the downregulation of both IL-2 and CD25
in a similar way to that of the decrease in pro-inflammatory
mediators.
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It is interesting to note the effect of cocoa procyanidins on
the plasma membrane of Jurkat T cells. After the adsorption
of flavonoids, the plasma membrane became more fluid, and
procyanidins prevented the leakage of small molecules from
vesicles (Verstraeten et al., 2004). These effects could also influ-
ence the establishment of immune synapses thus attenuating the
interaction between the Th cell and the antigen-presenting cell.

In spite of the in vitro results, in vivo studies do not confirm
the downregulation of IL-2 by cocoa flavonoids. Some studies
carried out in rats showed the effect of a diet containing cocoa on
the functionality of immune cells isolated from spleen or lymph
nodes. Splenocytes from rats fed cocoa (a diet with either 4 or 10%
defatted cocoa) did not decrease IL-2 production or CD25 surface
expression after stimulation with PMA plus ionomycin (Ramiro-
Puig et al., 2007a; Pérez-Berezo et al., 2009). Likewise, these cells
showed a similar or even higher proliferative response (Ramiro-
Puig et al., 2007a). In the same way, lymphocytes from cocoa-fed
rat MLN produced higher or equal amounts of IL-2 (Ramiro-
Puig et al., 2008; Pérez-Berezo et al., 2009; Ramos-Romero et al.,
2012b).

COCOA AND EFFECTOR T CELLS
After naïve Th cell activation and proliferation, effector Th lym-
phocytes appear. Depending on the cytokines released to the
medium, which are eventually related to the antigen that trig-
ger the immune response, activated Th1 cells, Th2 cells, Th17
cells, or regulatory T cells result (Nakayama and Yamashita, 2008;
Amsen et al., 2009; Korn et al., 2009). Th1 cells direct cell-mediated
immunity against intracellular pathogens by means of the synthe-
sis and release of interferon (IFN)-γ, TNF-α, and TNF-β, among
others. These cytokines promote phagocytosis and cytotoxicity
recruiting macrophages, natural killer (NK) cells, Tc cells, and also
the enhancement of complement-activating antibodies synthesis.
Th1 activity is usually associated with inflammation (Nakayama
and Yamashita, 2008). Th2 cells are designed to fight against
extracellular pathogens, activating mast cells and eosinophils,
and the production of antibodies which are not able to activate
the complement system. Th2 cells are involved in the humoral
immunity and allergic reactions (Nakayama and Yamashita, 2008).
The Th2 subset produces cytokines such as IL-4 and IL-5 that
help B cells to proliferate and differentiate, and IL-10 with anti-
inflammatory properties. IL-4 is mainly produced by activated
Th2 cells and plays an important role in regulating Th1/Th2 bal-
ance (Nakayama and Yamashita, 2008). Recently, the effectors Th
cell family expanded with the discovery of Th17 cells. These cells
produce IL-17 and exhibit effector functions distinct from Th1
and Th2 cells. The primary function of Th17 cells appears to be
the clearance of pathogens that are not adequately handled by Th1
or Th2 cells and they are potent inducers of tissue inflammation
(Korn et al., 2009).

The effect of cocoa diets in rats on the cytokine production
by Th1 and Th2 cells has been reported. The secretion of IFN-γ,
the main cytokine related to Th1 activity, has been quantified in
cells isolated from the spleen and lymph nodes of rats fed a cocoa
diet. No changes in the secretion of this cytokine were observed
in splenocytes (Ramiro-Puig et al., 2007a; Ramos-Romero et al.,
2012b), although others found increased values (Pérez-Berezo

et al., 2009), and in vitro studies demonstrated a suppression of
IFN-γ production by PHA-stimulated PBMC (Jenny et al., 2009).

More interestingly, a cocoa diet in rats produced a lower IL-4
secretion in isolated splenocytes (Ramiro-Puig et al., 2007a; Pérez-
Berezo et al., 2009) and MLN cells (Ramiro-Puig et al., 2008).
However, IL-10 secretion was not modified in rats fed a cocoa diet
(Ramiro-Puig et al., 2007a, 2008). The results obtained in these in
vivo experiments did not exactly fit with those obtained in in vitro
studies with cocoa flavonoids. Thus, an increase in IL-4 secretion
after epicatechin addition in a lymphoid cell line and PBMC has
been reported (Mao et al., 2000; Ramiro et al., 2005b), whereas
hexamer to octamer cocoa procyanidins presented an inhibitory
effect on this cytokine (Mao et al., 2000).

COCOA AND HUMORAL IMMUNE RESPONSE
As stated before, an increase in the percentage of B cells in spleen
was observed in rats fed cocoa (Figure 1). However, the antibody
response of these cells has been found to be attenuated. Thus, the
ability to produce IgG, IgM, and IgA by splenocytes from rats fed
cocoa was depressed (Ramiro-Puig et al., 2007a). This effect was
also reflected in serum immunoglobulin concentrations. Three-
week-old rats fed with 10% cocoa for 3 weeks, but not those fed
4% cocoa, had lower serum IgG, IgM, and IgA concentrations
(Ramiro-Puig et al., 2007a; Pérez-Berezo et al., 2012b). However,
when the cocoa diet began later and the dose was lower, the effect
was not so patent (Pérez-Berezo et al., 2011).

The influence of a 4 and 10% cocoa diet on the antibody syn-
thesis in immunized rats has been reported. When animals were
fed cocoa before and during an immunization process, the syn-
thesis of specific antibodies and the number of IgG-secreting
cells decreased, although the proliferation rate of lymph node
and spleen cells was maintained (Pérez-Berezo et al., 2009). The
analysis of antibodies demonstrated that the impact on humoral
response did not affect all antibody isotypes equally. The most
attenuated isotypes were specific IgM, IgG1, IgG2a, and IgG2c
whereas anti-OVA IgG2b concentrations held steady or increased
with the 10% cocoa diet. IgG isotypes can be associated with Th1
or Th2 immunity. In the rat, IgG1 and IgG2a are related to the Th2
response, while IgG2b depends on the Th1 response (Binder et al.,
1995; Gracie and Bradley, 1996; Saoudi et al., 1999; Bridle et al.,
2007). These results agree with others that evaluated certain food
polyphenols, such as those from apple or soybean (Akiyama et al.,
2005; Kogiso et al., 2006). From all these results, it has been sug-
gested that a cocoa diet mainly downregulates the Th2 immune
response, whereas it maintains Th1 immunity. This hypothesis
was supported by a lower IL-4 secretion from splenocytes and a
higher production of IFN-γ from lymph node cells (Pérez-Berezo
et al., 2009).

Because of a cocoa diet seems to attenuate antibody synthesis, it
has been tested in experimental disease models in which antibodies
play a pathogenic role, such as autoimmune diseases and allergic
processes.

Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease in which chronic inflammation of synovial joints results in
joint destruction, pain, disability, and a reduced life expectancy
(Wegner et al., 2010). The pathology of the RA is mediated by spe-
cific autoantibodies, mainly against citrullinated proteins such as
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collagen type II (Wegner et al., 2010). In consequence, CIA in rats
or mice is the gold standard in vivo model for RA studies (Asquith
et al., 2009). In such rat experimental model, the influence of a
cocoa diet on joint inflammation and autoantibody titers has been
reported (Ramos-Romero et al., 2012a). Louvain rats fed cocoa
from 2 weeks before arthritis induction, and during the disease
period studied (4 weeks), reduced the synthesis of specific anti-
bodies against type-II collagen, but this effect was not enough
to mitigate the hind-paw swelling in arthritic animals during the
study period (Ramos-Romero et al., 2012a).

Allergic reactions are mainly caused by IgE-mediated hyper-
sensitivity. In allergic patients, the immune system reacts to
innocuous substances by producing IgE. These antibodies bind
to mast cells and, after allergen reaction, produce degranulation
of mast cell mediators with a subsequent generation of allergic
manifestations (Amim, 2012). The effect of cocoa in an allergy
model has been preclinically studied. A diet containing 10% cocoa
prevented the synthesis of antibodies involved in allergic reac-
tion in young rats, in particular, rats fed a cocoa diet showed
lower titers of specific IgG1, IgG2a and a decrease of specific IgE
of about 60–70% (Abril-Gil et al., 2012). The effect of a cocoa
diet on allergic manifestations has not yet been established. How-
ever, it is noteworthy that the modulation of specific IgE was also
observed in allergy models after treatment with flavonoids, and in
these studies the effect on IgE synthesis was associated with lower
allergy signs. This is the case in treatment with luteolin (Das et al.,
2003), baicalin (Won Jung et al., 2012), biochanin A (Ko et al.,
2011), quercetin (Cruz et al., 2012), myricetin (Medeiros et al.,
2008), and hesperidin (Rogerio et al., 2007; Joskova et al., 2011).
In addition, it can be added that clinical trials applying a treat-
ment with Pycnogenol®, an extract of Pinus maritime containing
procyanidins, demonstrated the efficacy of such intervention in
reducing some signs of allergic asthma (Hosseini et al., 2001; Lau
et al., 2004; Belcaro et al., 2011). From all these studies it can
be concluded that foods enriched in flavonoids, such as cocoa,
open a new perspective in their use as a nutraceutical in allergic
diseases.

EFFECTS OF COCOA ON INTESTINAL IMMUNITY
The digestive system is the first compartment reached by dietary
compounds. Bacteria, epithelial cells, and immune cells in the
intestine are the first ones to be affected by diet. Every day,
the gut-associated lymphoid tissue (GALT), which constitutes
the most extensive and complex part of the immune system in
the body, receives a huge antigenic load and has to distinguish
between invasive pathogens and innocuous antigens from food
and commensal bacteria. Briefly, the intestinal immune response
is initiated in the M cells from PPs which uptake luminal antigens
and transport them toward DC, which interact with interfollicular
T lymphocytes or migrate toward MLN (Cerutti and Rescigno,
2008). This process induces differentiation and maturation of
B cells, which become IgA+ cells and later IgA-secreting cells
(Kunisawa and Kiyono, 2005). The main resulting product of
the GALT is the secretory-IgA (S-IgA; Mora and von Andrian,
2008; Brandtzaeg, 2010). This immunoglobulin constitutes the
first line of non-inflammatory immune protection at mucosal
surfaces by neutralizing microbial pathogens and exotoxins and

by interacting with innocuous dietary antigens and commensal
microbes (Corthésy, 2007; MacPherson et al., 2008).

Few studies addressing the dietary effects of cocoa on GALT
function in healthy animals or humans have been reported to date.
Dietary intervention with cocoa did not morphologically affect
the intestinal structure (Ramiro-Puig et al., 2008), but is capable
of modifying some important aspects of the GALT composition
and functionality in rats as next detailed (Ramiro-Puig et al., 2008;
Pérez-Berezo et al., 2011, 2012b; Figure 2).

COCOA DIET AND MESENTERIC LYMPH NODE LYMPHOCYTE
ACTIVATION
Rat interventional nutrition with a cocoa diet modulates MLN
lymphocyte activation in certain conditions. Isolated MLN cells
from young rats fed 10% cocoa for 3 weeks strongly enhanced
IL-2 secretion; nevertheless, the proliferation rate did not increase
after 48 h of cell culture (Ramiro-Puig et al., 2008). On the other
hand, isolated MLN lymphocytes from rats fed a long-term cocoa
diet (9 weeks) did not change IL-2 production after in vitro mito-
gen activation nor their proliferative ability after in vitro-specific
activation (Pérez-Berezo et al., 2009).

To ascertain whether cocoa modified Th effector cell function-
ality in the GALT, IFNγ, IL-4, and IL-10 cytokine production
was studied in stimulated MLN cells isolated from animals fed a
cocoa diet (Ramiro-Puig et al., 2008). The nutritional 10% cocoa
intervention for 3 weeks resulted in a lower IL-4 secretion, IL-10
secretion tended to decrease whereas that of IFN-γ tended to
increase. A 4% cocoa intake for 3 weeks did not produce any
significant modification (Ramiro-Puig et al., 2008). These results
suggest that high-cocoa diets, similarly to the results found in the
systemic compartment, downregulate Th2 responses, and there-
fore, may downregulate B cell differentiation and immunoglobulin
production even at mucosal sites.

COCOA AND SECRETORY-IgA
Secretory-IgA plays a key role in the maintenance of gut homeosta-
sis and oral tolerance and its function and production are tightly
regulated (Cerutti and Rescigno, 2008). The relationship between
a cocoa diet and S-IgA has been demonstrated in different experi-
mental designs using rats, where the effect of varied proportions of
cocoa diets (2, 4, 5, and 10%), different age at the beginning of the
dietary nutritional (3 or 6 weeks of age) and length of diet (3, 6, or
9 weeks) have been analyzed. As demonstrated next, cocoa reduces
S-IgA protein and gene expression which conduces a different pat-
tern of IgA-coating bacteria. The effect of cocoa on S-IgA might be
due to the influence of cocoa on genes related to Th maturation,
Th–B cell interactions, and IgA+ B cell gut-homing, among others
(Pérez-Berezo et al., 2011, 2012b).

First data showing a downmodulatory effect of cocoa on S-IgA
were established in fecal samples after 2 weeks of both 4 and 10%
cocoa intake in young rats. However, this effect only remained for
3 weeks in the 10% cocoa diet. The decrease in fecal IgA corre-
lated with a lower concentration of S-IgA and S-IgM in gut washes
(Ramiro-Puig et al., 2008). These results were confirmed in a study
that extended the dietary intervention with a 10% cocoa diet up to
6 weeks (Pérez-Berezo et al., 2012b). If dietary intervention began
later in rat age (6-week-old animals), the attenuating effect of
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FIGURE 2 | Summary of the effects of a 10% cocoa diet in rat’s

gut-associated lymphoid tissue (Ramiro-Puig et al., 2008; Fagarasan

et al., 2010; Pérez-Berezo et al., 2011; Pérez-Berezo et al., 2012b).

Generation of S-IgA can be developed by a T cell-dependent process initiated
in Peyer’s patches or by a T cell-independent mechanism in isolated lymphoid
follicles and lamina propria. Both mechanisms lead to the induction of IgA+
B cells which migrate to blood and come back to the gut lamina propria where
they differentiate into plasma cells and produce S-IgA. The mechanisms
showing how cocoa modulates immune response are shown in the figure
with numbers in brackets, and as follows: cocoa induces a differential pattern

of Toll-like receptor (TLR) gene expression (1) which may interfere with both
dependent and independent pathways. Moreover, Th2 development and
conventional B–T cell interactions through major histocompatibility complex
(MHC)-TCR and CD40–CD40L are also modulated by cocoa (2). The
preferential generation of IgA+ B cells is caused by the abundant production
of activated TGF-β1. Cocoa compounds also influence the migration of IgA+
B cells into the gut lamina propria, by modifying the expression of some
chemokines (CCL25, CCL28) (5) or their receptors (CCR9) (4) whose
expression depends on retinoic acid (3). As a result, the amount of S-IgA in
the intestinal lumen in cocoa-fed animals is markedly reduced (6).

cocoa remained for 5 and 10% cocoa diet, showing a rapid effect
even 1 week after the diet start (Pérez-Berezo et al., 2011). How-
ever, a lower cocoa proportion (2%) tended to reduce fecal IgA
levels after only 3 weeks of diet. Therefore, cocoa diets, especially
those with a higher cocoa proportion, decreased S-IgA concen-
tration in the intestinal lumen of rats (Ramiro-Puig et al., 2008).
This effect was associated with a lower number of PP cells with a
high capacity to secrete IgA (Ramiro-Puig et al., 2008), and with a
downregulation of IgA gene expression in PP cells and in the wall
of the small intestine and colon (Pérez-Berezo et al., 2011, 2012b;
Massot-Cladera et al., 2012).

Some commensal intestinal bacteria in humans and rodents
coat S-IgA by an apparent non-random immunological phe-
nomenon (Tsuruta et al., 2010). In fecal samples from rats collected
before and after a cocoa diet, the IgA-coating bacteria were enu-
merated. After 6 weeks, reference animals showed an increase in
the percentage of IgA-coating bacteria that was avoided with the
10% cocoa diet (Massot-Cladera et al., 2012).

In order to look further into the downregulation of S-IgA
through a cocoa diet in rats, the gene expression of several

molecules involved in intestinal immune response was established
using different cocoa proportions (2, 5, and 10%), supplementa-
tion periods (3 or 6 weeks) and initial age of rats (3 or 6 weeks;
Pérez-Berezo et al., 2011, 2012b). A pathway for B cells to become
IgA-secretory cells is a T cell-dependent process located in either
PPs or MLNs, inductive sites of the intestinal immune system
(Kunisawa and Kiyono, 2005; Mora and von Andrian, 2008). The
maturation of mucosal Th cells depends on IL-6, among others;
the interaction between activated Th cells and B cells requires the
interaction of CD40 ligand with CD40 (Islam et al., 1991; Cerutti,
2008), and the differentiation of B cells into IgA+ B cells involves
transforming growth factor-β1 (TGF-β1), IL-5, IL-6, IL-10, and
IL-21 (Schoenbeck et al., 1989; Brière et al., 1994; Ramsay et al.,
1994; Dullaers et al., 2009). The study of a 10% cocoa diet for 3
or 6 weeks in rats on the mechanisms of S-IgA secretion revealed
that the cocoa diet did not modify TGF-β1 gene expression in PPs,
MLNs, or the small intestine; however, IL-6 gene expression was
reduced ∼95% in MLNs after 6 weeks of a 10% cocoa diet (Pérez-
Berezo et al., 2012b) but not earlier (Pérez-Berezo et al., 2011).
Likewise, cocoa intake did not modify CD40 gene expression

Frontiers in Pharmacology | Experimental Pharmacology and Drug Discovery June 2013 | Volume 4 | Article 71 | 6

http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


“fphar-04-00071” — 2013/6/1 — 19:40 — page 7 — #7

Pérez-Cano et al. Cocoa and the immune system

either in PPs or in MLNs (Pérez-Berezo et al., 2012b), which is
in accordance with previous studies that have shown that a cocoa
diet increased the proportion of B cells in PPs (Ramiro-Puig et al.,
2008); however, a 10% cocoa diet (but not lower proportions) for 6
weeks (but not in a shorter period), reduced CD40 gene expression
in the small intestine (Pérez-Berezo et al., 2011, 2012b).

When IgA+ B cells become activated they leave PPs, go to
the bloodstream and come back to the intestine or other mucosa
(MacPherson et al., 2008; Brandtzaeg, 2010). The gut-homing sys-
tem requires the integrin α4β7 and some chemokine receptors
on activated gut lymphocytes (Mora and von Andrian, 2008).
Chemokines produced by epithelial cells such as CCL25 and
CCL28 interact with the chemokine receptors CCR9 and CCR10
respectively, to recruit IgA+ B cells (Hieshima et al., 2004). The
CCR9 expression on IgA+ B cells is induced by retinoic acid (Mora
et al., 2006) through its ligation to nuclear retinoic acid receptors
(RAR; Ross et al., 2009). Diets containing 2, 5, or 10% cocoa for
3 weeks in 6-week-old animals did not affect the gene expression
of CCR9, CCL25, RARα, or RARβ but increased the CCL28 gene
expression in the small intestine wall (Pérez-Berezo et al., 2011).
The increase in the CCL28 gene expression could reflect a “res-
cue mechanism” to strongly attract the IgA+ B cells to the gut, in
an attempt to compensate the S-IgA downregulation. When the
cocoa diet began earlier and lasted longer (3-week-old animals
fed 10% cocoa for 6 weeks), the gene expression of gut-homing
molecules such as RAR, CCR9, and CCL28, but not CCL25,
was downregulated in the small intestine (Pérez-Berezo et al.,
2012b). Overall, these results demonstrate the longer the cocoa
intake the greater the sensitivity of gut-homing mechanisms in the
intestine.

Finally, when IgA+ B cells reach the intestine, they differ-
entiate into IgA-secreting cells mainly releasing dimers of IgA.
This immunoglobulin is actively secreted to the apical surface of
epithelial cells by a polymeric immunoglobulin receptor (pIgR)
expressed on the basolateral surface of epithelial cells (Cerutti and
Rescigno, 2008). The gene expression of pIgR was not modified
by any cocoa diet given for 3 or 6 weeks (Pérez-Berezo et al., 2011,
2012b).

In summary, a high-cocoa diet induces a lower number of
IgA+ B cells reaching the intestinal lamina propria by down-
regulating either the expression of chemokine or that of their
receptors (Figure 2). However, in the gut lamina propria some
other mechanisms remain working efficiently.

COCOA AND BACTERIA RECOGNITION
The GALT maintains mucosal homeostasis by inducing a state
of non-responsiveness to innocuous antigens, such as commen-
sal bacteria, or by responding actively to counteract pathogens
(Fagarasan et al., 2010). In this regard, toll-like receptors (TLRs),
through the recognition of conserved molecular motifs on
microorganisms, are important molecules involved in the cross-
talk between microorganisms and gut epithelial and immune cells
(Abreu, 2010). It has been reported that the generation of IgA+
B cells can be independent of Th cells and involve TLR non-
specific recognition (Fagarasan et al., 2010). In this context, cocoa
diets in rats have shown differential TLR expression patterns for
TLR2, TLR4, TLR7, and TLR9 in PPs, MLNs, the small intestine

and colon (Pérez-Berezo et al., 2011, 2012b; Massot-Cladera et al.,
2012).

A high (10%) and continuous cocoa diet produced an upreg-
ulation of TLR4 and TLR9 and a downregulation of TLR2 and
TLR7 in PPs and MLNs (inductor sites of intestinal immune
response; Pérez-Berezo et al., 2011, 2012b). Conversely, in the
small intestine and the colon, cocoa-fed animals showed lower
TLR4 and TLR9 and higher TLR2 and TLR7 gene expression
(Massot-Cladera et al., 2012; Pérez-Berezo et al., 2012b). TLR4
expression is positively correlated to the number of IgA-secreting
cells in the lamina propria and their recruitment through CCL28
(Shang et al., 2008; Abreu, 2010). In consequence, the down-
regulation of TLR4 through a cocoa diet in the intestine (as
effector site) could be associated with the decrease in S-IgA in
feces.

Toll-like receptors are expressed preferentially in tissues that
are in constant contact with microorganisms (Cario, 2005; Abreu,
2010). Therefore, changes in the TLR expression could reflect
changes in the intestinal microbiota and/or its relation to intestinal
immune cells (Shibolet and Podolsky, 2007).

INFLUENCE OF COCOA ON GUT MICROBIOTA
The above data demonstrate that cocoa-enriched diets in rats influ-
ence the intestinal immune system either through a direct effect
on intestinal immune cells and/or an indirect effect mediated by
changes in microbiota which would influence the cross-talk with
the host (i.e., through TLR). Therefore, it remained to be seen
whether cocoa diets modulated microbiota composition and, con-
sequently, the intestinal immune system. This is possible due that
cocoa flavonoids reaching the colon can interact with intestinal
microbiota through a bidirectional relationship. Thus, bacteria
can be involved in the polyphenol metabolism, and flavonoids can
influence microbiota growth and composition (Hayek, 2013). In
this context, changes in intestinal microbiota composition may
influence the immune system as well as the compounds originated
by the bacterial metabolism (Figure 3).

COCOA FLAVONOIDS METABOLISM
Cocoa flavonoids have a particular bacterial metabolism due to the
high degree of polymerization of its flavanols. After cocoa intake,
monomers (i.e., catechin and epicatechin) are rapidly absorbed in
the small intestine, while the largest proportion of dietary polyphe-
nols (90–95%) in the form of oligomers and polymers (i.e., cocoa
procyanidins) pass intact through the gastrointestinal tract, reach-
ing the colon (Monagas et al., 2010). This fact allows them to
be metabolized by the intestinal microbiota (Figure 3). Colonic
bacteria is composed of more than 500 species and a bacterial
load of approximately 1011 to 1012 bacteria/g of colonic contents
(O’Hara and Shanahan, 2006). It is known that microbiota has
the ability to metabolize polyphenols to simpler metabolites and
this conversion is often essential for absorption and modulates the
biological activities of these compounds which are more benefi-
cial than the original forms found in food (Clifford, 2004; Tzounis
et al., 2008; Selma et al., 2009; Monagas et al., 2010; Neilson and
Ferruzzi, 2011).

Cocoa polyphenols are extensively degraded in the colon by
a broad range of reactions able to generate various phenolic
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FIGURE 3 | Metabolic route of consumed cocoa flavonoids, and

effect on intestinal microbiota (based onTzounis et al., 2008, 2011;

Monagas et al., 2010; Massot-Cladera et al., 2012). Flavanol monomers
and dimers are absorbed in the small intestine, while procyanidins reach
the colon and are metabolized by the intestinal microbiota into various
phenolic acids that are later absorbed. Absorbed compounds are

metabolized in the liver and subsequently eliminated in urine. A portion
of microbial metabolites is eliminated in the feces. Cocoa flavonoids
decrease the proportion of Bacteroides, Staphylococcus genus, and
C. histolyticum subgroup whereas they enhance the growth of
Lactobacillus spp. and Bifidobacterium spp., and Eubacterium rectale–
C. coccoides.

acids, mainly including phenylpropionic, phenylacetic, and ben-
zoic acid derivates (Déprez et al., 2000; Kohri et al., 2003; Aura,
2008; Tzounis et al., 2008; Fogliano et al., 2011). Later, colon bac-
terial metabolites are absorbed into the bloodstream, providing
another source of potentially bioactive compounds (Rios et al.,
2003). Once absorbed, the microbial metabolites from flavanols
are mainly metabolized in the liver by phase-II enzymes as hep-
atic conjugated derivatives that are subsequently eliminated in
urine (Neilson and Ferruzzi, 2011; Figure 3). In particular, the
presence of 5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactone and 5-
(3′,4′-dihydroxyphenyl)-γ-valerolactone in urine is considered to
be a potential biomarker of flavan-3-ols consumption in humans
after cocoa products intake (Urpi-Sarda et al., 2009). At the same
time, a portion of microbial metabolites (non-conjugated micro-
bial metabolites) is eliminated in the feces. The excretion of
microbial metabolites varies markedly between subjects and, for
some individuals, it may also vary with the substrate (Monagas
et al., 2010).

Regarding the intestinal bacteria with the ability to catabolize
flavanols, a limited number of bacterial species have been identi-
fied as being involved in the polyphenols catabolism. Interestingly,
the majority of the bacteria characterized belong to the Clostridia
group, which is a large component of the gut microbiota (Wang
et al., 2001; Tzounis et al., 2008).

COCOA INFLUENCE ON GUT MICROBIOTA COMPOSITION
It is known that unabsorbed dietary phenolics and their metabo-
lites can exert significant effects on the intestinal environment by
modulation of the microbiota (Lee et al., 2006b). Although there
is limited information concerning the ability of (+)-catechin and
(−)-epicatechin, the main monomers present in cocoa, to pro-
mote or inhibit the growth of selected intestinal bacteria, there are
some in vitro, preclinical and clinical studies regarding this subject
(Tzounis et al., 2008, 2011; Massot-Cladera et al., 2012).

In vitro studies have shown the antimicrobial properties of some
polyphenols (Puupponen-Pimiä et al., 2005; Lee et al., 2006b). To
date, Tzounis et al. (2008) showed that (+)-catechin induced an
inhibitory effect in the growth of the Clostridium histolyticum
group using the batch culture approach, at the same time that
both (+)-catechin and (−)-epicatechin enhanced the growth rate
of the beneficial bacteria group, Eubacterium rectale–C. coccoides.
Furthermore, there were increases in both Lactobacillus spp. and
Bifidobacterium spp. genus following (+)-catechin exposure, as
well as a small but significant increase in the growth of E. coli after
(+)-catechin incubation (Tzounis et al., 2008; Figure 3).

The effects of cocoa polyphenols observed in animal models are
partially in line with the above results. Young rats receiving a 10%
cocoa intake for 6 weeks showed a significant decrease in the pro-
portion of Bacteroides, Staphylococcus genus, and C. histolyticum
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subgroup (Massot-Cladera et al., 2012). The effect of this defatted
cocoa powder on microbiota was also observed in rats fed for 4
weeks with diets based on cocoa polyphenols-enriched powders
(Massot-Cladera et al., 2013).

With regard to human studies, evidence of the effects of
cocoa or cocoa products intake on microbiota composition is
scarce. A human intervention study evaluated the high-cocoa
flavanol consumption effect on microbiota composition from
healthy volunteers (Tzounis et al., 2011). The results showed that
a 4 weeks daily ingestion of a high-cocoa flavanol beverage con-
taining 494 mg flavanols increased the growth of Lactobacillus
spp., and Bifidobacterium spp. in comparison with a control
low-cocoa flavanol drink that contained only 29 mg flavanols
(Tzounis et al., 2011). Although these results were not found
in the preclinical interventions, it prompted the redefinition
of cocoa polyphenols as prebiotics. It is important to men-
tion that divergence between the animal and human data could
be ascribed to several factors, such as the cocoa composition
(fiber and flavonoids pattern), dose, and differential composi-
tion and distribution ecosystem (rats vs human gut). Overall, all
these findings strengthen the evidence that cocoa polyphenols can
have significant effects on the growth of select gut microbiota
(Figure 3).

CONCLUDING REMARKS
A cocoa diet has been shown to influence the immune system:
in the innate inflammatory response as well as in the adaptive
immunity, and in both systemic and intestinal compartments.

From the results concerning the effects of cocoa on inflam-
matory reaction, it could be concluded that although cocoa
demonstrates clear anti-inflammatory properties in vitro, when
tested in vivo results are more controversial. To date, it can be
concluded that if inflammation is mild and cocoa has a high
polyphenol content, it could help in the resolution of inflamma-
tory response, and, in any case, due to its antioxidant properties,
cocoa can be a complementary anti-inflammatory therapy.

Concerning lymphocytes and adaptive immune response,
cocoa diet in young rats influences lymphoid tissue composi-
tion mainly by decreasing the proportion of Th cells by unknown
mechanisms. In addition, the influence of cocoa on the first phases
of T lymphocyte activation is not clear. In vitro studies show the
downregulatory effect of cocoa on IL-2 production, but is not
confirmed in vivo. When studying effector Th cells, it seems clear
that in rat, a diet containing 10% cocoa produces a downregu-
lation of Th2 response. In addition, it is worth noting the effect
of this diet in attenuating the synthesis of antibodies. The down-
regulatory effects of cocoa could then be applied to counteract
immune-mediated diseases in which antibodies play a pathogenic
role. In autoimmune inflammatory diseases, a cocoa diet does
not potently reduce inflammation but counteracts concomitant
oxidative stress. More interestingly, a cocoa diet in rats reduces IgE
synthesis which could be useful in treating allergic diseases.

In addition to these effects, a cocoa diet also influences the
functionality of gut-associated lymphoid tissue. Here, similarly to
the results found in the systemic compartment, a cocoa diet in rats
downregulates Th2 responses and also the intestinal immunoglob-
ulin production. It has been demonstrated that a cocoa diet influ-
ences some intercellular reactions and the gut-homing process of
activated cells, resulting, therefore, in an attenuation in the synthe-
sis of S-IgA into the intestinal lumen. Moreover, a cocoa diet is able
to modify intestinal microbiota and also the cross-talk between
these bacteria and body cells.

All these results allow us to suggest that a cocoa diet could be
beneficial in certain immune processes. Further research may elu-
cidate the cocoa compounds involved in such an effect and also
the possible medical approaches to these repercussions.
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