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INTRODUCTION
Opioids can produce potent analgesia
by activating opioid receptors out-
side the central nervous system, thus
avoiding centrally mediated unwanted
effects. Peripheral opioid receptors are
expressed in peripheral sensory (dor-
sal root ganglion) neurons and can
interact with exogenous or endogenous
opioid ligands both in animals and in
humans. Inflammation of peripheral tis-
sue leads to upregulation of such opioid
receptors and to local production of
endogenous opioid peptides in immune
cells. This article will summarize recent
mechanistic, preclinical, and clinical
findings.

OPIOID RECEPTOR SIGNALING IN
PERIPHERAL SENSORY NEURONS
Co-localization and electrophysiological
studies have confirmed the presence of
opioid receptors on C- and A-fibers, on
dorsal root ganglion neurons expressing
transient receptor potential vanilloid
subtype-1 (TRPV-1) and G-protein-
coupled inwardly rectifying K+ (GIRK)
channels, and on fibers expressing isolectin
B4, substance P, and/or calcitonin-gene-
related peptide, consistent with the
phenotype of nociceptors. The activation
of such opioid receptors results in inhibi-
tion of high-voltage activated Ca++- and
enhancement of GIRK-currents. These
effects are mediated by G-proteins (Gi

and/or Go). In addition, opioids—via
inhibition of adenylyl cyclase—suppress
tetrodotoxin-resistant Na+-, TRPV1- and
other non-selective cation currents stim-
ulated by inflammatory agents, which
may account for the notable efficacy
of peripheral opioids in inflammatory
and neuropathic pain. Consistent with

their effects on ion channels, opioids
attenuate the excitability of peripheral
nociceptor terminals, the propagation of
action potentials, the release of excitatory
proinflammatory neuropeptides (sub-
stance P, calcitonin gene-related peptide)
from peripheral sensory nerve endings,
and vasodilatation evoked by stimula-
tion of C-fibers. These mechanisms result
in analgesia and/or anti-inflammatory
actions (Endres-Becker et al., 2007; Vetter
et al., 2008; Stein and Machelska, 2011;
Moshourab and Stein, 2012; Nockemann
et al., 2013; Spahn et al., 2013; Stein and
Küchler, 2013).

PERIPHERAL OPIOID RECEPTORS AND
TISSUE INJURY
Peripheral opioid analgesic effects are par-
ticularly prominent in inflamed tissue
(Kalso et al., 2002; Stein et al., 2003;
Vadivelu et al., 2011). Under such con-
ditions the synthesis and expression of
opioid receptors in dorsal root ganglia is
elevated. Subsequently, the axonal trans-
port and membrane-directed trafficking
of opioid receptors increases, leading to
their upregulation on peripheral neu-
ron terminals (Patwardhan et al., 2005;
Cayla et al., 2012; Pettinger et al., 2013).
These events are dependent on neuronal
electrical activity, cytokines, and nerve
growth factor from the damaged tissue. In
mechanical nerve injury leading to neuro-
pathic pain, opioid receptors accumulate
proximal and distal to the lesion, indi-
cating anterograde and retrograde trans-
port (Labuz et al., 2009). Inflammatory
milieu (low pH, prostanoids, bradykinin)
can augment opioid receptor function
e.g., by more efficient G-protein cou-
pling and inhibition of elevated neu-
ronal cyclic adenosine monophosphate

production (Stein and Machelska, 2011;
Stein, 2013). Inflammation also leads
to sprouting of sensory nerve terminals
and disruption of the perineurial bar-
rier, thus facilitating the access of opi-
oid agonists to their receptors (Rittner
et al., 2012). Endogenous opioid ligands
derived from inflammatory cells stimu-
late recycling of opioid receptors to the
membrane of sensory neurons, which
can prevent the development of toler-
ance to peripherally active opioid ago-
nists (Zöllner et al., 2008). Consistently,
clinical studies have indicated a lack of
cross-tolerance between peripheral exoge-
nous and endogenous opioids in synovial
inflammation. All of these mechanisms
can contribute to enhanced antinocicep-
tive efficacy of opioid agonists in injured
tissue (Stein and Machelska, 2011).

ENDOGENOUS LIGANDS OF
PERIPHERAL OPIOID RECEPTORS
Concurrent with the development of
inflammation, opioid peptide-producing
immune cells are recruited to the site
of injury. The most thoroughly char-
acterized peptides are β-endorphin and
enkephalins deriving from the respec-
tive precursors proopiomelanocortin
(POMC) and proenkephalin. Transcripts
and peptides derived from POMC and
proenkephalin, as well as the prohor-
mone convertases PC1/3 and PC2,
necessary for their posttranslational pro-
cessing, were detected in such cells. The
expression of immune-derived opioids
is stimulated by viruses, endotoxins,
cytokines, corticotropin releasing hor-
mone (CRH) and adrenergic agonists.
In painful tissue inflammation and neu-
ropathy, POMC mRNA, β-endorphin,
met-enkephalin, and dynorphin are
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detectable in circulating cells and lymph
nodes, and are upregulated in resident
lymphocytes, monocytes/macrophages,
and granulocytes. Circulating opioid-
containing leukocytes migrate to injured
tissue attracted by adhesion molecules,
chemokines, and neurokinins. In inflamed
tissue, opioid-containing leukocytes, vas-
cular P-selectin, ICAM-1, and PECAM-1
are simultaneously upregulated. Blocking
chemokines, selectins, or ICAM-1 reduces
the extravasation of opioid-containing
cells and increases inflammatory and
neuropathic pain. Consistently, immuno-
suppression can exacerbate pain (Labuz
et al., 2009; Stein and Machelska, 2011;
Busch-Dienstfertig et al., 2012).

Stimuli such as environmental stress,
noradrenaline, CRH, interleukin-1β,
chemokines, or mycobacteria can elicit
opioid peptide release from immune cells
via specific receptors and the regulated
secretory pathway. Depending on the cell
type and agent, intracellular Ca++ release
from endoplasmic reticulum or extracellu-
lar Ca++ is required. In vivo, the secreted
opioid peptides bind to opioid receptors
on sensory neurons and elicit analgesia
in injured tissue and neuropathy (Labuz
et al., 2009; Rittner et al., 2009). Not only
stimulated but also tonic release of opioids
from immune cells decreases pain in ani-
mals (Rittner et al., 2009) and in humans
(Stein et al., 1993). Thus, the develop-
ment of inflammatory and neuropathic
pain is counteracted by immune cells
producing and secreting opioid peptides.
Gene therapeutic approaches are aiming to
increase the production of opioid peptides
and receptors in inflammatory cells and
peripheral sensory neurons, respectively
(Stein and Machelska, 2011; Raja, 2012).
Preventing the extracellular degradation of
endogenous opioid peptides by peptidase
inhibitors as well as nanocarrier-directed
transport of opioids have been shown
to diminish inflammatory pain (Roques
et al., 2012; Schreiter et al., 2012; Hua and
Cabot, 2013).

PRECLINICAL STUDIES ON
PERIPHERAL OPIOID ANALGESICS
This basic research has stimulated the
development of novel opioid ligands act-
ing exclusively in the periphery without
central side-effects. A common approach
is the use of hydrophilic compounds

with minimal capability to cross the
blood-brain-barrier. Among the first
compounds were the mu-agonist lop-
eramide (known as an antidiarrheal
drug) and the kappa-agonist asimadoline.
Peripheral restriction was also achieved
with glucuronidation, arylacetamide
(ADL 10-0101), morphinan-based (TRK-
820, HS-731), triazaspiro (DiPOA) and
peptidic compounds (DALDA, FE200665,
CR845). While earlier attempts to demon-
strate peripheral opioid analgesia in
normal tissue failed, they were much more
successful in models of pathological pain
(Stein, 1993). For example, in subcuta-
neous inflammation the local injection of
low, systemically inactive doses of mu-,
delta-, and kappa-agonists produces dose-
dependent and opioid receptor-specific
antinociception. Such effects were also
shown in models of nerve damage, vis-
ceral, thermal, cancer and bone pain (Stein
and Machelska, 2011).

EFFECTS ON INFLAMMATION
Inflammation contributes to many diverse
disorders such as trauma, arthritis,
neuropathy, fibromyalgia, endometrio-
sis, diabetes, cancer, and chronic pain.
Therapeutic inhibition of inflammation
is indicated when it becomes dysregu-
lated, chronic, recurrent or inappropriate.
However, standard treatments such as
steroids, non-steroidal anti-inflammatory
drugs (NSAIDs), and disease-modifying
drugs have severe side effects (ulcers,
bleeding, myocardial infarction, stroke,
infections) (Trelle et al., 2011) and bio-
logical anti-inflammatory treatments such
as inhibitors of tumor necrosis factor-
α or of Janus kinases can only be used
in a limited number of patients due to
their prohibitive cost, parenteral formu-
lation and risk for infection and tumor
induction. A large number of in vitro
and animal investigations have produced
evidence that peripherally active opioids
can reduce release of proinflammatory
neuropeptides, cytokines, plasma extrava-
sation, vasodilation, immune mediators,
expression of adhesion molecules and
tissue destruction (Stein and Küchler,
2012). In contrast to currently avail-
able anti-inflammatory agents, opioids
have no demonstrated organ toxicity,
making them interesting candidates for
drug development. However, there is a

lack of clinical studies in this area at
present.

CLINICAL STUDIES ON PERIPHERAL
OPIOID ANALGESICS
The most extensively examined clinical
application is the intraarticular injection
of morphine. Both in human and vet-
erinary medicine, numerous controlled
clinical studies have demonstrated dose-
dependent and peripherally mediated
reduction of pain and/or supplemental
analgesic consumption without signif-
icant side effects (Kalso et al., 2002;
Stein, 2013). Intraarticular morphine
is effective in acute (postoperative) and
chronic (arthritic) pain, its effect is simi-
lar to intraarticular local anesthetics and
steroids, and it is long lasting, possibly
due to anti-inflammatory activity. Locally
applied opioids were also effective in den-
tal pain, skin ulcers, corneal abrasions
and visceral pain (Sawynok, 2003; Farley,
2011; Vadivelu et al., 2011). Some stud-
ies found no peripheral effects of opioids,
e.g., after injection into the non-inflamed
environment along nerve trunks (Picard
et al., 1997). The latter observation sug-
gests that intraaxonal opioid receptors are
“in transit,” and not available as functional
receptors at the membrane. Peripherally
restricted opioids are under investigation
for human use (morphine-6-glucuronide,
CR845), and were shown to reduce post-
operative and visceral pain with similar
efficacy as morphine but limited central
side-effects (Dahan et al., 2008; Binning
et al., 2011; Stein and Machelska, 2011).

SUMMARY
Opioids can reduce pain and inflamma-
tion by activating opioid receptors outside
the central nervous system. Inflammation
of peripheral tissue leads to upregula-
tion of opioid receptors on peripheral
sensory neurons and to local produc-
tion of endogenous opioid peptides in
immune cells. Future aims in drug devel-
opment include the design of peripher-
ally restricted opioid agonists, selective
targeting of opioids to sites of painful
injury and the augmentation of periph-
eral ligand and receptor synthesis, e.g.,
by gene therapy. The ultimate goal is to
avoid detrimental side effects of currently
available opioid and nonopioid drugs
such as apnoea, cognitive impairment,
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addiction, gastrointestinal bleeding, and
thromboembolic complications.
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