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Glioblastoma multiforme (GBM), a type of malignant glioma, is the most common form
of brain cancer found in adults. The current standard of care for GBM involves adjuvant
temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still
suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic
agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of
an intracranial tumor after systemic administration. Thus, new delivery strategies must be
developed to allow for adequate intratumoral accumulation of such therapeutic agents.
Polymeric micelles offer the potential to improve delivery to brain tumors as they have
demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and
proteins in various preclinical GBM studies. In addition to this, targeting moieties and
trigger-dependent release mechanisms incorporated into the design of these particles can
promote more specific delivery of a therapeutic agent to a tumor site. However, despite
these advantages, there are currently no micelle formulations targeting brain cancer in
clinical trials. Here, we highlight key aspects of the design of polymeric micelles as
therapeutic delivery systems with a review of their clinical applications in several non-brain
tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM,
the major barriers preventing their clinical implementation in this disease context, as well
as current approaches to overcome these limitations.
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INTRODUCTION
Malignant gliomas are the most common primary brain tumors
found in adult patients and are comprised of astrocytomas, oligo-
dendrogliomas, and ependymomas (Maher et al., 2001). Of these
tumor types, the most frequent and deadly is glioblastoma multi-
forme (GBM), a grade IV astrocytoma. As demonstrated in Stupp
et al. (2005), patients with GBM exhibit a median survival of
14.6 months and a 5 years survival rate of less than 10% (Stupp
et al., 2009) after undergoing radiotherapy with adjuvant temo-
zolomide. Not much has changed in the standard-of-care for these
patients over the last decade. Nanoparticle agents such a lipo-
somal doxorubicin, anti-angiogenic agents such as bevacizumab,
oncolytic viruses, and several other agents have been employed
with modest clinical benefit (Hau et al., 2004; Friedman et al., 2009;
Westphal et al., 2013; Zustovich et al., 2013). Novel delivery meth-
ods such as convection-enhanced delivery (CED) have also been
applied to patients to improve distribution of an intratumorally
administered drug (Kunwar et al., 2010; White et al., 2012). Yet, a
“cure” for this disease is still non-existent, demonstrating the need
to improve our understanding of the underlying disease process
in GBM as well as the need to explore new avenues of therapeutic
delivery.

Nanomedicines demonstrate great promise for the delivery of
chemotherapy agents and other small biomolecules. These minute
particles possess a variety of functions depending on the system
in question, offering longer drug circulation times, greater deliv-
ery specificity, and greater penetration into solid tumors (Tiwari

and Amiji, 2006; Fang et al., 2011). More and more nanoparticle
systems are being brought to cancer patients in a clinical setting.
For example, liposomal formulations of doxorubicin (e.g., Doxil®,
Caelyx®) are now currently used for patients with a variety of can-
cers (Northfelt et al., 1998; Gordon et al., 2004; O’Brien et al., 2004;
Orlowski et al., 2007) and are even now being tested for efficacy
in patients with GBM and brain metastases from solid tumors
(Caraglia et al., 2006; Beier et al., 2009). Iron oxide particles too
are starting to be used for thermotherapy and imaging purposes
in GBM patients (Enochs et al., 1999; Maier-Hauff et al., 2010)

Polymeric micelles are another group of nanoparticles that are
making their way into the clinical arena (Gong et al., 2012). These
amphiphilic nanoparticles have demonstrated the ability to deliver
several different types of therapeutic agents, including chemother-
apy drugs, proteins, siRNA, and DNA to tumor cells (Yoo et al.,
2002; Oba et al., 2007; Heffernan and Murthy, 2009; Tong et al.,
2010; Zhan et al., 2010, 2012a,b; Gao et al., 2012; Yin et al., 2013;
Zheng et al., 2013). Not only are micelles highly biocompatible,
they are also very flexible in terms of design modification. This
can allow for the incorporation of a range of drug release mech-
anisms and targeting moieties into their structure. There are a
number of micelle formulations that are currently being used to
target several different cancer types in a clinical setting. However,
to date, none of these formulations tested aim to treat patients
with GBM or any other brain tumors for that matter. As these
platforms have shown very promising results for a list of other
solid tumors, it is important to examine what the current barriers
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are to transforming these particles into delivery systems that may
one day benefit GBM patients.

In this review, we first examine the composition and character-
istics of polymeric micelles as well as common methods of drug
incorporation. We next detail micelle formulations used in clini-
cal trials involving non-brain tumor cancers as well as the major
limitations preventing their application as therapeutics for GBM.
Finally, we discuss recent progress in the field of micellar design as
well as methods for nanoparticle delivery that may help overcome
some of these limitations and potentially allow for the targeting of
high-grade malignant glioma.

DESIGN OF POLYMERIC MICELLES
COMPOSITION AND CHARACTERISTICS
Polymeric micelles are prepared from spontaneously self-
assembling amphiphilic block copolymers in aqueous medium. In
general, these block copolymers consist of either two (hydrophilic-
hydrophobic) or three (hydrophilic-hydrophobic-hydrophilic)
segments. Assembly of the hydrophobic components of these
copolymers creates a hydrophobic core that is separated from
the aqueous environment by hydrophilic segments (Chen and
Jiang, 2005). Hydrophobic interactions act as the principle driv-
ing force for micelle formation, but other intermolecular forces
including hydrogen bonding, electrostatic interaction, and metal
complexation have also been applied to increase stability (Harada
and Kataoka, 1995; Kabanov et al., 1996, Kataoka et al., 1998;
Nishiyama et al., 2003). Ionic copolymers may also be used,
allowing for the formation of electrostatically stabilized polyion
complex micelles (Harada and Kataoka, 1998, 2003; Kataoka
et al.,1999) and polymer-metal complex micelles (Nishiyama et al.,
2001, 2003).

Polyesters, poly(amino acids), and polyethers are commonly
used as hydrophobic or ionic segments (Matsumura, 2008; Bae
and Kataoka, 2009; Osada et al., 2009; Zhang et al., 2010; Gao
et al., 2012; Tao et al., 2012). An advantage of polyesters, includ-
ing poly(D,L-lactide) (PLA), and poly(glycolic acid) (PGA), and
poly(ε-caprolactone) (PCL), is that they are FDA approved for
biomedical applications owing to their biocompatibility and
biodegradability (Gaucher et al., 2005). Poly(amino acids) such as
poly(α,β-aspartic acid) (PAsp) and poly(L-lysine) (PLys) have also
been extensively used to form the core of micelles via hydrophobic
and electrostatic interactions (Lavasanifar et al., 2002; Matsumura
et al., 2004). The variety of functional groups on poly(amino acids)
facilitate numerous possibilities for drug-conjugation (Kataoka
et al., 2001) as well as DNA incorporation into the core of micelles
(Katayose and Kataoka, 1997).

The outer coating polymers are also essential components to
stabilize the micellar structure in aqueous solution. Of these,
polyethylene glycol (PEG) is most commonly used for the shell
formation (Bae and Kataoka, 2009; Osada et al., 2009; Zhan
et al., 2010; Shen et al., 2011; Gao et al., 2012). PEG is a non-
toxic polymer with low immunogenicity that been widely used
for prolonging the circulation time of drug-delivery systems
(Verrecchia et al., 1995; Huang et al., 2012). It can prevent protein
adsorption and minimize non-specific uptake of nanoparticles by
the reticuloendothelial system in the body (Huang et al., 2012).
Alternative biocompatible hydrophilic polymers to PEG include

dextran, chitosan, and poly(ethylenimide) (PEI), which have also
been used in the formation of the hydrophilic corona (Kwon and
Kataoka, 1995; Qiu and Bae, 2007; Verma et al., 2012; Xie et al.,
2012).

Other characteristics of polymeric micelles must also be consid-
ered when designing them for appropriate clinical use. Compared
to surfactant micelles, polymeric micelles possess a lower criti-
cal micelle concentration (CMC), greater biocompatibility, and
improved stability (Miller et al., 2012). The CMC of these sys-
tems is especially important to keep in mind. Below the CMC
value, micelles begin to dissociate into monomers, decreasing the
longevity of these particles in vivo. Especially in the context of
targeting a brain tumor, these particles must remain intact for a
sufficient amount of time in order to penetrate into and fully dis-
tribute within the tumor site. The CMC of a micelle depends to
a significant extent on the copolymers used as well as conjugates
incorporated within its structure, with values ranging from 10−6

to 10−7 M (Bae and Kataoka, 2009; Huang et al., 2012).
It is also critical to consider size and charge when designing

micellar systems because the blood brain barrier (BBB) can reg-
ulate entry into the central nervous system (CNS) based on these
characteristics. The BBB is comprised of tight junctions between
endothelial cells, a number of transporters including efflux pro-
teins (e.g. P-glycoprotein), as well as surrounding astrocytes that
modulate endothelial function (Abbott and Romero, 1996). It acts
to exclude many toxic and infectious agents, yet it remains a major
barrier in the passage of chemotherapy agents into the CNS. The
size of polymeric micelles typically ranges from about 10–100 nm
depending on the composition and synthesis method (Huang
et al., 2012). Particles even larger than this have been shown to
penetrate the disrupted BBB and accumulate within tumor tis-
sue by the enhanced permeability and retention (EPR) effect (Iyer
et al., 2007). This is accomplished by diffusion of micelles out of
circulation due to a tumor’s disrupted vasculature and accumu-
lation within the tumor area due to poor drainage of interstitial
fluid (Maeda, 2001). In terms of body clearance of these particles,
micelles are large enough to prevent rapid renal clearance, which
normally limits the effectiveness of smaller drug molecules less
than 40 kDa (Greish et al., 2003).

METHODS OF THERAPEUTIC AGENT INCORPORATION
Typically, the hydrophobic core of micelles serves as the site
of therapeutic agent incorporation. As stated previously, these
therapeutic agents include chemotherapy drugs, proteins, genes,
and siRNA (Yoo et al., 2002; Oba et al., 2007; Heffernan and
Murthy, 2009; Tong et al., 2010; Zhan et al., 2010, 2012a,b; Gao
et al., 2012; Yin et al., 2013; Zheng et al., 2013) but can even
include other nanoparticles such as superparamagnetic iron oxide
(SPIO) particles (Nasongkla et al., 2006; Kessinger et al., 2011).
The method of incorporation is dependent on the desired function
and agent in question. For example, doxorubicin is incorpo-
rated non-covalently into the core of micelle in the SP1049C
formulation used in clinical trials (Danson et al., 2004) whereas
incorporation of cisplatin into NC-6004, another micelle formu-
lation used in clinical trials, relies on the substation of Pt(II)
atom from chloride to carboxylate in the side chain of poly(Glu).
Nasongkla et al. (2006) was able to incorporate doxorubicin and
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SPIO nanoparticles into the core of micelles, both via non-
covalent interactions. Genes can be incorporated into the core of
micelles via electrostatic interaction with positively charge copoly-
mer components such as PEI (Pathak et al., 2009; Zhan et al.,
2012b). Micelles have even been coated with gold nanoparti-
cles via shell-crosslinking, which could allow for the attachment
of therapeutic or targeting agents to this surface of the parti-
cle in addition to loading within their core (Bae et al., 2006).
Stimulus-sensitive linker molecules can also play a role in ther-
apeutic agent incorporation but will be discussed later on in this
review.

MICELLAR FORMULATIONS IN CLINICAL TRIALS
A number of clinical trials over the last decade have used polymeric
micelles as carriers of potent chemotherapy agents to target many
types of solid tumors. In the following section, we summarize the
results of these clinical studies with an emphasis on the efficacy of
various micellar formulations.

GENEXOL-PM
Genexol-PM is a micellar formulation composed of monomethoxy-
PEG-block-poly(D,L-lactide) copolymer with paclitaxel loaded
into its hydrophobic core (Gong et al., 2012). A major advan-
tage of this formulation is that it does not contain Cremophor
EL, a toxic surfactant normally used to solubilize paclitaxel in cir-
culation in the clinical formulation of Taxol. There have been a
number of Phase I and II clinical studies examining the use of
Genexol-PM in solid tumor treatment. In a phase I clinical study,
Kim et al. (2004) used Genexol-PM to treat patients with lung,
colorectal, renal cell, breast, ovarian, and esophageal cancers. Out
of 21 patients, 3 (14.3%) achieved partial responses and 6 (28.6%)
maintained stable disease. Dose-limiting toxicities included neu-
tropenia, sensory neuropathy, and myalgia (Kim et al., 2004). Lim
et al. (2010) utilized a different dosing regimen (weekly delivery
instead of once every 3 weeks) of Genexol-PM to treat patients
with breast, head and neck, lung, and nasopharyngeal cancer.
Out of 21 patients, 5 (23.8%) achieved partial responses and 9
(42.9%) maintained stable disease (Lim et al., 2010). A phase II
clinical trial examining the efficacy of Genexol-PM in patients with
metastatic breast cancer demonstrated that out of 41 patients, 5
(12.2%) achieved complete responses, 19 (46.3%) achieved par-
tial responses, and 13 (31.7%) maintained stable disease (Lee et al.,
2008). The median overall survival in this study was not reached,
even with a median follow-up time of 17 months. It would have
been interesting to see this formulation’s effect on brain metasta-
sis in this disease context; however, one of the exclusion criteria
in the study was CNS metastases (Lee et al., 2008). In another
phase II clinical study, Kim et al. (2007) used a combination of
Genexol-PM and cisplatin to treat advanced non-small cell lung
cancer. Out of 69 patients, 26 (37.7%) achieved a partial response
and 20 (29.0%) maintained stable disease. The study reported
a median overall survival period of 21.7 months. Because this
formulation lacks Cremophor EL, the authors pointed out that
higher doses of paclitaxel could be achieved without an increase
in toxicity (Kim et al., 2007). Genexol-PM was also tested in a
phase II clinical trial against advanced pancreatic cancer (Saif et al.,
2010). Median overall survival was 6.5 months for patients treated

with a dose of 300 or 350 mg/m2. For the 45 patients treated
with this dose, 1 (2.2%) achieved a complete response, 2 (4.4%)
achieved a partial response, and 24 (53.3%) maintained stable
disease.

NK105
Genexol-PM is not the only clinical micelle formulation con-
taining paclitaxel. NK105 is a core-shell micelle composed of
PEG and poly(aspartic acid) modified with 4-phenyl-1-butanol
to increase its hydrophobicity (Gong et al., 2012). In a preclini-
cal study, Hamaguchi et al. (2005) investigated treatment efficacy
in a colorectal cancer xenograft mouse model. NK105 exerted
superior anti-tumor activity as compared to free paclitaxel in
nude mice transplanted with HT-29 colon cancer cells, and a 25-
fold higher tumor area under the curve (AUC) for NK105 was
observed compared to free paclitaxel (Hamaguchi et al., 2005).
In a phase I clinical study, Hamaguchi et al. (2007) looked at
treatment with NK105 in pancreatic, bile duct, and colon can-
cer. Out of 19 patients, 6 (31.6%) patients were found to have
stable disease, and a partial response was seen in 1 patient with
metastatic pancreatic cancer and 1 patient with metastatic stom-
ach cancer (10.5% in total). AUC and total clearance rate of NK105
at 150 mg/m2 were ∼32-fold larger and 72-fold lower, respec-
tively, than for Genexol-PM at a dose of 300 mg/m2, suggesting
NK105 is more stable in circulation (Hamaguchi et al., 2007).
NK105 was also used to treat patients with advanced or recur-
rent gastric cancer in a phase II clinical trial (Kato et al., 2012).
Out of 56 patients evaluable for efficacy, 2 (3.6%) achieved com-
plete responses, 12 (21.4%) achieved partial responses, and 17
(30.4%) maintained stable disease. Median overall survival was
14.4 months. A phase III clinical trial using NK105 to combat
breast cancer was begun in July 2012, but no updates have been
presented thus far (NCT01644890).

NC-6004 AND NC-4016
Besides paclitaxel, other drugs have also been incorporated into
micelles for clinical purposes. NC-6004 (NanoplatinTM) is a poly-
meric micelle comprised of PEG and poly(glutamic acid) with
incorporated cisplatin, which is normally cleared rapidly via renal
excretion after systemic administration, leading to nephrotoxicity
(Gong et al., 2012). NC-6004 led to significant anti-tumor effects
in a mouse model of colon adenocarcinoma 26, human gastric
cancer (MKN-45) bearing mice, and in HT29 oxaliplatin-resistant
bearing mice (Nishiyama et al., 2003; Uchino et al., 2005; Alami
et al., 2006). In a phase I clinical trial, NC-6004 was used in the
treatment of several solid tumors including lung, colon, hepatic,
pancreatic, renal, melanoma, and esophageal cancers (Plummer
et al., 2011). Out of 17 patients, 7 (41.2%) achieved stable disease.
Renal impairment was still observed at high doses of the NC-6004,
but in general, toxicities were less severe and less frequent when
compared with cisplatin.

An additional micelle platform for the delivery of a platinum-
based compound is NC-4016, a formulation consisting of
PEG and a coordinate complex of poly amino acid and 1,2-
diaminocyclohexane platinum (II) (Gong et al., 2012). A phase
I clinical trial was started in March 2009 (Gong et al., 2012), but
no updates have been published as of yet.
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SP1049C AND NK911
Doxorubicin has also been encapsulated into micelles for
use in patients with solid tumors. SP1049C, a polymeric
micelle consisting of poly(ethylene oxide)-poly(propylene oxide)-
poly(ethylene oxide) block copolymer has been developed for this
purpose (Gong et al., 2012). In a phase I clinical trial, SP1049C
was used in the treatment of several solid tumors including col-
orectal, esophageal, lung, ovarian, kidney, and hepatic cancers
in addition to soft-tissue sarcoma, mesothelioma, neuroblastoma,
cholangiocarcinoma, and Ewing’s sarcoma (Danson et al., 2004).
About 21 patients were evaluable for response, but no patients
demonstrated complete or partial responses; 8 patients (31%) had
stable disease. A phase II clinical study of SP1049C was conducted
in patients with advanced adenocarcinoma of the esophagus and
gastroesophageal junction (Valle et al., 2011). Out of 19 patients
evaluable for response, 9 (47.4%) had partial responses and 8
(42.1%) had minor responses or stable disease. Median over-
all survival was 10 months, and neutropenia was found to be
the principal toxicity of the compound. Another micelle for-
mulation encapsulating doxorubicin is NK911, which consists
of PEG-poly(Asp) block copolymers conjugated to Doxorubicin
(Gong et al., 2012). In a phase I clinical study, NK911 was used
to treat several other solid tumors including pancreatic, col-
orectal, esophageal, gall bladder, and stomach cancer as well as
leiomyosarcoma (Matsumura et al., 2004). Out of 23 patients, 8
(34.7%) exhibited stable disease and 1 (4.3%) demonstrated a
partial response. As with SP1049C, neutropenia was the primary
hematologic toxicity.

NC-6300
Another micelle system for clinical use may be just on the hori-
zon. Takahashi et al. (2013) reported the use of NC-6300, an
epirubicin-incorporated micelle, in mice bearing human hepato-
cellular carcinoma xenograft tumors. At doses of 10 and 15 mg/kg,
NC-6300 led to significant survival improvements when compared
to both control and epirubicin treated mice. The micellar formu-
lation also appeared to decrease cardiotoxicity normally caused by
epirubicin (Takahashi et al., 2013).

NK102
Unfortunately, these previously mentioned micelle formulations
have not been applied to patients with GBM nor has there been any
substantial preclinical testing in appropriate glioma animal mod-
els. However, NK012, a micelle composed of PEG-poly(Glu) block
copolymer with covalently bound SN-38, has shown promise in
the treatment of malignant gliomas. SN-38 is an active metabo-
lite of CPT-11 (Irinotecan), a topoisomerase I inhibitor (Hsiang
and Liu, 1988; Kawato et al., 1991; Gong et al., 2012). Kuroda et al.
(2009) compared NK012 versus CPT-11 treatment in a U87MG
xenograft mouse model. In vitro studies demonstrated that NK012
was 34 to 444-fold more potent than CPT-11 as tested in five
different human glioma cell lines. In vivo studies demonstrated
that NK012-treated (30 mg/kg/day) mice lived for a significantly
longer time period when compared to both control (p = 0.001) and
CPT-11-treated (66.7 mg/kg/day; p = 0.0014) mice (Kuroda et al.,
2009). This group further expanded upon the study by examining
the efficacy of NK012 ± bevacizumab (Kuroda et al., 2010). NK012

monotherapy (30 mg/kg/day) led to greater survival improve-
ments in mice bearing U87MG orthotopic intracranial tumors
when compared to any dosing method of CPT-11 in combination
with bevacizumab (40 or 66.7 mg/kg/day CPT-11 + 5 mg/kg/day
bevacizumab; p < 0.05). No difference was observed between
NK012 mice and those treated with NK012 and bevacizumab
(Kuroda et al., 2010). In vivo bioluminescence studies of these
experiments are displayed in Figure 1. In terms of clinical tri-
als, a phase I clinical study of NK012 for treatment of colorectal,
pancreatic, and esophageal cancers as well as small cell, carci-
noid, and non-small cell lung cancers was conducted (Hamaguchi
et al., 2010). Out of 23 patients that were evaluable for response, 2
patients (8.7%) had partial responses and 5 patients (21.7%) main-
tained stable disease. In another phase I trial, Burris et al. (2008)
reported that out of 16 evaluable patients treated with NK012, 2
(12.5%) were reported to have partial responses and 10 (62.5%)
maintained stable disease. As with the other micelle formulations
however, no micelle-drug combinations have been used in clinical
studies to target GBM or other forms of brain cancer.

MAJOR OBSTACLES TO THE IMPLEMENTATION OF
MICELLE-BASED GBM THERAPY
It is alarming that while these micelle formulations have been
successfully applied to many different types of solid tumors in
both preclinical and clinical settings, their use for the treatment of
GBM is still absent. There are, however, some significant hurdles
that may be preventing their application in the context of GBM
therapy:

(1) As these cells are located within the CNS, systemically admin-
istered therapeutic agents must cross the BBB to reach target
cancerous tissue. Despite the presence of a compromised
vasculature that may increase the intratumoral EPR effect
(Fang et al., 2011), many therapeutic agents still do not reach
significantly toxic levels within tumors.

(2) GBM tumors are heterogeneous entities with some areas
of necrotic and hypoxic tissue and other areas containing
neovascularization. Necrotic pockets, areas of fibrosis, and
hypovascularization are major causes of decreased intratu-
moral distribution of therapeutic agents while hypervascular-
ized areas encourage accumulation in surrounding tissue. An
understanding of nanoparticle distribution within a tumor is
important as certain populations of cells, such as GBM can-
cer stem cells that self-renew and maintain a tumor, may have
specific vascular niches in which they are located (Calabrese
et al., 2007; Gilbertson and Rich, 2007).

(3) There are inherent weaknesses to therapeutic delivery depend-
ing on the route of administration. Many systemically admin-
istered therapeutic agents suffer from rapid clearance from cir-
culation by the reticuloendothelial and cause non-specific tox-
icity to organs. Therefore, improvements in drug-circulation
time and specificity of targeting are important steps forward
for this route of administration. Intratumoral administration
of therapeutic agents is limited due to high interstitial pres-
sures that cause poor dissemination of molecules (Jain, 1989)
and difficulties in delivering multiple dosing regimens to a
patient.
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FIGURE 1 | Comparison of NK012 micelle formulation with bevacizumab

and CPT-11 therapy. Athymic mice were injected intracranially with
Luciferase-labeled U87MG and treated starting 8 days after tumor cell
implantation. NK012 was delivered at 30 mg/kg intravenously three times

every 4 days. CPT-11 was delivered at 67 or 40 mg/kg three times every
4 days in conjunction with bevacizumab, which was delivered at 5 mg/kg
intraperitoneally six times every 4 days. Reproduced with permission from
Kuroda et al. (2010).

(4) Although these clinical micelle formulations enhance drug
potency in many different solid tumor types, they currently
do not possess any targeting moieties that could allow for
greater CNS or brain tumor specific accumulation. Molec-
ular targeting of different receptors expressed on glioma cells

may be needed to improve the efficacy of currently available
formulations.

(5) If large quantities of administered micelles are needed to
ensure adequate intratumoral accumulation, systemic tox-
icity may inevitably be an issue due to the lack of a
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controlled-release function. Thus, it would be appropriate
to incorporate stimulus-triggered releasing mechanisms of
entrapped agents, which would enable release only within the
tumor vicinity, while minimizing non-specific release before
arrival to the tumor site.

STIMULUS-TRIGGERED RELEASE OF THERAPEUTIC AGENTS
Controlled release in the field of nanomedicine can allow for more
specific delivery of therapeutic cargos to a tumor site. This may
be especially important for systemic delivery in the context of
brain tumor treatment, where there is a desire to prevent pre-
mature drug release prior to delivery across the BBB. Here, we
differentiate between release mechanisms that rely on processes
that are intrinsic to tumor cells or the tumor microenvironment
(“internal” triggers) and release mechanisms that can be initiated
by processes external to the body (“external” triggers). A summary
of these release mechanisms is presented in Table 1.

INTERNAL TRIGGERS
The major releasing mechanisms that fall under this category
are pH-sensitive and reduction-responsive release. It is known
that the tumor microenvironment is slightly acidic with a pH
of about 6.5–7.2 (Webb et al., 2011; Du et al., 2013). In addi-
tion to the microenvironment, acidic compartments within cells
such as endosomes and lysosomes have a pH around 4.5–5.5
(Fehrenbacher and Jäättelä, 2005; Du et al., 2013). The low pH in
such compartments can be a powerful tool for enabling exten-
sive drug release, especially for particles that are taken up via
the endocytic pathway. For example, micelles composed of pH-
sensitive copolymer such as PEG-poly(L-histidine) or pH-labile
hydrazone linkers are stable during the circulation in the blood;
yet, after accumulation in the tumor, they can be dissembled
into copolymers and release encapsulated drugs (Gaucher et al.,
2005). Different pH-sensitive conjugation linkers have been devel-
oped for micelle systems including acid labile ortho esters (Tang

et al., 2011), hydrazone bonds (Bae et al., 2003; Lee et al., 2012;
Xiao et al., 2012), cis-aconityl bonds (Yoo et al., 2002), and acetal
bonds (Gillies and Frechet, 2003). Yoo et al. (2002) compared dox-
orubicin release from micelles after using either a hydrazone or
cis-aconityl bond for drug conjugation. For micelles possessing
cis-aconityl bonds, less than 10% release was observed at pH 7 by
24 h whereas at a pH of 5, roughly 50% of the drug was released.
For micelles possessing a hydrazone linkage for drug incorpora-
tion, about 30% drug release was observed by 16 days at pH 7
whereas close to 100% of doxorubicin was released at a pH of 5
(Yoo et al., 2002).

Another intrinsic release mechanism that has been investigated
involves reduction-mediated release of therapeutic agents from
disulfide-cross-linked micelles. Micelles possessing this crosslink-
ing are more stable in circulation but upon internalized into
a cell and exposure to high levels of glutathione in this envi-
ronment, the stability of the system is disrupted, facilitating
drug release (Heffernan and Murthy, 2009; Xu et al., 2009).
Abdullah Al et al. (2011) described thiolated pluronic micelles
with cores formed by disulfide bonds of functionalized Pluronic
F127, a PEO-PPO-PEO triblock copolymer. At increasing concen-
trations of the reducing agent dithiothreitol (DTT), increasing
paclitaxel release was observed. Heffernan and Murthy (2009)
developed micelles composed of PEG-PLL block copolymer that
were modified with cross-linkable dithiopyridine groups. These
micelles were used to deliver proteins such as antigen ovalbu-
min and catalase as well as CpG-DNA. The proteins mentioned
were modified with dithiopyridine moieties as well to allow
for tethering to the core of micelles (Heffernan and Murthy,
2009). Xu et al. (2009) reported the synthesis of reduction-
sensitive cross-linked micelles for triggered release of doxorubicin.
When no DTT was present, only ∼10% doxorubicin release was
observed in cross-linked micelles at 10 h. However, at 10 mM
DTT exposure, ∼75% doxorubicin release was observed by 9 h
(Xu et al., 2009).

Table 1 | Stimulus-triggered release incorporated mechanism for micelle particles.

Type Stimulus Linker/release mechanism Examples used in micelles

Internal pH Ortho ester Tang et al. (2011)

Hydrazone bond Bae et al. (2003), Lee et al. (2012), Xiao et al. (2012)

Cis-aconityl bond Yoo et al. (2002)

Acetal bond Gillies and Frechet (2003)

Reduction Disulfide bond Heffernan and Murthy (2009), Xu et al. (2009),

Abdullah Al et al. (2011)

Enzyme-mediated Cleavage by MMP-2/9 Gu et al. (2013)

External Ultrasonography Micelle structure perturbation Rapoport (2004)

Release of micelles after rupture of gas liposome Yin et al. (2013)

Temperature Disruption of interactions between

thermosensitive copolymers

Soga et al. (2005), Bae et al. (2006), Yang et al. (2007),

Prabaharan et al. (2009), Talelli et al. (2011), Shi et al. (2013)

Light Transformation of hydrophobic DNQ to hydrophilic

3-indenecarboxylic acid

Goodwin et al. (2005), Sun et al. (2012)

MMP-2/9, Matrix metalloproteinase 2/9; DNQ, 2-Diazo-1,2-naphthoquinone.
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FIGURE 2 | Activatable low molecular weight protamine (ALMWP)-

modified micelles allow for increased accumulation of paclitaxel in an

intracranial C6 glioma model in nude mice. (A–C) In vivo fluorescence
imaging taken of nude mice bearing intracranial C6 glioma tumors. Mice were
injected intravenoulsy with DiR-labeled micelles (A), LMWP-micelles (B), and
ALMWP-micelles (C). (D) Images of organs taken from mice sacrificed 24 h

after intravenous injection of the various micelle particles. (E) Accumulation of
intravenously injected compounds at the tumor site from 0.5 to 24 h after
administration. *p < 0.05, **p < 0.01, ***p < 0.001 was indicative of
significant difference between the experimental and ALMWP-NP-PTX group.
Error bars reflect the standard deviation. Reproduced with permission from
Gu et al. (2013).

Enzyme-mediated activation is also an attractive mechanism
for therapeutic activation of micelles. Gu et al. (2013) devel-
oped a different strategy for glioma targeting by designing
micelles modified with a cell penetrating peptide (low molec-
ular weight protamine, LMWP) that could be specifically acti-
vated when MMP-2 and 9 were present in the environment.
MMP-2 and MMP-9 are overexpressed by glioma cells as well
as the tumor vasculature (Forsyth et al., 1999). The positive
charges on the LMWP were masked by a polyanionic peptide
with an MMP-2/9-cleavable peptide linker sequence (PLGLAG).
This activatable LWMP (ALMWP) was conjugated to micelles,
allowing for delivery of paclitaxel. In mice bearing intracra-
nial C6 glioma tumors, ALWMP micelles carrying paclitaxel led
to significantly longer survival times when compared to Taxol
(p < 0.01) as well as LMWP-modified micelles (p < 0.05). In
vivo fluorescence imaging after micelle administration and quan-
tification of intratumor accumulation of paclitaxel is displayed in
Figure 2.

Dual-responsive micelles that can release doxorubicin upon
exposure to low pH and a reductive environment have already
been investigated (Chen et al., 2013) and may allow for even
more release specificity and increased stability of particles in
circulation. These micelles, composed of PEG-SS-poly(2,4,6-
trimethoxybenzylidene-pentaerythritol carbonate) block copoly-
mer, only allowed for ∼24.5% doxorubicin release by 21 h at pH
7.4. However, upon exposure to both 10 mM GSH and pH 5.0,
94.2% doxorubicin release could be achieved.

EXTERNAL TRIGGERS
External triggers such as ultrasonography (US), heat, and light are
alternative approaches for mediating micellar drug release (Marin
et al., 2002; Rapoport, 2004). An important advantage of external
triggers is that the drug release may be controlled locally and in a
time-dependent manner, which can improve drug uptake into tar-
get tissues while minimizing systemic toxicity. One method used to
externally mediate release is US, a non-invasive imaging technique.

Yin et al. (2013) designed ultrasound-sensitive nanobubbles for the
delivery of siRNA targeting sirtuin 2 (SIRT2), an anti-apoptotic
gene. Nanobubbles were composed of a hetero-assembly of siRNA-
loaded polymeric micelles and liposomes. Positively charged
micelles were first loaded with siRNA, which were then loaded
onto negatively charged gas-cored liposomes. Upon exposure to
low-frequency US, siRNA-loaded micelles could be released from
their electrostatic interaction with liposomes. In vivo experiments
demonstrated that mice with subcutaneous C6 glioma tumors dis-
played both smaller tumor volume and improved survival when
treated with this system in combination with low frequency US
(Yin et al., 2013).

Local heating of a tumor can be achieved by various methods
including continuous wave ultrasound (Rapoport, 2007) as well as
other hyperthermia-inducing instruments. Thus, thermosenstive
crosslinking may also increase the efficiency of drug delivery to
a particular site. Several studies have already demonstrated ther-
mosensitive micelles incorporating therapeutic agents (Soga et al.,
2005; Bae et al., 2006; Yang et al., 2007; Prabaharan et al., 2009;
Talelli et al., 2011; Shi et al., 2013). For example, Yang et al. (2007)
described micelles composed of a novel thermosensitive poly(N-
isopropylacrylamide-co-acrylamide)-b-poly(D,L-lactide) copoly-
mer which was stable up to 41◦C. Docetaxel release at 43◦C
was ∼90% by 70 h versus ∼50% release at 37◦C (Yang et al.,
2007). Micelles have even been combined with other particle types
to achieve thermosensitive volume changes that could allow for
transient release of incorporated agents (Bae et al., 2006).

Light-mediated release may also be a valuable mechanism
for drug unloading. Goodwin et al. (2005) demonstrated that
micelles with incorporated 2-diazo-1,2-naphthoquinones (DNQ)
could undergo dissociation in response to ultraviolet and infrared
light. Recently, diazonaphthoquinone-cored amphiphiles assem-
bled from Janus-type poly(amido amine) dendrimers responding
to near-infrared light were described (Sun et al., 2012). Release of
doxorubicin nearly doubled after 10 min of exposure to 808 nm
laser irradiation compared to non-irradiated particles.
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GLIOMA-SPECIFIC TARGETING MOIETIES
As mentioned previously, a major (perhaps the greatest) limitation
of systemically administered unmodified micelles is their impaired
penetration through the BBB. Although the EPR effect can allow
for some accumulation of particles at a brain tumor site, drug
concentrations delivered may still be sub-therapeutic. A solution
to this issue is to covalently attach targeting molecules onto the
surface of drug-loaded micelles to improve localization to a tumor.
A summary of the following targeting-moieties as well as others
not discussed is presented in Table 2.

Incorporation of the Arg-Gly-Asp (RGD) tri-peptide is such an
example of a glioma targeting strategy. The RGD peptide binds to
αvβ3 integrin, a receptor that is overexpressed on both tumor cells
as well as on the tumor vasculature (Bello et al., 2001), with high
affinity (Arap et al., 1998). Several studies have incorporated the
cyclic RGD peptide (cRGD) into their micellar systems to target
GBM. Zhan et al. (2012a) designed a cRGD-PEG-PEI polymeric
micelle for delivery of the gene for tumor necrosis factor-related
apoptosis-inducing ligand (pORF-hTRAIL). Using this targeting
moiety, targeted gene delivery in an intracranial U87 mouse model
could be achieved with a higher gene transfer efficiency compared
to unmodified particles. This targeted system led to prolonged

survival in these mice (23.5 vs. 19 days; p < 0.05) along with
higher TRAIL expression levels (Zhan et al., 2012a). This same
group later delivered cRGD-PEG-PEI/pORG-hTRAIL particles in
conjunction with candoxin-derived peptide-modified PEG-PLA
micelles loaded with paclitaxel to mice bearing intracranial GBM
tumors (Zhan et al., 2012b). A candoxin derivative was chosen
as it has previously been shown to target nicotinic acetylcholine
receptors expressed on the BBB (Zhan et al., 2011). Paclitaxel was
found to increase the transfection of the TRAIL gene into U87
cells, thus increasing the apoptotic effect when combining the two
agents (Zhan et al., 2012b). Jiang et al. (2013) specifically stud-
ied the penetrating depth of cRGD-modified poly(trimethylene
carbonate)-based micelles carrying paclitaxel into glioma tissue as
well as systemic particle distribution after intravenous administra-
tion in an intracranial U87MG mouse model. cRGD modification
was found to enhance micellar penetration into U87MG glioma
spheroids in culture as well as into intracranial tumors in vivo.
Furthermore, these particles led to an increase in the median
survival of U87MG glioma-bearing mice (32 days) when com-
pared to both non-modified micelles carrying paclitaxel (27 days,
p = 0.012) as well as Taxol (23 days, p < 0.001) (Jiang et al., 2013).
Xiao et al. (2012) developed cRGD modified micelles conjugated

Table 2 |Targets and targeting moieties to enhance micelle specificity toward brain tumors.

Target Target location Targeting molecule Examples of incorporation onto micelles

αvβ3 integrin Tumor vasculature (Bello et al., 2001)

Glioma cells (Bello et al., 2001)

RGD peptide (Arap et al., 1998) Nasongkla et al. (2006), Oba et al. (2007),

Hu et al. (2008), Zhan et al. (2010), Kessinger

et al. (2011), Liu et al. (2012), Xiao et al. (2012),

Zhan et al. (2012a,b), Zhang et al. (2012a),

Fibrin deposits Tumor vasculature (Simberg et al., 2007) CREKA Peptide (Simberg et al., 2007) Chung et al. (2013), Peters et al. (2009)

Tumor stroma (Bardos et al., 1996;

Simberg et al., 2007)

Aminopeptidase N Tumor vasculature (Pasqualini et al.,

2000)

NGR peptide (Ellerby et al., 1999;

Pasqualini et al., 2000)

Zhao et al. (2011)

BBB pericytes (Kunz et al., 1994)

Transferrin receptor CNS vasculature (Fishman et al., 1987) Transferrin (Fishman et al., 1987) Ren et al. (2010), Zhang et al. (2012a,b)

Lactoferrin (Liu et al., 2013) Liu et al. (2013)

Aptamer (Mu et al., 2013) Mu et al. (2013)

nAchR CNS vasculature (Kalaria et al., 1994;

MacKlin et al., 1998)

Candoxin-derived peptide (Zhan et al.,

2011)

Zhan et al. (2011, 2012b)

EGFR Glioma cells (Wong et al., 1987) Anti-EGFR Antibody (Kuo and Liang,

2011)

Kuo and Liang (2011)

EGa1 (Oliveira et al., 2010) Talelli et al. (2011)

LRP1 Glioma cells (Bu et al., 1994; Yamamoto

et al., 1997)

Angiopep-2 (Demeule et al., 2008) Shen et al. (2011)

Neurons (Herz and Bock, 2002)

Unknown Glioma cells (Bayrac et al., 2011) GMT8 aptamer (Bayrac et al., 2011;

Gao et al., 2012)

Gao et al. (2012)

RGD, Arg-Gly-Asp; NGR, Asn-Gly-Arg; BBB, Blood brain barrier; CNS, Central nervous system; EGFR, Epidermal growth factor receptor; LRP1, Low-density lipoprotein
receptor-related protein 1.
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to doxorubicin (via a pH-sensitive hydrazone bond) and 1,4,7-
triazacyclononane-N,N ′, N ′′-triacetic acid (NOTA), a macrocyclic
chelator for 64Cu labeling and PET imaging. Such a system allowed
for the quantitative measurement of in vivo particle distribution
in a front flank U87MG mouse model. About 5.7% ID/g was
observed in the tumor 4 h after injection of cyclic-RGD modi-
fied micelles, which was significantly higher than non-modified
micelles. Besides the tumor site, particle deposition was seen
highest in the liver, kidney, lungs, and intestines (Xiao et al.,
2012). Kessinger et al. (2011) also examined the targeting kinet-
ics of cRGD-modified micelles loaded with ultra-sensitive SPIO
nanoparticles. αvβ3-specific accumulation of these particles was
observed in subcutaneous U87 tumors within the first 5 min after
administration, with an accumulation rate of 0.24 min−1 when
using a one-compartment pharmacokinetic model (Kessinger
et al., 2011).

Another promising target for nanomedicines are fibrin deposits
within the tumor vasculature and stroma. Such deposits are found
to be distributed throughout primary and metastatic brain tumors
(Bardos et al., 1996) and have recently been a target of cysteine-
arginine-glutamic acid-lysine-alanine (CREKA) peptide-modified
micelles. Chung et al. (2013) demonstrated that Cy7-labeled
CREKA-micelles could accumulate to a greater extent in GL261
glioma bearing mice at 3 h and 24 h after administration when
compared to micelles without the CREKA modification. Future
work with CREKA-micelles could aim to deliver therapeutic agents
in GBM animal models to test for survival improvements.

Yet another targeting strategy for micelles is the incorpora-
tion of transferrin (Tf) into their structure (Ren et al., 2010;
Zhang et al., 2012a,b). Tf is normally transported into the CNS
via a Tf receptor-mediated pathway in endothelial cells (Fish-
man et al., 1987). Zhang et al. (2012b) synthesized Tf-modified
polyphosphoester hybrid micelles containing paclitaxel for use
in the treatment of mice bearing intracranial U87MG tumors.
Mice treated with Tf-modified micelles showed significantly pro-
longed survival (39.5 days) when compared to animals treated
with Taxol (33.6 days, p < 0.01). Biodistribution studies showed
greater %ID/g reaching brain tissue with transferrin functionaliza-
tion. However, this amount (∼2.5 × 10−4 %ID/g) was very small
in comparison with other body organs including the liver (∼15
%ID/g), spleen (∼5 %ID/g), lungs (∼4 %ID/g), and kidney (∼5
%ID/g). Thus, even with functionalization, penetration into the
CNS was still poor. The same group also developed Tf-modified
micelles loaded with cRGD-paclitaxel conjugates in an effort to
take advantage of both a BBB crossing pathway and a tumor-
specific targeting mechanism (Zhang et al., 2012a). This system
led to a significant improvement in mean survival time in mice
bearing intracranial U87MG tumors (42.8 days) when compared
to Tf-modified paclitaxel-loaded micelles (39.5 days, p < 0.05),
paclitaxel-loaded micelles (34.8 days), and Taxol (33.6 days).
Again, biodistribution studies showed improved intratumoral
accumulation of particles when both targeting components were
used (∼0.7 %ID/g at 4 h), but these levels still paled in compar-
ison to the amount reaching the liver (∼10 %ID/g), spleen (∼4
%ID/g), and lungs (∼4 %ID/g).

Besides peptide-based moieties, aptamers have also been
used to aid in the targeting of glioma cells. Gao et al. (2012)

functionalized micelles with GMT8 aptamers that were selected
by a cell-based systematic evolution of ligands by exponential
enrichment (SELEX) method (Shangguan et al., 2006) and were
shown to specifically bind to U87 cells. Aptamer-modified micelles
were able to penetrate U87 tumor spheroids more effectively and,
when loaded with docetaxel, led to improved mean survival time
(40 days), which was significantly longer than unmodified micelles
carrying docetaxel (35 days, p < 0.05) and free docetaxel (30 days,
p < 0.05; Gao et al., 2012).

DELIVERY OF THERAPEUTIC MICELLES TO BRAIN TUMORS
Micelles can be conveyed to a brain tumor site either by systemic or
local administration. Both methods present their own advantages
and drawbacks. Systemically administered drug-loaded micelles
represent a very attractive delivery method due to their rela-
tively non-invasive nature. Figure 3 illustrates how particles can
reach the CNS and a brain tumor after systemic delivery due to
both the EPR effect as well as transportation by endothelial cells
into the parenchyma. However, surface modification is essential
for this administration method as unmodified micelles may be
rapidly cleared from the bloodstream upon intravenous adminis-
tration due to antibody opsonization. These opsonized particles
are engulfed by macrophages from the reticuloendothelial system
and remain trapped in the liver or spleen, decreasing their thera-
peutic efficacy (Pardridge, 1992). To avoid such uptake, micelles
have been engineered with a reduced size (typically < 100 nm),
hydrophilic blocks such as PEG (Calvo et al., 2001; Brigger et al.,
2002), or additional coating surfactant (Gelperina et al., 2010).
This hydrophilic surface significantly decreases complement acti-
vation and macrophage recognition. Consequently, there is a
considerable increase in their vascular circulation time, with an
enhanced delivery of these particles to the tumor burden (Tiwari
and Amiji, 2006).

Although modified micelles have proven to effectively cross
the BBB, accumulate within a tumor site, and increase animal sur-
vival after intravenous administration, they still present important
shortcomings such as uneven intratumoral distribution due to the
variability in vasculature within a GBM tumor and widespread
deposition of particles in non-cancerous areas such as the liver,
spleen, and lungs. Other avenues of delivery aim to overcome these
limitations. Kanazawa et al. (2011) demonstrated the delivery of
coumarin 6 to the brain of C6 glioma bearing rats by micelles mod-
ified with Tat, a cell penetration peptide, after intranasal admin-
istration. About 1 h after intranasal administration, ∼1.6 %ID/g
was observed in either hemisphere of the brain (Kanazawa et al.,
2011). It is important to note that intranasal delivery of micelles
did not lead to preferential accumulation within the tumor side
of the brain, suggesting that the EPR effect was not connected
with this delivery method. Liu et al. (2013) developed a “nose-
to-brain” micellar delivery system for neuroprotective peptides
targeted against Alzheimer’s diseases. Lactoferrin was conjugated
onto PEG-PCL micelles. This group reported the localization of
coumarin-6 loaded lactoferrin-modified micelles to the olfactory
bulb, olfactory tract, hippocampus, cerebellum, and cerebrum
after intranasal administration. This method led to improved
memory performance in a Morris water maze experiment as
well as diminished acetylcholinesterase and improved choline
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FIGURE 3 | Overview of GBM-targeting mechanisms for micelle

nanoparticles. (A) Section of brain containing a GBM tumor and normal
brain parenchyma. (B) Close-up of tumor vasculature and surrounding
glioma cells. Here, the vasculature displays disruption of the tight
junctions between endothelial cells. Micelles can target tumors areas by
two main pathways: (1) via the EPR effect where micelles diffuse
passively through the disrupted BBB to reach glioma cells or (2) via
interaction with endothelial cells and transcytosis to the tumor

parenchyma. Examples of receptors more specific to the tumor
vasculature and glioma cells include αvβ3 integrin and aminopeptidase N.
(C) Close-up of normal vasculature with surrounding normal brain
parenchyma. Here, micelles can interact with the intact BBB, allowing for
transcytosis of particles. An example of a receptor mediating this pathway
includes the Tf receptor. While receptor-mediated endocytosis is displayed
in these images, other endothelial cell uptake mechanisms such as
adsorptive-mediated endocytosis may take place at these sites as well.

acetyltransferase activity. Although this method was not used in
a brain tumor model, it suggests that a similar set-up involv-
ing delivery of glioma toxic agents may be a viable avenue for
exploration.

In contrast to intravenous or intranasal delivery, local
administration of drug-loaded micelles can achieve much higher
concentrations of nanoparticles at the tumor site. The com-
monly observed problems of injection backflow and limited
intratumoral diffusion using this method can be overcome by
CED, a technique that uses a pressure gradient to supplement
local diffusion so as to achieve an efficient intratumoral dis-
tribution of the injected compound (Bobo et al., 1994; Allard
et al., 2009). As a result, CED is able to treat larger areas of
brain as opposed to local diffusion alone (Lesniak, 2005). Albeit
invasive, it has been successfully used in multiple clinical trials
as a therapeutic approach for glioma patients (Sampson et al.,
2003; Weaver and Laske, 2003). Preclinical data using CED for
paclitaxel-loaded nanoparticle delivery has displayed enhanced
animal survival in glioma xenograft models (Vinchon-Petit et al.,
2010). However, this approach presents some important disadvan-
tages. First, infusion of big volumes can invariably cause increased
intracranial pressure. Second, although CED leads to a more
even intratumoral spread, drug distribution is still unpredictable.
Lastly, prolonged intracranial infusion may induce local infec-
tion, since it increases the exposure of brain tissues to the external
environment.

An alternative to using CED is loading these therapeutic agents
into stem cell carriers, such as mesenchymal stem cells or neu-
ral stem cells. These vehicles possess intrinsic immunosuppressive
and tumor-tropic properties that can lead to intratumoral distri-
bution and targeted delivery to infiltrative tumor areas without
toxicity to non-neoplastic tissues (Thaci et al., 2012; Huang et al.,

2013). Although stem cells have not been used yet for the deliv-
ery of micelles specifically, they have been employed as carriers
for other nanoparticle-drug conjugate systems (Roger et al., 2010;
Li et al., 2011; Cheng et al., 2013).

CONCLUSION
Polymeric micelles offer great potential in the area of therapeutic
delivery as has already been demonstrated in the context of several
solid tumor diseases. However, the incorporation of glioma-
specific targeting moieties and controlled drug release mechanisms
needs to occur if these particles are going to be effective at targeting
GBM tumors. Alternatively, local administration methods could
be utilized, but such a method for delivery of loaded-micelles
would need to demonstrate improved efficacy over infusing a
therapeutic agent alone. With the proper allocation of time and
resources to developing micellar-based therapeutics for GBM, we
may see clinical applications of these systems for brain tumors in
the not too distant future.
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