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This review discusses the relationship of the efflux pump (EP) system of Gram-negative
bacteria to other antibiotic resistance mechanisms of the bacterium such as quorum
sensing, biofilms, two component regulons, etc.The genetic responses of a Gram-negative
to an antibiotic that render it immune to an antibiotic are also discussed. Lastly, the methods
that have been developed for the identification of bacteria that over-express their EP system
are presented in detail. Phenothiazines are well-known antipsychotic drugs with reported
activity against bacterial EPs and other ancillary antibiotic mechanisms of the organism.
Therefore these compounds will also be discussed.
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INTRODUCTION
Bacterial efflux pumps (EPs) are proteins that are localized
and imbedded in the plasma membrane of the bacterium and
whose function is to recognize noxious agents that have pene-
trated the protective cell wall of the organism and reached the
periplasm or cytoplasm, and extrude them before they reach their
intended targets (Amaral et al., 2008, 2010b, 2011b; Pagès and
Amaral, 2009; Pagès et al., 2011). Moreover, EPs also recognize
toxic compounds that are products of metabolism of the bac-
terium and hence perform excretory functions as well (Li and
Nikaido, 2009; Nikaido, 2011). In other words, EPs are trans-
porters of noxious compounds from within the bacterial cell to
the external environment. With the possible exception of excre-
tory functions, EPs utilize sources of energy for their function
inasmuch as they transport compounds against a concentration
gradient. There are two particularly distinguished types of imme-
diate sources of energy utilized by the different known families of
EPs: ATP (Marshall and Piddock, 1997; Lewis, 2001; Lorca et al.,
2007; Moitra et al., 2011) and the proton motive force (PMF;
Amaral et al., 2008, 2010b, 2011b; Li and Nikaido, 2009; Pagès and
Amaral, 2009; Nikaido, 2011; Pagès et al., 2011; Spengler et al.,
2012). For example, ABC transporters directly utilize ATP for
their energy source. These ABC transporter proteins consist of
two domains; one that is embedded in the plasma membrane
and other is on the medial side of the plasma membrane. The
domain that is on the medial side of the plasma membrane has
two sites for the binding of the substrate and two sites for the
binding and hydrolysis of ATP. Subsequent to the recognition
of the noxious agent and its binding to the ABC transporter,

ATP is hydrolyzed providing the needed energy for the confor-
mational changes of the transporter that promote the extrusion
of the noxious agent to the environment (Marshall and Piddock,
1997; Bhattacharjee et al., 2000; Lewis, 2001; Lorca et al., 2007;
Moitra et al., 2011). The precise structural changes that take place
as well as the means by which the transporter recognizes struc-
turally unrelated compounds is not yet completely understood.
Unlike the ABC transporters, members of resistance nodulation
division (RND) family obtain their energy from the PMF estab-
lished as the result of cellular metabolism. Protons that are not
used for coupling with molecular oxygen are exported to the sur-
face of the cell (Mulkidjanian et al., 2005, 2006; Mulkidjanian,
2006) where they are distributed and bound to components of the
protective lipopolysaccharide (LPS) layer and basic amino acids of
the outer cell wall of Gram-negative (Roberts, 1996) and Gram-
positive bacteria (Nikaido, 2003). The differential distribution of
hydronium ions relative to their concentration in the milieu results
in a pH at the surface of the cell that is two to three pH units
lower than that of the milieu (Mulkidjanian et al., 2005, 2006;
Mulkidjanian, 2006). These surface bound hydronium ions can
travel through porins (Achouak et al., 2001; Pagès et al., 2008)
that carry water into the periplasm and hence they contribute
to the concentration of hydronium ions at the periplasmic surface
of the plasma membrane. Because the concentration of hydro-
nium ions is greater at the periplasm than that at the plasma
membrane surface medial to the cytoplasm, an electrochemi-
cal gradient results: the PMF (Prebble, 1996). These hydronium
ions can therefore move in accordance to the established gradi-
ent from the periplasm to the cytoplasmic medial side of the
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plasma membrane via porins on the plasma membrane. Before the
movement of hydronium ions is further discussed as the source of
energy from the PMF, the structure and mechanism of the main
EP of Escherichia coli (which belongs to the RND family) need
addressing.

The main EP of E. coli is the AcrAB-TolC efflux pump (Ma
et al., 1995; Okusu et al., 1996; Viveiros et al., 2005). In situations
when this pump is deleted or deactivated, its function is replaced
by another RND efflux pump the AcrEF-TolC pump (Viveiros
et al., 2005). Both EPs consist of three distinct proteins. The trans-
porter component of the AcrAB-TolC pump, AcrB, is attached to
the plasma membrane and coded by the gene acrB. There are two
fusion proteins, AcrA, coded by the gene acrA, that flank the AcrB
transporter and are believed to assist the movement of a substrate
through the AcrB transporter by peristaltic action driving water
through the transporter (Nikaido, 2011). The third component of
the AcrAB-TolC pump is the TolC channel which is contiguous
with the AcrB transporter and provides a conduit for the extru-
sion of the substrate (Lorca et al., 2007). The TolC protein is also
part of other tri-unit EPs of the organism (Nikaido, 2011). Even
though the AcrAB-TolC efflux pump has been studied for three
decades and has been shown to extrude a large variety of unrelated
compounds with widely different structures (Nikaido, 2011), its
structure in the plasma membrane has not yet been completely
defined. Nevertheless, the means for the recognition of the sub-
strate appear to involve a pocket within the transporter and defined
by a phenylalanine residue (Eicher et al., 2012). Studies employing
fluorochromes recognized by the AcrB transporter indicate that
the binding and release of the substrate are pH dependent (Su and
Yu, 2007). At low pH the dissociation of the substrate is high and at
high pH it is very slow. Therefore, in a physiological environment
of pH 7, one would expect that the pump would be very ineffective
since the dissociation of the substrate would be slow or none at
all. How then does the pump continue to function if the release of
the substrate is limited? The function of the pump at environmen-
tal conditions (ca. pH 7) must involve conditions, which decrease
the pH of the internal cavity of the pump to which the substrate is
bound and therefore afford the extrusion of the substrate possible.
To accomplish this at physiological pH, we have postulated that the
decrease in pH within the pocket takes place by the generation of
hydronium ions from metabolism (Amaral et al., 2011b), which
pass from the cytoplasmic side of the plasma membrane through
the transporter. At lower pH (below ca. 6.5), hydronium ions can
be diverted by the PMF from the surface of the cell to the periplasm
via porins and then from the periplasm to the medial side of the
plasma membrane via another porin. Because the transporter can
“vacuum” the substrate from either the periplasmic or cytoplas-
mic medial sides of the plasma membrane, hydronium ions must
also gain access to the internal component of the pump thereby
affording the needed drop of pH for release of the substrate and
subsequent extrusion via the TolC channel. The differential pH
function of the F0–F1 ATP synthase insures that hydronium ions
are generated from the hydrolysis of ATP at high pH or are used for
the synthesis of ATP at low pH (Walker et al., 1984; Feniouk and
Junge, 2005; Padan et al., 2005). The model proposed by Figure 1
describes the mechanism for the function of the RND AcrAB-TolC
efflux pump of Gram-negatives.

FIGURE 1 | Model of the AcrAB-TolC efflux pump of a Gram-negative

bacterium. Hypothesis. At near neutral pH, hydronium ions from
hydrolysis of ATP by ATP synthase pass through the AcrB transporter,
reduce the pH to a point that causes the release of the substrate. When
the hydronium ions reach the surface of the cell they are distributed over
that surface and bind to lipopolysaccharides and basic amino acids. When
there is a need for hydronium ions for activity of the efflux pump, the pH is
lower than neutral and the hydrolysis of ATP is not favored, hydronium ions
from the surface of cell due to the PMF move through the porins and reach
the transporter where they are pushed through the transporter by the
peristaltic action caused by the fusion proteins. Substrates bound to the
transporter dissociate when the pH is reduced by the flow of hydronium
ions and are carried out by the flow of water.

INDUCING GENETIC UP-REGULATION OF EFFLUX PUMP BY
AN ANTIBIOTIC AND DOWN-REGULATION OF PORINS
Apart from chromosomal mutation or acquisition of plasmids
or mobile genetic elements encoding resistance determinants, a
Gram-negative bacterium can increase its antibiotic resistance
by preventing the antibiotic from entering the cell. This can
be achieved by the control of the outer membrane permeabil-
ity (decreasing the number of porins that allow the compounds
to enter the cell) and/or by the increasing the effectiveness of
the efflux (active pumping out) of antibiotics, usually increas-
ing the number of pumps available (Nikaido, 2001; Gootz, 2006;
Piddock, 2006). The effectiveness of the outer membrane of Gram-
negative bacteria as a barrier, in most cases, only delays the influx
of various antibiotics, detergents, and dyes. Intrinsic resistance
to antibiotic agents is mainly due to EPs enabling bacterium to
survive in the presence of these noxious agents (Nikaido, 2001;
Davin-Regli and Pagès, 2006). If the concentration of the noxious
agent exceeds the capacity of the intrinsic EP to extrude the agent,
the over-expression of the main EP takes place, resulting in a mul-
tidrug resistant (MDR) phenotype (Nikaido, 2001; Gootz, 2006;
Piddock, 2006). MDR is now known to be a prevalent form of
clinical resistance (Nikaido, 2001).

Under laboratory conditions, induction of high-level resis-
tance to tetracycline (TET) in E. coli K-12 strain results in
the over-expression of nine major inner membrane transporter
genes, with the acrB being the most expressed (Basle et al., 2006).
The cited studies demonstrate a clear connection between the
induced activity of the AcrAB system and TET induced resis-
tance. Moreover, resistance can be reversed by either transfer
to drug free medium, by the use of Phe-Arg-β-naphthylamide
(PAβN), an inhibitor of the AcrAB efflux pump system or by
the phenothiazine thioridazine (TZ; Cowan et al., 1992; Nikaido,
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2003; Basle et al., 2006). Besides becoming resistant to TET, the
induced strain becomes resistant to a variety of other antibiotics,
detergents, and dyes that are not substrates of the AcrAB sys-
tem (Nikaido, 2001; Davin-Regli and Pagès, 2006; Gootz, 2006;
Piddock, 2006).

As previously mentioned, in E. coli, permeability of the outer
membrane is also controlled by the regulation of the expression
of porins (Pages et al., 2005). The two major outer membrane
proteins (OMPs) in E. coli are OmpC and OmpF, consist of
three 16-stranded β-barrels defining a trans-membrane pore in
the outer membrane porin (Cowan et al., 1992; Nikaido, 2003).
These OMPs are highly expressed under optimal environmental
conditions, their level of expression is adjusted when it is neces-
sary to minimize penetration of noxious compounds or maximize
access to nutrients (Liu and Ferenci, 2001; Basle et al., 2006).
For example, the level of expression of the porins OmpC and
OmpF not only controls the permeability of the outer mem-
brane to glucose and nitrogen uptake under nutrient limitation
(Ferenci, 2005; Castillo-Keller et al., 2006), but may also be differ-
entially regulated by the concentration of certain antibiotics in the
environment (Randall and Woodward, 2002; Castillo-Keller et al.,
2006). Immunoblot and antibody recognition analysis has con-
firmed that OmpF and OmpC synthesis is reduced or markedly
reduced, respectively, during the adaptation process and accom-
pany the up-regulation of EPs observed during the process of
exposure to TET (Viveiros et al., 2007). These results are consistent
with the notion that when the bacterium is placed under antibiotic
stress, under conditions that permit it to adjust (namely slow expo-
sure to sub-lethal concentrations of the antibiotic and nutrient
availability), antibiotic resistance is increased by the up-regulation
of EPs and down-regulation of porins (Delihas and Forst, 2001;
Chen et al., 2004).

Expression of the genes coding for OmpC and OmpF is regu-
lated by a two-component signal transduction regulatory system
consisting of the OmpR and EnvZ proteins (Hall and Silhavy,
1981). Moreover, over-expression of OmpX, a porin structurally
related to the eight-β strand OmpA (a major OMP involved in the
stabilization of the bacterial membrane), leads to a decrease in the
expression of OmpC and OmpF porins and a decreased suscepti-
bility to β-lactams and other antibiotics in E. coli (Dupont et al.,
2004). However, mutants with decreased expression of porins
show only small increases in the minimum inhibitory concen-
tration (MIC) of relevant antibiotics, suggesting that the complete
shut-down of influx of small molecules into E. coli does not readily
occur (Ma et al., 1994).

The sequential expression of genes that are involved in a
response to TET are depicted by Table 1 and are discussed in
terms of relationships that have been established for regulatory
and responding genes.

OmpA is considered to be a structural OMP that contributes to
the integrity of the cell envelope as a tri-barrel structure (Viveiros
et al., 2007). It does not appear to have a role in functions normally
attributed to porins. However, in the middle of the adaptation
process a transient increase of ompA expression is noted, which
could mean a need for structural strengthening of the cell enve-
lope while protein synthesis is reduced due to the exposure of
increasing concentrations of TET. However, when the bacterial

cells are completely adapted to high concentrations of TET, this
high concentration of TET should result in TET reaching binding
sites of the 30S ribosomal subunits and therefore, affect the syn-
thesis of many proteins. However, if this were to be the case, the
increase of the AcrB and AcrA proteins should also be affected, and
this was not the case as shown by the cited studies (Viveiros et al.,
2007). The same authors also suggested that the down-regulation
of porins C and F takes place by the increased synthesis of pro-
teases, which degrade the de novo porins C and F (Viveiros et al.,
2007).

Porin A which contributes to the stability of the outer mem-
brane is not affected by the proteases and consequently the
integrity of the outer membrane is maintained, thereby comple-
menting the resistance afforded by down regulation of porins C
and F.

The ompX gene codes for the outer membrane protein OmpX
and over-production of this protein induces a reduction of the
porin level in Enterobacter aerogenes (Dupont et al., 2004). In E.
coli, during adaptation to TET, ompX activity is the highest of all
of the genes evaluated. Therefore, the regulatory role for this OMP
appears to involve a direct effect on porin assembly.

THE STRESS GENES soxS AND rob
During the adaptation process of E. coli K12 to step-wise increas-
ing concentrations of TET, expression of the stress-response gene
soxS can be increased up to 3.5 times comparing to the untreated
control (Viveiros et al., 2007). However, when the strain is adapted
to high concentrations of TET, response of the gene is reduced
to a level below that initially observed, suggesting that the stress
gene soxS performs its functions quite early under conditions of
antibiotic pressure (Viveiros et al.,2007). The other stress-response
gene, rob, responds later; however, as in the case of the other
stress-response gene soxS, the increased activity is apparently not
required for higher levels of resistance (i.e., 10 mg/L) (Viveiros
et al., 2007). The gene rob has been reported to respond to expo-
sure to solvents, detergents, metals (Ariza et al., 1995; Nakajima
et al., 1995), and antibiotics (Viveiros et al., 2007).

REGULATORY GENES marA, marB, AND marR
The regulatory product of gene marR is known to down-regulate
the activity of genes marA and marB by binding to the promoter
region of the operator marO. Because TET is known to bind to the
product of marR, and this produces an MDR phenotype (Pratt and
Silhavy, 1996), once the repressor activity is inhibited, the universal
regulator marA would be expected to increase its activity. Indeed,
of all regulator genes, it is marA that is increased to the highest level
(9.7-fold) at the time when the organism has developed resistance
to TET (10 mg/L). Although nothing is known about the role of
marB or the relationship between marA and marB during MDR
phenotypic expression, the cited study suggested that marB might
precede marA, during the development of TET resistance (Viveiros
et al., 2007).

ANCILLARY GENES micF, ompF INVOLVED IN DEVELOPING
RESISTANCE TO TETRACYCLINE
The genes marA, rob, and soxS regulate the activity of micF
responsible by the down-regulation of OMPs (Guillier et al., 2006;
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Table 1 | Relative expression of E. coli genes after adaptation to increasing concentration of tetracycline (Viveiros et al., 2007).

@Tet MIC

(μg/ml)

Relative expression of E. coli genes

soxS rob marA marB marR acrA acrB acrE acrF emrD mdfA yhiV TolC

1.5 2.8 0.5 3.0 0.5 2.0 1.8 1.8 1.2 1.5 1.5 1.5 2.2 1.5

4.0 3.5 2.8 5.5 4.5 4.3 6.0 5.0 2.4 2.8 4.9 3.8 5.8 5.8

10.0 2.2 1.7 9.7 4,4 3.1 12.8 9.4 2.4 2.6 1.7 3.7 6.4 4.5

Relative expression of efflux pump regulators and efflux pump transporter genes at each level of induced resistance to tetracycline. Data from three independent total
mRNA extractions of E. coli AG100 physiologically adapted to increasing concentrations of TET compared to its parental non-induced strain grown in the absence of
TET as described in Viveiros et al. (2007). A ratio of 1 corresponds to no alteration in expression compared with untreated control cells. Ratios above 2.0 are considered
significant. Values were corrected for standard deviation range. Bold expressions are the major genes responding to serial exposure to increasing concentrations of
tetracycline each of which is identified as the MIC of that exposure step. Note that marA, acrA, acrB, and yhiV continue to express progressive increase of activity
noted at the end of each MIC step of exposure to an increase of TET concentration. The activity of other genes such as ompF, etc. are not shown in Table 1 but are
discussed in the text.

Bohnert et al., 2007). In the former example of E. coli K12, the
increase of activity of micF reaches its maximum level (comparable
to that of marA) when the organism becomes resistant to 10 mg/L
of TET. The over-production of MicF decreases the amount of
OmpF mRNA (Bohnert et al., 2007); similarly MicC may have the
same effect on OmpC mRNA stability.

The ompR and envZ genes are regulators of OMPs. The genes
ompR and envZ belong to the two-component signaling family
and modulate gene activities of ompF and ompC, the two major
OMP genes that code for the tri-barrel porin. When E. coli is
placed under stress, a cascade of gene activities is initiated, involv-
ing several global regulators such as MarA and MicF, which result
in the down-regulation of porins. This down-regulation results in
decreased activity of ompF and ompC. Whereas the increase in the
expression of the ompR and envZ genes is maintained for the dura-
tion of exposure to increasing concentrations of TET, the response
of the ompA, ompC, and ompF genes is transiently increased and
subsequently reduced to levels comparable to those of the E. coli
cells that were not exposed to TET. Because micF is considered
to be a post-transcriptional regulator of porins, the activity of
ompF and ompC may be related to the expression of this gene
(Delihas and Forst, 2001). However, the porin mRNA level is sim-
ilar to that produced in untreated cells. We may assume that, as
previously reported (Delihas and Forst, 2001), the putative regu-
lator of ompX becomes limited and cannot induce porin mRNA
degradation.

EFFLUX PUMP GENES acrAB AND THE OTHER EFFLUX PUMP
TRANSPORTER GENES
The response of the genes coding to the AcrAB-TolC when the
organism is initially exposed to increasing concentrations of TET
below that of its MIC is marginal, suggesting that the normal
activity of the operon is enough to respond to the pressure caused
by sub-inhibitory concentrations of antibiotic. However, as the
concentration of antibiotic (in the example: TET) increases, the
expression of the genes coding to the AcrAB-TolC also increases as
the organism becomes more and more resistant to the antibiotic.
Moreover, the stress imposed during the early stages of exposure to
TET requires the cooperation of all of the EPs, but their expression
is reduced later on during the adaptation process, when both acrB

and yhiV (a gene coding to an RND efflux pump of E. coli with
significant homology to AcrB; Bohnert et al., 2007), reach their
highest level of expression. The increased activity of the genes
coding to the AcrAB-TolC is accompanied by the increased activity
of the regulator marA and increased synthesis of AcrA.

RELATIONSHIP OF THE MAIN EFFLUX PUMP SYSTEM TO THE
ACCUMULATION OF MUTATIONS
As noted in the previous section, serial exposure to increasing
concentrations of an antibiotic that is just below its MIC will
promote progressive activation of genes that regulate and code
for the components of the EP of the Gram-negative bacterium
(Viveiros et al., 2005, 2007). However, if at any time during the
above process, the highest concentration is maintained during
further serial cultures, a number of further responses take place.
Firstly, for a sequence of serial cultures, there is a correspond-
ing increase in the expression of genes that regulate and code
for the constituents of the main EP of the Gram-negative E. coli
(Martins et al., 2009a, 2012). However, at a certain point, the
expression of these genes begins to decline and simultaneously the
organism begins to express an increasing number of mutations
in key targets such as those that are present on the plasma mem-
brane (example penicillin binding proteins), gyrase and in the 30S
component of the ribosome (Martins et al., 2009a). Eventually,
the expression of genes that regulate and code for the compo-
nents of the EP reach basal levels of the wild-type (non-exposed
bacterial strain). At this point, the protection of the bacterium
from the presence of a constant concentration of an antibiotic
comes from the accumulated mutations on key antibiotic tar-
gets (Martins et al., 2009a, 2012). Nevertheless, if the bacterium
is transferred to antibiotic-free medium that contains its coun-
terpart wild-type strain, within a few serial transfers, it ceases
to exist. Therefore, whereas the accumulated mutations pro-
vide protection in a highly selective environment, that protection
renders the organism less fit for survival (Martins et al., 2009a,
2012, 2013a). Similar approaches have yielded similar responses
with mycobacteria (Martins et al., 2007; Viveiros et al., 2012) and
staphylococci (Martins et al., 2011a) suggesting that the above
responses to constant antibiotic stress are a common response
of bacteria.
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SIMPLE METHODS FOR ASSESSMENT OF THE EFFLUX PUMP
SYSTEM AND EVALUATION OF AGENTS FOR INHIBITORY
ACTIVITY
Agents which reduce the activity of a given EP are referred in
the literature as “efflux pump inhibitors” (EPIs) even though
direct inhibition of the activity of the pump by binding of the
agent is rarely shown or evident. Therefore some authors prefer
to call them “efflux pump modulators.” Nevertheless, although
there is now evidence that the reduced EP activity may be due
other indirect pathways that decrease efflux, the term “EPI” will
be retained in the discussion. Among the mechanisms by which
EPIs act within the cell, one can consider the following: (1)
reduced access to ions such as calcium (Martins et al., 2011a)
needed by ancillary components of the pump, possibly those which
induce conformational changes of the fusion proteins, needed to
produce the peristaltic activity that promotes the movement of
water and compounds through the pump (Seeger et al., 2008);
(2) inhibiting access to the energy provided by the PMF [exam-
ple, carbonyl cyanide m-chlorophenyl hydrazone (CCCP); Varga
et al., 2012]; (3) inhibiting metabolic enzymes that yield hydro-
nium ions needed for the maintenance of the PMF (Amaral et al.,
2011a); (4) competing with antibiotics or other substrates for
access to the EP (example, PAβN; Martins et al., 2009b); (5) sim-
ply by non-specific blocking (coating) of the bacterial envelope
(Amaral et al., 2000).

Phenothiazines are heterotricyclic compounds, which have
given rise to a large amount of medicinal compounds devel-
oped during the twentieth century. Due to their planar structure,
they readily intercalate between nucleic bases of DNA inhibit-
ing replication of the cell. They also have varying degrees
of affinity for outer cell membranes of Gram-negative bacte-
ria (Amaral et al., 2000) and plasma membranes of eukaryotes.
The first neuroleptic phenothiazine chlorpromazine (CPZ) was
introduced by Rhone-Poulenc in the late 1950s for therapy of psy-
chosis and because it was immediately used world-wide, many
of the serious side effects produced by CPZ were studied. As
a consequence, a variety of medical research avenues opened
up. Among these avenues was the study of the effects of CPZ
on mycobacteria (Amaral et al., 1996; Kristiansen and Amaral,
1997; Amaral and Kristiansen, 2000) and other pathogenic bac-
teria (Amaral and Lorian, 1991; Amaral et al., 1992). Because
CPZ was shown to increase the activity of some antibiotics to
which the bacterium was resistant (Amaral et al., 1992), this agent
and other phenothiazines that produce much milder side effects
than CPZ, were studied for their effects on EPs of MDR bacteria
(Kristiansen et al., 2003, 2006).

The phenothiazine TZ has its origins in CPZ. It is superior
to CPZ in that it affords good therapeutic control of the psy-
chotic patient without exposing the patient to the plethora of
serious negative side effects. As was the case with CPZ, global
use of TZ yielded a large number of studies, which eventu-
ally led to its potential use as an adjunct to antibiotic therapy
for extensively drug resistant tuberculosis (XDR-TB; Amaral
et al., 2010a, 2012; Abbate et al., 2012; Amaral and Viveiros,
2012). Because the mechanism of action in part involves the
ability of TZ to inhibit the EPs of Mycobacterium tuberculosis
(Amaral et al., 2004; Rodrigues et al., 2009, 2012; Dutta et al., 2010,

2011; Machado et al., 2012), focus on the EPs of the Gram-
negative E. coli, as a model for study, took place (Amaral et al.,
1992, 2011a; Viveiros et al., 2005, 2007; Martins et al., 2009a,
2012, 2013a) and a variety of new methods were introduced for
the identification of MDR strains that over-expressed their EP
system (Couto et al., 2008; Viveiros et al., 2008, 2010; Martins
et al., 2011b, 2013b; Martins and Amaral, 2012). These meth-
ods were also useful for the evaluation of agents for activity
against the EP of bacteria (Couto et al., 2008; Viveiros et al.,
2008, 2010; Martins et al., 2011b, 2013b; Martins and Amaral,
2012).

THE ETHIDIUM BROMIDE-AGAR METHOD
The simplest method for the demonstration of an over-expressed
EP system of pathogenic bacteria involves the over-night cultures
of the MDR clinical isolate and reference strains that represent
the wild-type and their counterparts that over-express EP sys-
tem(s). A dipped swab or loopful of these cultures is swabbed or
streaked evenly on the surface of a series of plates that contain
varying concentrations of ethidium bromide (EB) in a suitable
agar of pH 7. The agar on the plate can be divided into sectors
if more than one strain is to be simultaneously studied for EP
activity. The plates are then incubated over-night at 37◦C and
examined under UV light for evidence of pink fluorescence. The
lowest concentration of EB that is associated with the presence
of pink fluorescence is recorded. While the wild-type counter-
part reference strain begins to show evidence of fluorescence at
a given low concentration of EB, the MDR clinical strain whose
MDR phenotype is due primarily or partially to an over-expressed
EP will begin to exhibit fluorescence at a much higher con-
centration of EB. If done properly, given to its simplicity, the
method is almost always successful. Examples of this method with
S. aureus strain ATCC25923 and S. aureus methicillin-resistant
(MRSA) strains COL (Kornblum et al., 1986) and HPV107
(Sanches et al., 1995; Costa et al., 2010) are described in detailed by
Martins et al. (2010).

The method can be used for a simultaneous clear-cut demon-
stration of two strains that differ with respect to the pres-
ence/absence of an EP. As an example, a swab of a mixture of
E. coli K12 AG100 (whose main efflux pump acrAB is intact) and
E. coli AG100A (whose main efflux pump acrAB is deleted; Viveiros
et al., 2005, 2007) on agar containing increasing concentrations of
EB, affords the distinction between the two strains with respect to
differential efflux activity. Whereas the strain AG100A fluoresces
at the EB concentration of 0.6 mg/L, the AG100 strain begins to
show evidence of fluorescence at much higher concentrations of
EB. The method has also been used for the demonstration of the
loss of plasmids that carry genes coding for given EPs (Costa et al.,
2010).

The EB agar method can be used for simultaneous determi-
nation of the activity of EP of as many as 12 strains each one
of which is streaked with a swab dipped into over-night culture
that had been diluted to 0.5 of the McFarland scale (Martins
et al., 2011b, 2013b). Alternatively, a culture that is monitored
at 600 nm until its OD reaches 0.6 can be used. When the cul-
ture reaches an OD of 0.6, its contents are washed three times to
remove any trace of medium and suspended in phosphate buffered
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saline (PBS, pH 7), its OD adjusted to 0.6 and then swabbed or
streaked onto the agar. It can be used to assess the response of
strains to agents that are known to inhibit EP activity (Martins
et al., 2011b) or are being studied for possible inhibitory activ-
ity (Martins et al., 2010). For those laboratories that do not wish
to use EB for a variety of reasons, an alternate method has been
developed which employs acridine orange (AO) as the tracer flu-
orescent agent (Martins and Amaral, 2012). Either EB or AO in
plain agar can be used to characterize the EP system with respect
to energy and needs for distinct ions. In other words, the agar is
dissolved in defined minimal media that satisfies the physiological
needs of the study and thereby can replace the general agar/whole
media approach. Similarly the EB or AO containing agar read-
ily affords the study of the effects of pH/temperature on efflux
activity.

THE AUTOMATED EB METHOD
The EB agar method, although useful for a variety of studies
of EPs, does not provide information on a real-time basis. A
more sophisticated method has been developed which utilizes
the Corbett Research 3000TM thermocycler for the evaluation
of efflux and assessment of agents that affect efflux on a real-
time basis under defined physiological conditions such as time
(kinetics), temperature, pH, ions, EPIs, etc. (Paixão et al., 2009;
Viveiros et al., 2010). The method uses EB although AO can
be used as well (Martins and Amaral, 2012) for tracing efflux
events in defined medium such as saline, pH, etc. The method
utilizes an inoculum from a culture that has reached an OD
of 0.6 at 600 nm and which has been washed three times to
remove any trace of the medium, re-suspended in PBS and its
OD adjusted to 0.6 at 600 nm. Aliquots of 50 μL are trans-
ferred to microtubes (volume of 200 μL) separately containing
50 μL of control PBS with/without a source of energy (glu-
cose or other energy providing compound) and given pH and
to separate microtubes containing 50 μL of the experimental
PBS (pH, ions, energy, etc.). The tubes are placed into the
thermocycler that has been programed for temperature, inter-
val of reading, length of evaluation (minutes). The instrument
exposes each tube during its centrifugation at low speed to
an excitation wavelength (535 nm) and evaluates the emission
from each tube at 585 nm. The results are provided on a
real-time basis and available at any time during the assay for
easy comparison of accumulation differences. From experiment
to experiment, the variation is less than 10%. The complete
method is described in detail (Paixão et al., 2009; Viveiros et al.,
2010). The method has been used for the evaluation of com-
pounds for activity against the EP system of wild-type, EP
deleted, and over-expressed EPs (Cerca et al., 2011; Machado
et al., 2011; Takács et al., 2011; Dymek et al., 2012). In addition,
the method has also been useful for determining competition
between the EP substrates PAβN and EB resulting in the determi-
nation of the Michaelis constant for PAβN (Martins et al., 2009b)
and for competition between the antibiotic EP substrate TET
and EB (Cerca et al., 2011). Of possible interest to readers who
are involved in the study of EPs of eukaryotes, the EB auto-
mated method has been adapted for the assessment of the
ABCB1 transporter of MDR cancer cells (Spengler et al., 2009b)

and agents that affect the activity of this pump (Spengler et al.,
2009a, 2010).

The method has been significantly useful to assess the response
of Salmonella Enteritidis exposed to phenothiazines and the activ-
ity of its genes that regulate EPs and code for the components of
the RND AcrAB-TolC pump (Spengler et al., 2012). Prior studies
have shown that the phenothiazine CPZ inhibits the replication
of the organism during the first 8 h of exposure after which
the organism develops resistance to a concentration of CPZ as
high as 100 mg/L (Amaral et al., 2000). Consequently, if one
observes only the final results of growth after 24 h of exposure,
one would miss the early responses of the organism, which are
clearly those of susceptibility to the agent. Since CPZ is an EPI
which at high concentrations inhibits the replication of the bac-
terium, we had expected that during a 24-h culture the inhibitory
effects of the phenothiazine would be noted throughout the cul-
ture period. Moreover, our attempts to induce resistance of E.
coli to either CPZ or TZ via serial exposure to increasing concen-
trations of these agents indicated that unlike the response of this
organism to an antibiotic such as TET (Viveiros et al., 2007), no
increased resistance took place (unpublished observations). This
difference in response to an EPI was considered to perhaps be
due to the major difference between Salmonella sp. and E. coli;
the former which has the global EP regulator gene ramA which
is absent in the latter Gram-negative species (Pagès and Amaral,
2009). During the first 8 h of exposure to the phenothiazine TZ,
the growth of Salmonella Enteritidis is inhibited whereas progres-
sive increased activity of the genes that regulate and code for the
AcrB efflux pump takes place such that by the end of 8 h the
organism becomes increasingly resistant to TZ (Table 2). These
results also support the notion that in order to define the response
of a bacterium to an agent, the bacterial culture containing the
agent must be monitored during the exposure period for growth
and for the expression of key genes that may increase/reduce
resistance.

Table 2 | Activities of genes during transient inhibition of growth from

exposure to 100 mg/L thioridazine (TZ) on Salmonella enterica

serovar Enteritidis 104.

Relative expression quantification (2-ΔΔCt)

Genes 0.5 h 1 h 4 h 8 h 16 h

soxS 0.9 12.1 1.9 0.0 0.1

rob 2.3 1.4 2.0 0.5 2.0

ramA 3.2 5.7 45.3 14.9 1.5

marA 0.4 0.7 10.6 0.9 0.1

acrB 6.1 – 104.0 315.2 8.0

pmrA 1.6 2.0 5.3 9.8 0.9

pmrB 0.5 2.1 13.0 3.7 0.7

During the first period of no growth (first 8 h), the genes that regulate and code
for the AcrB transporter are sequentially activated; first soxS, then followed later
by ramA, marA, and pmrB, and then by 8 h of culture ramA decreases its activity,
marA returns to baseline activity, acrB is maximally increased in activity and pmrA
is now active. By the end of the culture period (16 h), only acrB is over-expressed.
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THE RELATIONSHIP OF THE EFFLUX PUMP TO
TWO-COMPONENT RESISTANCE REGULONS
Subsequent to the phagocytosis of the Gram-negative Salmonella
sp. by the neutrophil, the acidic pH of the phagolysosome pro-
motes the activation of the organism’s two-component resistance
regulon PmrA/PmrB (Gunn, 2008). pH activates the sensor PmrB
to undergo self-phosphorylation after which it acts as a kinase and
transfers the phosphate to PmrA. Activation of the pmrA gene then
activates a cascade of genes, which promote synthesis of Lipid A
and its introduction into the nascent LPS of the outer cell wall
of the organism. Perhaps, as many as 100 other genes are also
activated (Gunn, 2008). The increase of LPS renders the organism
resistant to the hydrolytic enzymes of the phagolysosome. Acti-
vation of the PmrA/PmrB regulon promotes the activation of the
pmrD gene whose product activates the global EP regulator gene
ramA which in turn results in the activation of the transporter cod-
ing gene acrB. The activation of the PmrA/PmrB regulon therefore
renders the intracellular trapped Salmonella sp. practically resis-
tant to most agents. It is for this reason that a patient who has
recently undergone a resection of the colon and has ingested food
contaminated with Salmonella sp., is very difficult to successfully
treat.

Mice can be protected from an infection by the highly viru-
lent Salmonella Typhimurium 74 by pre-treatment with clinically
relevant doses of the phenothiazine TZ although the MIC of the
phenothiazine against the organism is many-fold greater than the
level of the drug in its blood (Dasgupta et al., 2010). Because a
heavy inoculum is introduced directly into the neutrophil-rich
peritoneum, it is opined that the protection from infection results
from the highly concentrated level of TZ within the lysosomes of
the neutrophil (Daniel and Wójcikowski, 1999a,b) that eventually
would fuse with the phagosome that contains the phagocytosed
organism. The high concentration of TZ within the phagolyso-
some may exceed the in vitro MIC of TZ and because TZ can readily
penetrate the cell envelope of the bacterium (Motohashi et al.,
2003), it can easily reach sensitive TZ targets such as DNA where
it readily intercalates between nucleic bases of DNA (Crémieux
et al., 1995). The fact that TZ also enhances killing of intracellular
bacteria (Crémieux et al., 1995; Ordway et al., 2003; Martins et al.,
2004, 2009c; Amaral et al., 2007), suggests that the protection by
TZ from a virulent infection takes place via many mechanisms of
action.

THE RELATIONSHIP OF THE QUORUM SENSING SYSTEM
AND SECRETION OF BIOFILM TO THE EFFLUX PUMP
QUORUM SENSING AND ITS ROLE IN INFECTION
Communication between bacteria of the same species and between
species, also termed quorum sensing (QS), contributes to their
survival (Varga et al., 2012). It involves the secretion of signaling
molecules that induces specific responses from the targeted bacte-
ria, for example: (1) reduction of population growth of a species
and hence, reducing the possibility of exceeding the nutritional
support of the environment; (2) inhibition of replication of, or
even killing (biocides) of competing species; (3) promotion of
swarming that recruits members of the same species to migrate to
a specific location (Szabó et al., 2010; Amaral and Molnar, 2012;
Varga et al., 2012); (4) secretion of materials that will protect the

bacterium from external danger. In the latter case, these materials
can form a matrix of polysaccharides that involves the bacteria
(from the same species or even from different species), termed
biofilm. Within the biofilm, channels are formed and used for fur-
ther communication between the bacteria. Biofilms are produced
in nature at sites such as surfaces of rocks, which maintain the
bacterial population in situ, or at sites of the human colonized by
infecting bacteria, such as the surface of prosthetic devices after
their placement, which can lead to development of an infection.
The presence of biofilm renders therapy of the infection problem-
atic. The QS responses of the infecting bacterium are obviously
important and consequently, the search for such compounds that
are able to inhibit the QS system and biofilm formation has been
in effect for the past two decades.

There is a relationship between EPs, QS, and biofilm secre-
tion, which has come to the forefront only recently (Varga
et al., 2012). Control of this relationship is critical for success-
ful therapy of MDR bacterial infections which have become rather
commonplace.

Inhibitors of bacterial QS systems must be distinguished from
their activity on the producer of the signal, the responder to a QS
signal or both. QS inhibitors (QSIs) are compounds that specif-
ically block QS systems without affecting bacterial growth. The
QS system of bacteria that has received the greatest attention is
the acyl homoserine lactone (AHL) system which produces and
secretes AHL. AHL acts as a communication molecule which
regulates the behavior of the members of the bacterial popu-
lation (Amaral and Molnar, 2012). Concerted behavior such as
swarming of bacteria, production of surfactant, which facilitates
bacterial movement on surfaces, production and secretion of vir-
ulence factors and biofilms, are examples among a growing list
of concerted behaviors (Szabó et al., 2010). Obviously, the reg-
ulation of bacterial behavior and population density by AHLs
suggests activity at the genetic level. The AHLs density depen-
dent regulatory systems rely on two proteins, an AHL synthase,
most commonly a member of the LuxI family of proteins, and
an AHL receptor protein belonging to the LuxR family of tran-
scriptional regulators (Ordway et al., 2003; Varga et al., 2012).
Low population density cells produce a basal level of AHL that
is dependent on an AHL synthase. With increase of population
density, AHL accumulates in the medium and when it reaches a
critical threshold concentration, the AHL molecule binds to its
cognate receptor (Ordway et al., 2003; Martins et al., 2004). The
binding of AHL to its receptor promotes induction or repres-
sion of AHL-regulated genes. The genes that are regulated are
responsible for a large number of functions such as biolumi-
nescence, plasmid conjugal transfer, biofilm formation, motility,
antibiotic biosynthesis, production of virulence factors, among
others.

The inhibition of the QS system of pathogenic bacteria is
a goal of drug discovery. Perhaps the best known inhibitors
of the AHL QS system are homologs of AHL, and are pro-
duced by other bacterial species. N-butanoyl-L-homoserine lac-
tone (C4-HSL) and N-hexanoyl-L-homoserine lactone (HHL)
are produced in cultures of Serratia liquefaciens and serve as
autoinducers of swarming. However, analogs of C4-HSL such as
N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL)
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produced by Pseudomonas aeruginosa do not affect cell growth of
its own population nor that of Proteus mirabilis, E. coli, Alcaligenes
faecalis, or Stenotrophomonas maltophilia, but inhibit the growth
of Legionella pneumophila as well as the formation of its biofilm
(Amaral and Molnar, 2012). Among compounds that inhibit
production and secretion of AHL are sulfur-containing AHL-
analogs such as N-(heptylsulfanylacetyl)-L-homoserine lactone
(HepS-AHL) which reduces production of protease by Aeromonas
salmonicida, rendering the bacterium less virulent (Szabó et al.,
2010).

Because both QS and biofilm formation involves secretion of
compounds, efflux systems of the cells should be involved in this
process. In fact, phenothiazines, which inhibit many energy depen-
dent systems of bacteria including some of its EPs, also inhibit QS
signaling (Amaral and Molnar, 2012; Varga et al., 2012). Conse-
quently, the inhibition of an EP should result in the inhibition of
the QS component responsible for biofilm formation.

During the past two decades drug development and discovery
have focused on plants as sources of bioactive compounds. In par-
ticular, since the discovery of berberine, a powerful inhibitor of
bacterial EPs, plants have become sources of inhibitors of EPs
and, consequently, of QS systems. For example, essential oils
yield a large number of compounds that inhibit the QS system
of responding bacteria; some of them have promising inhibitory
properties for the short chain AHL QS system in E. coli contain-
ing the biosensor plasmid pJBA132. Citral is the only essential
oil that presented some activity for the long chain AHL QS sys-
tem in Pseudomonas putida containing the plasmid pRK-C12.
Because some essential oils have also been shown to inhibit the
EP of antibiotic resistant Gram-negative bacteria, the relationship
between EPs and the QS of bacteria seems, once more, is well
established. EPs of Gram-negative bacteria that bestow MDR are
mostly dependent upon the PMF for activity. Studies reveal that
some compounds that inhibit the EP of bacteria supposedly by the
inhibition of the PMF energy source are highly active as inhibitors
of the QS response (Varga et al., 2012). These latter studies serve
to support the intimate connection between EPs and the QS sys-
tem of bacteria. Consequently, compounds that affect both are
good candidates against the secretion of biofilm matrix which is
dependent upon the QS system and the EP for secretion of the
biofilm.

CONCLUDING REMARKS
The EPs of bacteria, as demonstrated by this review, do more than
simply recognize external and internal noxious agents for extru-
sion to the milieu in which the organisms live. They are connected
to a variety of resistance mechanisms that together serve to assist
the bacterium to survive in environments that are toxic. The mech-
anisms such as QS responses, biofilm production and secretion,
and those two component regulons are intimately tied to the activ-
ity of the EP system of the organism. Moreover, as indicated in this
review, because the EP system is deemed by us to be the main path
for the passage of water formed from metabolic activity, the pas-
sage of acidified water serves the purpose of reducing the pH of
the internal component of the transporter, thereby allowing the
release of any bound EP substrate which in turn is carried in the
jet of water and extruded via the TolC channel. Concept-wise, we

may consider the EP system as the excretory organ of the bacterium
performing those functions of multi-cell animals such those of the
digestive and urinary tract systems. Nevertheless, as discussed in
this review, the targeting of the EP system may also obviate other
resistance mechanisms and hence, this approach appears to be
worthwhile.
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