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Cardiac K channels are critical determinants of cardiac excitability. In hypertrophied and
failing myocardium, alterations in the expression and activity of voltage-gated K channels
are frequently observed and contribute to the increased propensity for life-threatening
arrhythmias. Thus, understanding the mechanisms of disturbed K channel regulation in
heart failure (HF) is of critical importance. Amongst others, Ca/calmodulin-dependent
protein kinase Il (CaMKIll) has been identified as an important regulator of K channel activity.
In human HF but also various animal models, increased CaMKI| expression and activity has
been linked to deteriorated contractile function and arrhythmias. This review will discuss
the current knowledge about CaMKII regulation of several K channels, its influence on
action potential properties, dispersion of repolarization, and arrhythmias with special focus
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INTRODUCTION

Heart failure (HF) is a leading cause of death in western countries
(United States and Europe), (Neumann et al., 2009; Go et al., 2012;
Nichols etal., 2013) but also in developing countries like China
(Hu etal., 2012). Morbidity in HF is characterized by contrac-
tile dysfunction and an increased propensity for arrhythmias (Luo
and Anderson, 2013). Both are known consequences of the electro-
mechanical remodeling of the cardiomyocyte. It is well established
that reduced expression of K channels in hypertrophied and fail-
ing myocardium (Kaib etal., 1996) can lead to action potential
(AP) prolongation, which is known to be pro-arrhythmogenic.
Moreover, AP prolongation also leads to greater systolic Ca entry
through voltage-gated L-type Ca channels (Cay1.2) and impairs
the Ca export function of cardiac Na/Ca exchange (NCX, Bers,
2002a), which results in cytosolic Ca overload and dramatically
impairs diastolic contractile function (Figure 1).

Thus, understanding the mechanisms that are involved in the
regulation of cardiac K channel expression and function in HF
could greatly improve patient treatment.

Ca/calmodulin-dependent protein kinase IT (CaMKII) has been
identified as an important regulator of ion channels and trans-
porters involved in cardiac excitation—contraction coupling under
physiological but also pathophysiological conditions (Maier and
Bers, 2007). Increased CaMKII expression and function was found
in HF and is linked to contractile dysfunction and arrhyth-
mias. Interestingly, there is substantial evidence that CaMKII is
also involved in K channel regulation (Nerbonne, 2011). This
review will discuss CaMKII-dependent regulation of several car-
diac potassium channels and its significance for arrhythmogenesis
and contractile function in HE.

K CHANNELS ARE IMPORTANT REGULATORS OF CARDIAC
EXCITABILITY

The cardiac AP is initiated by activation of voltage-gated Na chan-
nels (Nay1.5). The resulting Na current (Ing) leads to a rapid
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depolarization, i.e., the AP upstroke (phase 0; Bers, 2002b). The
upstroke is limited by inactivation of In, and voltage-dependent
activation of transient outward K channels (Ky4.2, Ky4.3, and
Ky1.4 generating Iy,). I, activation results in an early repo-
larization (notch, phase 1), thus setting the voltage plateau of
the AP. Activation of L-type Ca channels generates a depolar-
izing Ca current (Ic,) that stabilizes the membrane potential
during the plateau phase (phase 2). Repolarization in phase 3
is mainly caused by activation of delayed rectifying K chan-
nels [hERG (KCNH2), Kv7.1 (KCNQI), and Kv1.5 (KCNA5)
responsible for Ix;, Iks, and Iy, respectively]. Additionally,
activation of inward rectifying K channels (Kir2.x, generat-
ing Ix;) contributes to late phase repolarization. The resting
membrane potential (phase 4) is stabilized by Ix;, but ion con-
ductance in phase 4 is also influenced by the Na/K-ATPase
and NCX.

In pacemaker cells, the absence of a stabilizing Ik; is responsible
for a more positive resting membrane potential (Cho etal., 2003).
The non-specific cation current I (channel protein HCN) can
thus generate diastolic depolarization leading to the generation of
APs (Bers, 2002b).

Several mechanisms of arrhythmogenesis involving K channels
have been described. Reduced function of Kv7.1 and hERG are the
hallmark of congential long QT syndrome 1 and 2, respectively
(Brenyo etal., 2012). A smaller Ixs and Ik, results in prolonged
repolarization that is associated with torsade de pointes and
sudden cardiac death (Roden, 2008). The underlying arrhyth-
mic mechanisms involve increased triggered activity due to early
afterdepolarizations (EADs) or reentry due to increased spatial
heterogeneities in repolarization (see below). Recently, a muta-
tion of an ATP-sensitive K channel (Medeiros-Domingo etal.,
2010) has been identified in a patient with early repolarization
syndrome, which is characterized by a prominent ] wave on the
ECG (see below) and is associated with an increased risk of ven-
tricular fibrillation (VF) and cardiac death (Tikkanen et al., 2009).
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FIGURE 1 | Electro-mechanical remodeling in ventricular myocytes in
HF. Normal currents are indicated by black arrows, while changes in HF
are indicated by red arrows and changes in size to indicate an increase
or decrease in current density. CaMKIl effects on potassium currents are
indicated by barheaded lines (in this figure only CaMKIl effects on K
currents are shown, for a detailed review of CaMKIl effects refer to
Maier and Bers, 2007). Decreased expression and function of
repolarizing K currents (lyo, Ik, Iks. lkp), for instance due
CaMKIl-mediated effects leads to prolongation of the AP duration. This
can result in greater systolic Ca entry through voltage-gated Ca
channels, but also Na entry through increased late Na current (via
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voltage-gated Na channels, Shryock etal., 2013). Increased cytosolic Na
concentrations, a feature also observed in HF (Pieske etal., 2002),
together with prolonged AP duration also impairs the Ca export function
of cardiac Na/Ca exchanger (Bers, 2002a), which further aggravates the
net gain in cytosolic Ca. In the face of a reduced function of the
sarcoplasmic reticulum (SR) Ca ATPase in HF (SERCA; Hasenfuss,
1998), this Ca remains in the cytosol thereby dramatically impairing
diastolic function. Moreover, increased depolarizing currents (Na and Ca
currents) during the plateau phase of the AP could lead to early
afterdepolarizations (EADs), while increased diastolic SR Ca leak through
ryanodine-receptor 2 (RyR) facilitates delayed afterdepolarizations (DADs).

It was shown that this mutation results in gain of function in
Karp (Medeiros-Domingo etal., 2010), consequently resulting in
increased transmural heterogeneity of repolarization (see below).

Interestingly, besides rare congenital disease, altered K chan-
nel function has also been described for HE It was shown that
decreased Ig; and Iy, density could lead to AP prolongation (Kaab
etal., 1998).

Increased triggered activity is an important consequence of
prolonged repolarization. The longer phase 2 of the AP results
in reactivation of Ca channels that generate a depolarizing current
possibly resulting in an EAD and ultimately leading to a triggered

AP (Weiss etal., 2010). On the other hand, K channels have been
also been shown to be involved in the generation of delayed after-
depolarizations (DADs) that are a consequence of cytosolic and
sarcoplasmic reticulum (SR) Ca overload. The latter causes an
increased propensity of spontaneous ryanodine-receptor (RyR)
activation leading to a depolarizing inward NCX current (Kidib
etal., 1996). Interestingly, this inward NCX current is more likely
to induce DADs if Ig; is functionally downregulated, causing an
unstable resting membrane potential (Dhamoon and Jalife, 2005).

Differential K channel expression across the ventricular wall
is the basis for transmural dispersion of repolarization (TDR,

Frontiers in Pharmacology | Pharmacology of lon Channels and Channelopathies

February 2014 | Volume 5 | Article 20 | 2


http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive

Mustroph etal.

CaMKIl and K channels

Antzelevitch and Fish, 2001). Physiologically, the endocardial
myocyte has a smaller I, amplitude compared to the epicar-
dial myocyte. This, together with increased depolarizing currents,
contributes to a more positive AP plateau and a longer AP dura-
tion in the endocardial compared to the epicardial myocyte.
The result is a physiological TDR that also determines the
positive T wave on the surface ECG. However, under patho-
physiological conditions this fine balanced regional difference
in K channel function can be substantially altered. A pref-
erential shortening of the epicardial AP by enhanced Iy,, for
instance, together with a preferential prolongation of the endo-
cardial AP by enhanced late In, and minor changes in the small
Iy, would increase the TDR. While a TDR increase in phase 1
and 2 of the AP results in the occurance of a ] wave (posi-
tive deflection at the QRS-ST junction; Yan and Antzelevitch,
1996), increased TDR in phase 3 and 4 can cause abnormal
T waves. If the increase in TDR in phase 3 and 4 reached
a threshold, abnormal electrical activity would find excitable
myocytes, resulting in reentry and leading to torsade de pointes
(Yan and Antzelevitch, 1996). Computational modeling of a
rabbit ventricular myocyte overexpressing CaMKII was used to
investigate the importance of the expression level of Iy, for AP
duration (Grandi etal., 2007). If 100% I, expression was used
( = epicardial myocytes), CaMKII overexpression resulted in a
shortening of the AP duration mainly due to a CaMKII-dependent
enhancement of I,. With 10% I, expression ( = endocardial
myocytes), however, AP duration increased because CaMKII-
enhanced late Iy, and L-type Ca current outweighed the effect on
the smaller I;,. The mechanisms by which CaMKII alters potas-
sium channel expression and function will be discussed in this
review.

CaMKIl AND HF

Calcium-Calmodulin-dependent kinase II is a serine/threonine
kinase that can regulate multiple ion channels and transporters
including K channels (see below). Currently, four isoforms and up
to 30 splice-variants of the serine/threonine CaMKII have been
identified, with CaMKII§ as the predominant cardiac isoform
(Maier and Bers, 2007). CaMKII contains an N-terminal cat-
alytic kinase-domain with an ATP-binding site as well as substrate
binding sites. Adjacent to the catalytic subunit, an autoregulatory
domain with a calmodulin (CaM)-binding site and important reg-
ulatory threonine (T287, T306, T307) and methionine residues
(M281/282) precedes the C-terminal association-domain, which
is critical for the assembly of the holoenzyme. In vivo, self-
association of CaMKII holoenzymes forms two ring-like CaMKII-
hexamers which are stacked on top of each other (dodecameric
configuration; Rellos etal., 2010). CaMKII is activated by bind-
ing of a Ca/CaM complex to its autoregulatory domain, resulting
in conformational changes which expose the catalytic subunit,
enabling ATP and substrate binding. An important substrate is
the autoregulatory domain of an adjacent subunit, resulting in
inter-subunit phosphorylation at T287 (auto-phosphorylation).
The latter enables CaM-independent activity after the dissociation
of Ca/CaM (Maier and Bers, 2007). Novel alternative activation
pathways have also been described involving oxidation or glyco-
sylation at M281/282, both of which result in Ca-independent

activity similar to auto-phosphorylation (Erickson etal., 2008,
2013).

CaMKII has been associated with HF development. In human
HEF, expression and activity of CaMKII is increased (Hoch etal,,
1999; Kirchhefer etal., 1999; Ai et al., 2005). Moreover, CaMKII3-
transgenic mice develop HF with increased AP duration, disturbed
Ca handling, and are prone to ventricular arrhythmias (Maier,
2003; Wagner etal., 2011). In contrast, transgenic CaMKII inhi-
bition or CaMKII knockout prevents cardiac remodeling and HF
development after myocardial infarction or increased afterload
(Zhang et al., 2005; Backs etal., 2009; Ling et al., 2009).

TRANSIENT OUTWARD K CURRENT

Iio is generated by a pore-forming a-subunit with six transmem-
brane segments (S1-S6). Accessory p-subunits can associate with
this a-subunit (Figure 2A, Niwa and Nerbonne, 2010). In their
either homologous or heterologous tetrameric assembly, the sub-
units’ S5 and S6 segments face each other to form the pore, while
segment S4 senses voltage (Snyders, 1999; Niwa and Nerbonne,
2010). Iy, is critical for the early repolarization (“notch”) imme-
diately following the upstroke in phase 0 of the cardiac AP. There
are at least two components of I, generated by different channel
isoforms, that can be distinguished according to their recovery
and inactivation kinetics (Figure 2B; Brahmajothi etal., 1999).
The fast component (Iy f,st) inactivates and recovers with time
constants (1) of less than 100 ms, whereas the slow component
(Itoslow) inactivates with t of about 200 ms and recovers with
T ranging from hundreds of milliseconds up to several seconds
(Brahmajothi etal., 1999; Xu et al., 1999).

In human, rat, and canine tissue, I, is generated mostly by
the rapidly recovering channel population Kv4.3 (KCND3, Dixon
etal., 1996). In a tachycardia-induced canine model of HF, a
reduced ventricular Kv4.3 protein expression has been reported
along with decreased I;, density (Zicha et al.,2004). It has also been
shown that Kv4.3 expression is significantly reduced in human
HF and that this is associated with a significant decrease in Iy,
density (Kaab etal., 1998; Zicha etal., 2004). Reduced I, density
is known to contribute to AP prolongation and prolonged QT
intervals (Barry etal., 1998).

Despite this important role of Kv4.3 for Iy, in human car-
diac tissue, many animals species show a rather heterogeneous
channel population comprised of Kv4.3, Kv1.4 (KCNA4), Kv4.2
(KCND2), and accessory KChIP subunits. In these species, I,
can be separated into the fast and slow component with varying
relative contributions to total I;,. In rabbit and mouse cardiac
myocytes, for instance, Kvl.4 has been shown to be responsible
for the slow component while a complex of Kv4.2, Kv4.3, and
KChIPs is responsible for the fast component (Niwa and Ner-
bonne, 2010). Similar to the dog model of HE, tachycardia-induced
HF in rabbits showed reduced total Iy, density while AP dura-
tion was prolonged (Rose, 2005). Interestingly, mRNA levels of
Kv1.4 and Kv4.2, as well as KChIP2, were significantly reduced,
while Kv4.3 mRNA was unchanged. Protein expression of Kv4.2
and KChIP2 was significantly reduced, though Kv4.3 and Kv1.4
were unchanged (Rose, 2005). In a TNF-a-overexpressing mouse
model of HE, Iy, f,5¢ density and Kv4.2 protein expression was sig-
nificantly reduced (Petkova-Kirova, 2006). Other mouse models
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FIGURE 2 | Structure and function of K channels. (A) Structure of
voltage-gated K channel a-sunbunit (Kv) with six transmembrane segments
(S1-S6). The S5-S6 segments face each other to form the central pore. The
P-loop between the S5 and S6 segments acts as an ion conductance pathway
and its signature motif G(Y/F)G functions as a K ion selectivity filter. Segment
S4 senses voltage and moves outward during cell membrane depolarization
resulting in conformational changes which open the pore. (B) There are two
current components of |y, generated that can be distinguished according to
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their inactivation kinetics. Iy, fast inactivates with time constants () of less
than 100 ms, whereas the li, sjow iNactivates with t of about 200 ms.

(C) CaMKIl can bind to Kv4.3 and phosphorylate serine 550 of its C terminus,
which leads to altered current kinetics. SAP97 can also bind to Kv4.3 [at its
Ser-Ala-Leu (SAL) segment] and possibly mediates the CaMKII-Kv4.3
interaction. (D) Inward rectifying potassium channels are formed by four
a-subunits containing only two transmembrane segments (M1-M2) with a
central P-loop as ion conductance pathway.

of HF exhibited similar reductions in I, density and increased AP
duration (Knollmann et al., 2000; Mitarai, 2000).

The differential regulation in the expression and function of
the various channel isoforms underlying I, suggests that the two
components I, fas¢ and Iioglow are functionally and structurally
independent ion currents.

CaMKII-DEPENDENT REGULATION OF I, EXPRESSION

CaMKII has been shown to influence the expression of channel
isoforms underlying I;,. In mice overexpressing CaMKIIS, it was
shown that total I, density is significantly reduced (Wagner et al.,
2009). This reduction was secondary to a reduced expression of
Kv4.2 with reduced Iy, f,5¢ and accompanied by a prolongation

of the cardiac AP (Wagner etal., 2009). In contrast, expression
of Kvl.4 and i, 40w Were increased but this increase could not
fully compensate the reduction in Iy, fse (Wagner etal., 2009).
Interestingly, chronic CaMKII inhibition in mice by transgenic
expression of the specific CaMKII inhibitory peptide AC3-1, a
derivative of CaMKII substrate autocamtide-3, resulted in an
increase in I, f2s¢ and shorter AP duration. On the other hand,
the increase in Iy, density was absent in crossbred mice express-
ing AC3-I but lacking phospholamban (PLN; Li etal., 2006).
Since mice overexpressing CaMKII3 also develop HF and chronic
CaMKII inhibition may also affect the SR, it is not clear whether
these changes are CaMKII-specific or secondary to remodeling or
interference with other pathways. This is supported by the fact
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that short-term overexpression of CaMKII8 in rabbit myocytes
increases Iy, (Wagner etal., 2009). Similary, in silico experiments
with simulated CaMKII overexpression in rabbit myocytes also
led to an increase in I, along with faster Iy, gow recovery from
inactivation (Grandi etal., 2007). Furthermore, Li etal. (2006)
found no change in the expression of pore-forming subunits
Kv4.2/Kv4.3 underlying increased Iy, but only a downregulation
of the accessory subunit KChIP2, suggesting that the regulation
of Iy, is complex, involving many interacting partners. In this
respect it is not surprising that Kv4.3 and Kv4.2 form large macro-
molecular complexes with other proteins such as diaminopeptidyl
transferase-like protein 6 (DPP6) and Eps15 homology domain-
containing protein 4 (EHD4) (Marionneau etal., 2011). Recent
evidence suggests that these proteins are important for endocyto-
sis, vesicular recycling and trafficking (Cai etal., 2013). Perhaps
more importantly, it has been shown that KChIP1 clamps two
adjacent Kv4.3 a-subunits together via two contact interfaces that
interact with the N-termini of Kv4.3 (Pioletti etal., 2006; Wang
etal., 2006b). This stabilizes Ky4.3 tetramers and also exerts an
influence on current kinetics with current density being increased,
inactivation slowed, and recovery from inactivation enhanced
(Wang etal., 2006b). In addition, KChIP1 has been shown to
be essential for proper Kv4 trafficking to the membrane (Cui etal.,
2008).

More evidence that the downregulation of Kv4 in HF after
CaMKII overexpression may be secondary and not directly
mediated by CaMKII is derived from experiments investigating
the interaction of the MAGUK (membrane-associated guanylate
kinase) protein SAP97 with Kv4.

In neurons, the interaction of the C-terminal Ser-Ala-Leu
(SAL)-sequence of Kv4.2 with SAP97 has been shown to be crucial
for trafficking of Kv4.2 to the synaptic membrane (Gardoni etal.,
2007). Interestingly, this trafficking has been shown to be enhanced
by CaMKII phosphorylation of SAP97 at Serin-39 (Gardoni etal.,
2007). Furthermore, it was shown in cardiac myocytes that
Kv4.2/Kv4.3 channels form complexes with SAP97 and CaMKII
(El-Haou etal., 2009). In the same publication, suppression of
SAP97 in rat atrial myocytes via shRNA led to a decrease in Iy,
whereas SAP97 overexpression resulted in enhanced Iy,. More-
over, expression of Kv4.3 lacking the C-terminal SAL-sequence or
SAPI7 silencing via shRNA abolished the co-precipitation with
CaMKII (El-Haou etal., 2009). Also, inhibition of CaMKII with
autocamtide-2 related inhibitory peptide (AIP) resulted in reduced
I;o and the inhibition was more pronounced after SAP97 over-
expression (El-Haou etal., 2009). Interestingly, recent evidence
suggests that SAP97 is downregulated in patients with dilated
cardiomyopathy (Szuts etal., 2013).

CaMKII-DEPENDENT REGULATION OF I, GATING

The first evidence for a CaMKII-dependent regulation of cardiac
potassium channel gating came from a study investigating human
atrial myocytes (Tessier etal., 1999). The myocytes were isolated
from donors with either chronic atrial dilation or chronic atrial fib-
rillation (AF). Patch—clamp experiments showed that inactivation
of Iy, was accelerated by CaMKII inhibition with either KN-93
or AIP (Tessier etal., 1999). Moreover, Tessier etal. (1999) also
showed an increased expression level of CaMKII in the atrium

of donors with chronic atrial dilation or chronic AF. More evi-
dence for CaMKII regulating I, came from experiments using
transgenic mice overexpressing CaMKII3. and also short-term
CaMKII3, overexpression in rabbit myocytes. It was shown that
the recovery from inactivation of Iy, fase and Iy, gow Was enhanced
by CaMKII overexpression (Wagner etal., 2009). This enhance-
ment could be blocked by acute CaMKII inhibition suggesting
that this was not secondary to HF development (Wagner etal,,
2009). The underlying mechanism of CaMKII-dependent regula-
tion of I, may involve direct CaMKII-dependent phosphorylation
of Kv4.2 at serine 438/459, and of Kv1.4 at serine 123 (Roeper,
1997; Varga, 2004). Patch-clamp experiments in HEK-293 cells
transfected with Kv4.3 showed that addition of autothiophospho-
rylated (pre-activated) CaMKII slowed Iy, inactivation consistent
with the results obtained by Tessier etal. (1999) and enhanced
recovery from inactivation (Sergeant, 2005). Conversely, HEK
cells treated with CaMKII-inhibitor KN-93 or CaMKII-inhibitory-
peptide displayed significantly accelerated current inactivation
and slowed recovery from inactivation (Sergeant, 2005). More-
over, if the C-terminal Kv4.3 mutant (serine 550 to alanine) was
expressed, Iy, inactivation was enhanced and Iy, recovery was
slowed (Sergeant, 2005). Neither addition of autothiophospho-
rylated CaMKII nor dialysis of CaMKII inhibitors could affect
Iio recovery in HEK cells expressing this Kv4.3 S550A mutant
(Sergeant, 2005), supporting the concept that the C-terminus of
Kv4.3 is a hotspot for CaMKII-dependent association and regula-
tion of I, f,s¢ (Figure 2C). Further evidence for a direct regulation
of It fast by CaMKII comes from studies in rat ventricular myocyte
lysates showing that CaMKII co-immunoprecipitates with both
Kv4.3 and Kv4.2 (Colinas, 2006), and inhibition of CaMKII with
KN-93 resulted in a significant acceleration of I, inactivation
even through recovery from inactivation was unaffected (Colinas,
2006).

Interestingly, this CaMKII-dependent enhancement of I;, may
also be important for reactive oxygen-species (ROS) induced
arrhythmogenesis. ROS are known to oxidize and activate CaMKII
(Erickson etal., 2008; Wagner etal., 2011) and ROS-induced
arrhythmias are known to be CaMKII-dependent (Wagner etal.,
2011). Recently, it was proposed that ROS-dependent activation of
It favors EADs by facilitating I, reactivation (Zhao etal., 2012).

Thus, CaMKII8, appears to regulate both channel expression
and/or trafficking, but also acutely regulates channel gating prop-
erties. In both cases, acute regulation results in an enhancement of
Ito. In contrast to this, chronic CaMKII overexpression that leads
to HF development results in a reduction of Iy, but this appears to
be a secondary effect.

Kv4.3 AS AN IMPORTANT REGULATOR OF CaMKII ACTIVITY
While Kv4.3 is an important target for CaMKI], it may also influ-
ence CaMKII localization and activity. Recently, in HEK-293 cells
transfected with Kv4.3 and His-tagged CaMKII, it was shown that
Kv4.3 binds to CaM-dissociated CaMKII competitively at its CaM
binding site (residues 301 and 307; Keskanokwong etal., 2010).
This binding was independent from the auto-phosphorylation
status of CaMKII, since both constitutively active (T-287D) or
inactive (T-287A) CaMKII-mutants could also bind to Kv4.3
(Keskanokwong et al., 2010).
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Since the CaMKII inhibitor KN93 also binds CaMKII at the
CaM binding site (Sumi, 1991), it is conceivable that KN-93 dis-
turbs the interaction of CaMKII and Kv4.3. Consistent with this
idea, Keskanokwong etal. showed that co-purification of Kv4.3
and CaMKII is abolished upon addition of KN-93. Furthermore, it
was shown that application of the Kv4.3 blocker 4-aminopyridine
(4-AP) disturbes the co-purification of CaMKII and Kv4.3 in
HEK-293 cells, while CaMKII auto-phosphorylation is increased
(Keskanokwong et al., 2010). Similarly, increased CaMKII activity
was found in guinea pig ventricular myocytes treated with 4-AP
(Wangetal.,2006a). Moreover, 4-AP-induced blockade of Kv4.3 in
HEK-293 cells has been shown to result in increased apoptosis and
enhanced CaMKII-auto-phosphorylation, while the authors were
able to prevent apoptosis by inhibition of CaMKII with KN-93
(Zhang etal., 2012).

This suggests that Kv4.3 may function as a reservoir for inac-
tive CaMKII-units and exert an influence on CaMKII activation
levels (Figure 2C). In accordance with this hypothesis, in vivo
overexpression of Kv4.3 in mouse ventricular myocardium via
multiple-site virus injection decreased the level of phosphory-
lated CaMKII, while CaMKII expression was not affected. CaMKII
bound to Kv4.3 was also shown to be protected from activation
by systolic Ca transients (Keskanokwong et al., 2010). The Kv4.3-
CaMKII interaction may also be important for the regulation of
other CaMKII target proteins. For instance, it was shown that
blockade of Kv4.3 with 4-AP results in increased I, that could be
blocked by buffering cytosolic Ca with BAPTA or application of
AIP (Wang etal., 2006a).

As previously mentioned, Kv4.3 is downregulated in HF (Kaab
etal., 1998) while CaMKII is upregulated (Hoch etal., 1999). The
CaMKII-Kv4.3 interaction may thus be severely altered in HF, con-
tributing to higher CaMKII activity. In this context, the previously
mentioned role for SAP97 in the regulation of Kv4.3 expression
and Kv4.3-CaMKII interaction may be important. Downregula-
tion of SAP97 in HF (Szuts etal., 2013) may underlie reduced
Kv4.3 and may contribute to increased CaMKII activity.

INWARDLY RECTIFYING CURRENT I,

In contrast to the voltage-gated K channels, inwardly rectifying
potassium channels [Kir2.1 (KCNJ2), Kir2.2 (KCNJj12), Kir2.3
(KCNJ4), and Kir2.4 (KCNJ14)] are formed by four a-subunits
containing only two transmembrane segments (M1-M2) with a
central P-loop but without a voltage-sensor (Figure 2D; Hibino
etal., 2010). The main characteristic of this class of potassium
channels is inward rectification, which features a strong potassium
conductance during hyperpolarization, but a decrease in ion con-
ductance upon depolarization due to blockade of the pore by Mg,
Ca and cell membrane polyamines (Matsuda et al., 1987; Matsuda
and Cruz, 1993; Hibino etal., 2010).

This peculiar inward rectifying property of the Kir2.x channels
that generate Ix; renders these channels important stabilizers of
the resting membrane potential by neutralizing resting influx of
positive ions (Fauconnier et al., 2005). In addition, Kir2.x channels
also contribute to late-phase (phase 4) repolarization (Dhamoon,
2004; Dhamoon and Jalife, 2005; Fauconnier et al., 2005).

In sinoatrial myocytes, the expression of channels forming Ik, is
notably reduced, which allows for an unstable resting membrane

potential that can be depolarized by I¢, thus inducing diastolic
depolarization (Bers, 2002b).

There is evidence that Kir2.x isoforms can assemble as homo-
or heterotetrameres (Zobel et al., 2003). The functional character-
istics of Ix; depend very much on the Kir isoforms that comprise
Ix; (Panama etal., 2010), since rectification of current at depo-
larized membrane potentials ( > —30 mV) is complete for Kir2.1
and Kir2.2, but incomplete for Kir2.3 (Dhamoon, 2004). There
is great variability in the expression of these isoforms between
left and right ventricle (Warren etal., 2003) but also atrium and
ventricle (Gaborit etal., 2007). Similar to channel subunits gen-
erating I, expression of the Kir isoforms appears to be strongly
species-dependent (Jost et al., 2013).

Ca OR CaMKII-DEPENDENT REGULATION OF I,

Ix; functional expression also seems to be regulated differently
under pathophysiological conditions. It was shown that Ix; den-
sity is reduced in failing rat ventricular myocytes (Fauconnier
etal., 2005). Interestingly, this reduction was attenuated in the
presence of high EGTA (10 mmol/L) and abolished if intracel-
lular Ca was buffered with BAPTA (20 mM; Fauconnier etal.,
2005). Moreover, activation of RyR by application of ryanodine
or FK506 led to a similar reduction of Ix; density in non-
failing wild-type rat ventricular cells and this effect could be
blocked by Ca-buffering with BAPTA (Fauconnier etal., 2005).
Whether this reduction occurs via direct Ca-dependent blockade
of Ig; via the mechanism described (Matsuda and Cruz, 1993) or
mechanisms involving altered expression/trafficking of the under-
lying Kir isoforms is, however, completely unknown. Fauconnier
etal. (2005) also suggested the involvement of protein kinase C
(PKC), since the PKC inhibitor staurosporine antagonized the
effect of ryanodine on Ig;. PKC has been shown to phospho-
rylate Kir2.1 at serine 64 and threonine 353, leading to reduced
Ix; in human atrial myocytes (Karle, 2002). On the other hand,
opposite results have recently been shown in canine ventricular
myocytes. Addition of 900 nmol/L Ca in the patch pipette sig-
nificantly increased Ig; current compared to measurements with
160 nM Ca (Nagy etal.,, 2013). Therefore, the effect of Ca on
Ix; may be species-dependent. Supporting evidence comes from
intact field-stimulated (1 Hz) canine right ventricular papillary
muscle. Increasing extracellular Ca from 2 to 4 mmol/L, resulted
inincreased Ca transient amplitude and significantly shortened AP
duration. This Ca-dependent AP shortening could be prevented
by inhibition of Igx; using BaCl,. Moreover, BaCl, preferen-
tially prolonged AP duration at 4 mM [Ca], vs. 2 mM [Ca],.
The authors conclude that Ca-dependent enhancement of Ik,
at least in canine myocytes, may be an important contributor
to repolarization reserve and an endogenous negative feedback
mechanism inhibiting the generation of DADs due to high Ca lev-
els (Nagy etal., 2013). Moreover, Nagy etal. (2013) also showed
that CaMKII inhibition with KN-93 abolished the Ca-induced
activation of Ik, suggesting that CaMKII is also involved in Ig;
regulation. Supporting evidence for a CaMKII-dependent activa-
tion of Ix; also comes from rabbit ventricular myocytes. Acute
overexpression of CaMKII8 by adenovirus-mediated gene trans-
fer resulted in a significant increase in Ix; density that could
be blocked by addition of CaMKII-inhibitory peptide AIP to
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the pipette (Wagner etal.,, 2009). In the same, study, trans-
genic CaMKII3 overexpression in mice that develop HF, however,
resulted in a reduced Ig; density and reduced expression of Kir2.1
(Wagner etal., 2009). Thus, the discrepancy between the stud-
ies showing either increased or decreased Ix; may be due to
species-differences but this remains speculative. In accordance,
mouse ventricular myocytes with transgenic inhibition of CaMKII
showed an increased Ix; and a shorter AP duration without a sig-
nificant change in Kir2.1 and Kir2.2 expression levels (Li etal.,
2006).

Aside from the species, it could also be relevant if the
studied model results in HE It was shown that SAP97 co-
immunoprecipitates with Kir2.2 in rat hearts (Leonoudakis et al.,
2004). Interestingly, in human dilated cardiomyopathy, the co-
localization of SAP97 with Kir2.x was shown to be disturbed (Szuts
etal., 2013). This suggests that a mechanism similar to the above
mentioned Kv4.x-SAP97 interaction may be present. Therefore,
further studies are greatly needed to clarify the importance of Ca
and CaMKII for the regulation of Ix; in different animal models
and in human disease (Table 1).

Ik AND ARRHYTHMIAS

Ik; is generally regarded as anti-arrhythmic by stabilizing resting
membrane potential. In a canine model of tachycardia-induced
HE, reduced Ix; has been shown to increase the propensity for sud-
den cardiac death and ventricular tachycardia (Kb etal., 1996).
Also, loss of function mutations in KCNJ2 have been associated
with long QT syndrome (LQT7), in which increased AP duration
and increased propensity for arrhythmias can be observed (Tsuboi
and Antzelevitch, 2006).

On the other hand, contrasting results have been shown
for wild-type Kir2.1 overexpressing mice that have an increased
propensity for ventricular arrhythmias (Noujaim et al., 2006; Piao
etal., 2007) or AF (Li, 2004). Kir2.1 knock-down in mice was
associated with longer AP duration and a reduced incidence of
premature ventricular contractions before and after AV node abla-
tion, reduced arrhythmias due to extracellular hypokalemia, and
a reduced incidence of halothane-induced ventricular tachycardia
(Piao etal., 2007).

This discrepancy may be solved by the fact that both increase
or decrease of Ix; can be pro-arrhythmic if there is a substantial
spatial heterogeneity in the functional expression profile (Sekar
etal., 2009). In accordance with this, gain-of-function mutations
in KCNJ2 can result in short QT syndrome (SQT?3), which is also
pro-arrhythmogenic (Brenyo etal., 2012).

DELAYED RECTIFYING K CHANNELS

The three channels Kv1.5 (KCNA5), hERG (KCNH2), and Kv7.1
(KCNQI) comprise the group of the delayed rectifying K chan-
nels. They generate Iy, (ultra rapid), Ix, (rapid), and Ik (slow),
respectively. Together, they are important currents for phase 3
repolarization.

Ikur is only present in atrial myocardium. In chronic human AF,
it was shown that AP duration is reduced, possibly contributing
to the arrhythmogenic mechanisms (Wettwer, 2004). Evidence for
a role of Kv1.5 in AF came from a study investigating pharma-
cological Kv1.5 inhibition in a canine model of AF (Regan etal.,

2007). They could show that AF terminates if Kv1.5 is inhibited.
Furthermore, SAP97 was reported to co-immunoprecipitate with
Kvl.5 (Murata etal., 2001) resulting in increased Ig,, (Godreau
etal., 2002; Eldstrom et al., 2003).

Since SAP97 and CaMKII have been shown to interact
(El-Haou etal., 2009), CaMKII expression is increased in AF
(Tessier etal., 1999; Neef etal., 2010), and given the similarities
between SAP97-dependent Kv4.3 and Kv1.5 regulation (Tessier
etal., 1999; Godreau etal., 2002; El-Haou etal., 2009), it seems
tempting to speculate that CaMKII could also regulate Kv1.5.
Interestingly, in human atrial myocytes it was shown that CaMKII§
is especially localized at intercalated disks, the region where Kv1.5
is also located (Tessier etal., 1999). Furthermore, Tessier etal.
(1999) showed that selective inhibition of CaMKII with KN-93
or AIP reduced the amplitude of the sustained component of out-
ward K current (Ig,s), whereas inhibition of phosphatases with
okadaic acid increased I,s (Tessier et al., 1999; Tessier, 2001). This
Lys is regarded as mainly generated by Kv1.5 (Fedida etal., 1993),
suggesting that CaMKII, possibly by phosphorylation, regulates
Kv1.5 (Tessier etal., 1999).

Besides Ik, other K currents may also be involved in AF. Ik,
for instance, has been shown to be upregulated in AF possibly
contributing to shortening of AP duration (Dobrev and Ravens,
2003).

Igs is comprised of the pore-forming a-subunit Kv7.1, but
also the auxiliary B-subunit KCNE1 (Ruscic etal., 2013). Loss-
of-function mutations in KCNQI are linked to an increase in
AP duration associated with long QT-syndrome type I, whereas
gain-of-function mutations in KCNQI are associated with short
QT-syndrome (SQT2) (Brenyo etal., 2012) and familial AF (Chen
etal., 2003). Additionally, loss-of-function mutations in KCNEI
have been associated with long QT-syndrome 5 (Splawski etal.,
1997), which points out the important role of KCNE1 for the gen-
eration of Is. Indeed it has been shown that KCNE1 is important
in slowing down the movement of the voltage-sensor S4 of Kv7.1
upon depolarization, thus explaining the slow activation kinet-
ics of Igs (Ruscic etal., 2013). Similar mechanisms may very well
regulate other voltage-gated channels and underlie their distinct
activation kinetics.

Interestingly, co-immunoprecipitation experiments in yeast
cells expressing wild-type Kv7.1 or mutated Kv7.1 with truncated
a-helices showed that calmodulin can bind to the C-terminus of
Kv7.1 (Shamgar, 2006). This IQ-motif appears to be a hot spot
for mutations: yeast 2-hybrid experiments indicated that KCNQI
mutations A371T and S373P, which are associated with LQTS, lose
their calmodulin-Kv7.1 interaction.

Moreover, agarose-pulldown assays in HEK-293 cells revealed
that LQTS-associated Kv7.1 mutants W392R, S373P, and A371T
bound significantly less calmodulin than wild-type Kv7.1 (Sham-
gar, 2006). This disturbed calmodulin- Kv7.1 interaction may be
important for channel expression. Cell surface expression exper-
iments with biotinylated channel proteins showed that mutants
with impaired CaM-binding are significantly less expressed than
wild-type Kv7.1 (Shamgar, 2006). Interestingly, overexpression of
calmodulin in HEK-293 cells either expressing wild-type Kv7.1 or
mutant S373P showed significant increases in Kv7.1 (5x) as well as
S373P (100x) cell surface and protein expression, which highlights
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the important role of calmodulin for I assembly and cell surface
expression (Shamgar, 2006).

In addition, the CaM- Kv7.1 interaction may also be relevant for
the regulation of Ik, gating. Patch-clamp experiments of inside-
out membrane from Xenopus oocytes showed that application of
calmodulin antagonist W7 significantly reduced current density of
Kv7.1/KCNE1, while an increase in Ca significantly shifted voltage-
dependence of channel activation toward more hyperpolarized
membrane potentials (Shamgar, 2006).

Thus, the interaction of calmodulin and Kv7.1 appears to be
critical for expression and function of Igs, with the intriguing pos-
sibility that regulatory mechanisms could also involve some form
of CaMKII interaction with calmodulin and Kv7.1 or KCNEL.

ATP-SENSITIVE POTASSIUM CURRENT Kprp

The ATP-sensitive potassium current Karp, comprising of Kir6.1
(KCNJ8) and Kir6.2 (KCNJII) a-subunits, plays an important
role in ischemic preconditioning (Li etal., 2007). Karp can be
a substrate for CaMKII: in mice expressing CaMKII-inhibitory
peptide AC3-1, an increased Karp current density has been shown
along with an increase in the sarcolemmal Kir6.2 membrane
surface expression (Li etal., 2007). Also, recent evidence from
pancreatic B-cells suggests that Kir6.2 can be phosphorylated by
CaMKII at threonine 224 (Kline etal., 2013). Co-expression of
CaMKII and Kir6.2 in COS-cells resulted in a decreased Karp
current.

The significance of Karp in HF and arrhythmogenesis is still
largely unknown. There is evidence suggesting that Karp-channel
opening with cromakalim produces more stable ventricular
arrhythmias (Quintanilla etal., 2013). In addition, Langendorft-
perfused canine failing hearts with induced VF showed an
increased rate of spontaneous VF termination, if Kayrp was blocked
with glibenclamide (Taylor etal., 2012). Also, recently, a mutation
in cardiac Kir6.1 that is associated with gain of function has been
identified in a patient with early repolarization syndrome (see
above; Medeiros-Domingo etal., 2010).

On the other hand, Ksrp-blockade with glibenclamide in non-
failing canine hearts with induced VF delayed the termination of
VF (Taylor etal., 2012). Thus, the role of cardiac Karp and its
regulation by CaMKII has yet to be evaluated.

SUMMARY

While there is increasing evidence for an involvement of CaMKII
in the regulation of K channels, many discrepancies are not yet
understood. These discrepancies result from the great variability in
the expression profile of K channels in different species and disease
models. The greatest evidence so far exists for CaMKII-dependent
regulation of Kv4.x expression, trafficking and function. Most
intriguingly, the Kv4.x macromolecular complex appears to serve
as a hotspot and reservoir for CaMKII, which may have profound
impact on the regulation of various other CaMKII targets like Ca
channels. CaMKII expression and activity has been shown to be
increased in many animal models of HF, but also in human HFE.
Increased CaMKII activity has been shown to induce contractile
dysfunction and arrhythmias. Therefore, a more detailed under-
standing of the mechanisms of K channel regulation by CaMKII
is warranted.
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