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Fibroproliferative diseases are responsible for 45% of deaths in the developed world. Curing
organ fibrosis is essential for fibroproliferative diseases. Diabetic nephropathy is a common
fibroproliferative disease of the kidney and is associated with multiorgan dysfunction. How-
ever, therapy to combat diabetic nephropathy has not yet been established. In this review,
we discuss the novel therapeutic possibilities for kidney fibrosis in diabetes focusing on
the endogenous anti-fibrotic peptide, N -acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), which
is the substrate for angiotensin-converting enzyme and exhibits meaningful anti-fibrotic
effects in various experimental models of fibrotic disease.
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INTRODUCTION
Diabetic nephropathy is the leading cause of end-stage renal dis-
ease (ESRD) worldwide (Ritz et al., 1999; Viswanathan, 1999;
Parving, 2001; Remuzzi et al., 2002). Current treatment strategies
can partially slow the progression of the disease, but completely
ceasing the progression of diabetic nephropathy is challeng-
ing (Lewis et al., 1993; Brenner et al., 2001). Once diabetic
nephropathy progresses to ESRD, management with dialysis is
associated with increased cardiovascular morbidity and mortal-
ity compared to non-diabetic ESRD (Parving, 2001; Remuzzi
et al., 2002). Diabetic organ injuries are essentially due to glu-
cose metabolism defects. Therefore, normalizing blood glucose
homeostasis is essential for diabetes therapies (The Diabetes Con-
trol and Complications Trial Research Group, 1993; Ohkubo
et al., 1995; UK Prospective Diabetes Study [UKPDS] Group,
1998). However, recent clinical trials have indicated that the
normalization of blood glucose levels is challenging in diabetes
owing to an increased mortality risk, which is likely asso-
ciated with frequent hypoglycemia (Ismail-Beigi et al., 2010).
Consistent with this problem, blood glucose-lowering strate-
gies aimed at normalizing the blood glucose level resulted
in an increased mortality for the patients recruited to the
intensive therapy group of the ACCORD trial (Ismail-Beigi
et al., 2010). Therefore, to ameliorate the mortality associ-
ated with diabetic complications, additional therapeutic strate-
gies to those that target proper blood glucose control are
required.

Fibrosis is the final common pathway of progressive
kidney diseases (similar to what occurs in other organs)

and results in the destruction of the normal kidney struc-
ture and a significant deterioration in kidney function (Ris-
don et al., 1968; Schainuck et al., 1970; Striker et al., 1970;
Mackensen-Haen et al., 1981; Nath, 1992; Kanasaki et al., 2012).
Kidney fibrosis is induced by prolonged damage associated
with impairment of the normal regulatory mechanisms for
wound healing and an accumulation of extracellular matrix
(ECM). Kidney fibroblasts play an important role in this
fibrotic process, but the origin of the fibroblasts remains
unclear and has become the focus of intense debate (He
et al., 2013; Kanasaki et al., 2013). Despite such a contro-
versial discussion, significant heterogeneity for the matrix-
producing fibroblasts is thought to exist (Kanasaki et al., 2013),
and diverse origins for the fibroblasts have been described,
such as resident fibroblasts, resident pericytes, epithelial-to-
mesenchymal transition (EMT), and endothelial-to-mesenchymal
transition (EndMT) (Kanasaki et al., 2013). The activation
of such fibroblasts is important for the development of
matrix-producing fibroblasts, and inhibiting this process could
be a promising therapeutic target for diabetic kidney dis-
ease.

N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), an endoge-
nous anti-fibrotic peptide, is a substrate for angiotensin-
converting enzyme, and the plasma level of AcSDKP has been
shown to increase by fivefold after acute administration of
the ACE-inhibitor (ACE-I) captopril (Azizi et al., 1996). In
this review, we focus on the use of AcSDKP to treat diabetic
kidney disease by analyzing the potential mechanisms involving
AcSDKP.
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AcSDKP SYNTHESIS
AcSDKP is a tetrapeptide originally isolated from fetal calf bone
marrow (Lenfant et al., 1989), and studies have recently focused
on its anti-fibrotic property.

The details for the synthetic pathways responsible for the
endogenous synthesis of AcSDKP are not yet clear, but the avail-
able information strongly suggests that thymosin β4 (Tβ4), one
of the G-actin-sequestering peptides, is the most likely candidate
for the AcSDKP precursor (Grillon et al., 1990; Liu et al., 2010;
Figure 1). In HeLa cells, when Tβ4 was knocked down using
Tβ4 small interfering (si)RNA, there was significant suppression
of AcSDKP expression (Liu et al., 2010). Furthermore, Lenfant and
colleagues elegantly demonstrated that incubating radiolabeled
[3H] Tβ4 with bone marrow cells or bone marrow lysate results in
the formation of [3H]AcSDKP (Grillon et al., 1990). AcSDKP is the
N-terminal sequence of Tβ4 (Figure 1), and AcSDKP was thought
to be synthesized by cleavage employing Asp-N endopeptidase
(Grillon et al., 1990). However, Asp-N is found only in bacteria
and not in vertebrates. Therefore, Cavasin et al. (2004) investi-
gated other enzymes that may be responsible for Tβ4-mediated
AcSDKP production, and they identified that prolyl oligopeptidase
(POP; in some papers described as prolyl endopeptidase, PREP) is
responsible for Tβ4-mediated AcSDKP production (Cavasin et al.,
2004; Figure 1).

In addition to AcSDKP, the Tβ4 precursor peptide displays
anti-fibrotic and tissue-protective effects. Tβ4 is a 43 amino acid
peptide (4.9 kDa) that can sequester G-actin and regulate its poly-
merization to F-actin (Huff et al., 2001; Hannappel, 2010). Tβ4
is expressed ubiquitously and exhibits various biologically signif-
icant activities (Huff et al., 2001; Hannappel, 2010). The utility
of Tβ4 has been shown by Bock-Marquette et al. (2004), whereby
exogenous intracardiac and intraperitoneal Tβ4 administration
significantly restored cardiac function by neovascularization in
an experimental myocardial infarction mouse model. Cardiac
function restoration by Tβ4 has also been shown to occur by
epicardial progenitor mobilization (Smart et al., 2007). Together,
these reports suggest that Tβ4 exhibits organ-protective effects
associated with anti-fibrosis and enhanced angiogenesis. It is

FIGURE 1 | Synthesis and metabolism of AcSDKP. Tβ4, a G-actin binding
peptide, is cleaved by POP, and subsequently its N-terminal tetrapeptide,
AcSDKP, is synthesized. AcSDKP is hydrolyzed and degraded by ACE. ACE-I
may suppress miR-324-3p, which may inhibit protein expression of POP.
Therefore, the mechanisms underlying the increased levels of AcSDKP by
ACE-I may include both the suppression of degradation pathway and the
induction of synthesis pathway of AcSDKP.

unknown how AcSDKP contributes to Tβ4-mediated organ pro-
tection, but a recent paper has suggested that the anti-fibrotic
effects of Tβ4 were lost when POP was inhibited in unilateral
ureteral obstruction (UUO) models (Zuo et al., 2013).

METABOLISM OF AcSDKP AND ACE STRUCTURE
As mentioned above, AcSDKP is produced by POP from the N-
terminal peptide sequence of Tβ4, and AcSDKP is hydrolyzed in
the presence of ACE (Figure 1). The plasma level of AcSDKP
is minimal in normal conditions, and the AcSDKP concentra-
tion increased fivefold following administration of captopril (Azizi
et al., 1996). For ACE, there are two catalytic domains, namely the
N-terminus and C-terminus, which contain the HEMGH consen-
sus amino acid sequence. This motif is responsible for binding
zinc and is crucial for enzymatic activity. These catalytic domains
are responsible for the cleavage of target substrates (Figure 2;
Wei et al., 1991; Bernstein et al., 2011). The overall amino acid
homology between these two ACE catalytic domains is approxi-
mately 60%, and the homology reaches approximately 89% in the
portions involved in catalysis (Bernstein et al., 2011). Studies of
the genomic DNA exons and exon–intron boundaries have sug-
gested that the ACE gene in higher organisms is the result of an
ancient gene duplication event (Hubert et al., 1991). The resultant
ACE, which has two catalytic sites, is a so-called somatic ACE, an
isozyme present in the plasma and generated by the endothelium,
kidneys, and other somatic tissues. By contrast, the testis ACE,
an ACE composed of only the C-terminal domain and not the
N-terminal domain, is only expressed by developing male germ
cells and is a smaller protein. This testis ACE, which lacks the N-
terminal domain, is important because male mice lacking testis
ACE exhibit fertility problems compared to wild-type mice (Krege

FIGURE 2 |Two catalytic domains of ACE and biological roles of ACE in

tissue fibrosis. In ACE, there are two catalytic sites. Angiotensin I exerts
higher affinity for the C-terminal catalytic site of ACE. AcSDKP is a
substrate for the N-terminal domain. ACE may induce tissue fibrosis by
both the production of angiotensin II and the decreased level of AcSDKP.
Captopril exhibits higher affinity for the N-terminal catalytic sites of ACE
when compared with C-terminal catalytic sites. Furthermore, NaCl
restriction on top of RAS-blockade may increase AcSDKP levels by
unknown mechanisms.
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et al., 1995; Esther et al., 1997; Fuchs et al., 2005). The testis ACE
has been suggested to be the primordial form of ACE (Bernstein
et al., 2011). These two ACE isozymes result from two separate
promoter regions in the ACE gene (Howard et al., 1990; Langford
et al., 1991).

Such ACE gene duplication is suspected to have occurred early
in evolution and might have occurred before mammalian dif-
ferentiation (Hubert et al., 1991). These two catalytic domains
have been suggested to be functionally different (Figure 2).
An ACE or an ACE-like enzyme is present in mammals, fish,
worms, insects, crabs, and even ticks (Coates et al., 2000; Macours
and Hens, 2004). Two ACE homologs, Ance and Acer, in D.
melanogaster (Cornell et al., 1995; Houard et al., 1998; Bingham
et al., 2006; Akif et al., 2010) have been studied comprehensively.
In D. melanogaster, each of these enzymes has a single catalytic
domain. An analysis of the gene structure and the enzymatic
properties of each protein has revealed that Ance is similar to the
C-terminal domain of somatic ACE and that Acer is more similar
to the N-terminal domain of somatic ACE. Studies have suggested
that the ACE gene duplication in vertebrates occurred approx-
imately 330–350 million years ago (Cornell et al., 1995). Both
the N-terminal and C-terminal catalytic domains of ACE have
been conserved over a longer period of time, thus suggesting that
each ACE domain displays an important and different physiologic
role.

Bradykinin is hydrolyzed at approximately the same ratio
via both of these catalytic domains. Additionally, either the
N-terminal or C-terminal catalytic domain can cleave angiotensin-
I. The C-terminal domain has a fivefold higher affinity for
angiotensin I (Figure 2; Wei et al., 1991; Rousseau et al., 1995;
Bernstein et al., 2011). The affinity of angiotensin-I for the ACE
catalytic site results in an interesting profile for blood pressure
homeostasis. Mutant mice for each catalytic site of ACE, includ-
ing the N-terminal (ACEN-KO; Fuchs et al., 2004) and C-terminal
(ACEC-KO; Fuchs et al., 2008) domains, have normal blood pres-
sure, but the underlying mechanisms by which blood pressure can
be maintained are different, which is mainly due to the affinity of
angiotensin I for the ACE catalytic domain. ACEN-KO mice have
similar plasma levels of angiotensin I and renin compared to wild-
type mice (Fuchs et al., 2004). In ACEN-KO mice, the C-terminal
catalytic ACE domain is intact. Normal levels of angiotensin I and
renin with a normal blood pressure indicate that the C-terminal
domain of ACE is responsible for the majority of angiotensin II
production in a normal state, thus resulting in no compensatory
induction of renin or angiotensin I to maintain blood pressure in
the ACEN-KO mice (Fuchs et al., 2004). In ACEC-KO mice, the
mice with an intact N-terminal catalytic ACE domain have nor-
mal blood pressure similar to ACEN-KO mice, but the underlying
mechanisms are completely different (Fuchs et al., 2008). Inter-
estingly, the ACEC-KO mice have a significantly higher plasma
angiotensin I level (approximately sevenfold) and plasma renin
concentration (2.6-fold) compared to wild-type mice suggesting
relatively lower catalytic effects of the N-terminal domain on
angiotensin II production. Such an insufficient catalytic ability
for converting angiotensin I to angiotensin II by the N-terminal
ACE domain results in the compensatory induction of renin and
subsequent elevation of angiotensin I. As a result, the angiotensin

II levels are maintained to keep the blood pressure at normal
levels.

In this regard, the affinity of each ACE-I for the ACE catalytic
domains is structure dependent (Figure 3). The hydrophobic moi-
eties of ACE-Is have been suggested to play an essential role in
domain selectivity (Zisman, 1998). For instance, captopril, the
first ACE inhibitor used clinically, exhibits approximately a three-
fold greater affinity for the N-terminal domain compared to the
C-terminal domain. By contrast, the relatively newer ACE-Is, such
as enalaprilat, lisinopril, and trandolapril, display a higher affin-
ity (approximately 4–20 times higher) for the C-terminal domain
(Acharya et al., 2003) because these drugs were developed as anti-
hypertensive drugs (chemical structures of each ACE-I are shown
in Figure 3).

AcSDKP is hydrolyzed only by the N-terminal catalytic ACE
domain (Figure 2). In fact, the testis (where the germinal-type
ACE is expressed) is associated with a higher level of AcSDKP
relative to other tissues (Stephan et al., 2000; Fuchs et al., 2004).
The role of the N-terminal ACE domain in the degradation of
AcSDKP and its biological significance have been successfully
reported by Li et al. (2010), who analyzed bleomycin-induced lung
injury in wild-type, ACEC-KO, and ACEN-KO mice. The ACEN-
KO mice had significantly less bleomycin-induced lung fibrosis as
analyzed by lung histology and hydroxyproline level. Such pro-
tection against bleomycin-induced injury was not found in the
ACEC-KO mice. Because the ACEN-KO mice had an elevated level
of AcSDKP, the authors examined the effects of S-17092, a POP
inhibitor. As mentioned above, POP is the enzyme responsible
for AcSDKP production from Tβ4. As expected, the S-17092-
treated ACEN-KO mice developed lung fibrosis similar to the
wild-type mice. AcSDKP administration to the wild-type mice
reduced bleomycin-induced lung fibrosis. This study revealed that
AcSDKP elevation caused by inhibition of the N-terminal cat-
alytic ACE domain leads to significant endogenous anti-fibrosis
signaling in the lungs (Li et al., 2010). Therefore, an N-terminal
catalytic domain-specific ACE-I, such as RXP407 (Figure 2),
may have great potential as an antifibrotic therapy (Junot et al.,
2001; Vazeux et al., 2001; Kroger et al., 2009; Anthony et al.,
2010).

CELL CYCLE CONTROL AND AcSDKP
AcSDKP is a naturally occurring inhibitor of hematopoietic stem
cell proliferation that prevents entry into the S phase from G1 in
the cell cycle (Wdzieczak-Bakala et al., 1990). The effect of AcSDKP
on cell proliferation is not limited to hematopoietic stem cells, and
AcSDKP has been shown to inhibit human mesangial cell pro-
liferation (Kanasaki et al., 2006) as well as renal (Iwamoto et al.,
2000) and cardiac fibroblast (Rhaleb et al., 2001a) proliferation.
Moreover, AcSDKP has been shown to inhibit collagen deposition
in mouse cardiac fibroblasts (Rhaleb et al., 2001a). The detailed
mechanisms for AcSDKP-mediated cell cycle regulation are not
yet clear, but AcSDKP may inhibit serum-stimulated extracellu-
lar signal-regulated kinase (ERK) signaling. Alternatively, as we
have shown in mesangial cells, AcSDKP may inhibit cell cycle pro-
gression/DNA synthesis stimulated by serum or platelet-derived
growth factor-B in human mesangial cells through the induction
of cell cycle regulators, such as p53, p27kip1, and p21cip1, together
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FIGURE 3 | Chemical structure of ACE inhibitors.

with the inhibition of cyclin D1 (Kanasaki et al., 2006). Addition-
ally, p53 induces the expression of p21cip1 and p27kip1, together
with inhibition of the cell cycle at G1/S (Kanasaki et al., 2006). In
mesangial cells, p53 is a key regulator for the induction of these
cell cycle modulators (Kanasaki et al., 2006). Supporting the role
of p53 in cell cycle inhibition, AcSDKP inhibits cell cycle progres-
sion in normal cells, but AcSDKP does not suppress progression
in chronic myeloid leukemia (CML) progenitors in long-term
culture (Cashman et al., 1994) as these cells frequently exhibit
p53 deficiency (Chen et al., 1990; Feinstein et al., 1991; Bi et al.,
1992). Indeed, siRNA-mediated gene silencing of p53 in human
mesangial cells has been shown to abolish AcSDKP-mediated cell
cycle inhibition of mesangial cells proliferation (Kanasaki et al.,
2006). These data suggest that AcSDKP inhibits mesangial cell
proliferation through p53 induction.

ANTI-FIBROTIC EFFECTS OF AcSDKP
AcSDKP reportedly exhibits anti-fibrotic organ-protective effects
in various experimental models (Fromes et al., 2006; Omata et al.,
2006; Castoldi et al., 2013; Zuo et al., 2013). Additionally, we have
reported that AcSDKP prevents mesangial matrix expansion in
diabetic db/db mice (Shibuya et al., 2005). Cavasin et al. (2007)
reported that endogenous levels of AcSDKP play an important
role for anti-fibrotic effects. Fibroblasts play an important role in
tissue fibrosis. As mentioned previously, AcSDKP has been shown
to suppress the proliferation of renal (Iwamoto et al., 2000) and
cardiac fibroblasts (Rhaleb et al., 2001a).

The local accumulation of pro-fibrotic cytokines in the
microenvironment following kidney insult results in ECM-
producing cell activation, which is essential for renal fibrogenesis.
The fundamental matrix-producing cells, which generate a large
quantity of interstitial matrix components (including fibronectin

and type I and type III collagens), are indeed fibroblasts (Strutz and
Zeisberg, 2006). Activated fibroblasts (or myofibroblasts) would be
an important source of ECM-producing renal cells, but almost
all cell types (either resident or non-resident kidney cells) are
responsible for ECM production (Kanasaki et al., 2013). Those
cells include resident fibroblasts, tubular epithelial cells, vascu-
lar smooth muscle cells, and a subset of invading macrophages.
In such a process, the profibrotic cytokine, transforming-growth
factor-(TGF)-β, has a fundamental role. Consistent with this infor-
mation, blocking either TGF-β or the TGF-β-stimulated Smad
transcriptional factor signaling pathway has been shown to exhibit
anti-fibrotic effects (Border and Noble, 1994; Miyazono, 2000;
Kanasaki et al., 2003, 2011; RamachandraRao et al., 2009; Takakuta
et al., 2010; Hills and Squires, 2011; Lan, 2011; Sharma et al.,
2011; Choi et al., 2012). In fibrotic kidneys, activated fibroblasts
express α smooth muscle actin (αSMA) and are often called myofi-
broblasts, which display unique contractile properties (Strutz and
Zeisberg, 2006). The renal myofibroblast is thought to be an acti-
vated fibroblast that plays a role during kidney fibrosis. Thus,
numerous studies have been performed to analyze the origin, acti-
vation, and regulation of these matrix-producing myofibroblasts
(Grande and Lopez-Novoa, 2009; Meran and Steadman, 2011).

There are five well-reported sources of matrix-producing
myofibroblasts (Figure 4), including activated resident fibrob-
lasts, differentiated pericytes, recruited circulating bone marrow-
derived cells, and mesenchymal cells transformed from tubular
epithelial cells or endothelial cells (Barnes and Gorin, 2011).
There are intense debates regarding such diverse myofibroblast-
generating pathways and their contribution in renal fibrosis
(Zeisberg and Duffield, 2010). However, even though many
studies focused on analyzing the number of myofibroblast and
their origin, the most important clue to understand kidney
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FIGURE 4 | Diverse origins of myofibroblasts. Kidney fibrosis is a well-coordinated event originating from various sources: (1) tubular epithelial cells;
(2) interstitial resident fibroblasts; (3) endothelial cells; (4) bone marrow-derived cells; and (5) pericytes that contribute to myofibroblast activation/formation.

fibrosis is the functional interaction and effects of these fibrob-
lasts and resident kidney cells. Thus, Kalluri and colleagues
reported a breakthrough observation regarding the origin and
function of kidney myofibroblasts (LeBleu et al., 2013). In a recent
publication analyzing a UUO model by LeBleu et al. (2013), the
accumulation of myofibroblasts in the kidneys arose from pre-
dominantly two different origins as follows: local proliferation
of resident kidney fibroblasts (∼50%) and bone marrow-derived
cells without any evidence of proliferation in the kidney (35%).
Bone marrow-derived mesenchymal stem cells can differentiate
into myofibroblasts in the presence of TGF-β1. Surprisingly, while
the loss of Tgfbr2 in αSMA+ cells led to an approximately 56%
reduction in the accumulation of myofibroblasts, only an approx-
imately 29% reduction in kidney fibrosis was found. Additionally,
F4/80+ and CD11b+ macrophage recruitment was significantly
reduced in mice lacking Tgfbr2 in their αSMA+ cells. The loss
of Tgfbr2 in αSMA+ cells likely affects myofibroblasts specifically
derived through differentiation.

The administration of AcSDKP ameliorated kidney fibrosis
and glomerular sclerosis in hypertensive rats as well as in dia-
betic and non-diabetic kidney disease models without altering
blood pressure (Peng et al., 2001; Rhaleb et al., 2001b). While
many reports have consistently shown strong anti-fibrotic effects
in vivo and the direct effects of AcSDKP on culture fibroblast in
vitro, it is still unclear how AcSDKP affects fibroblast activation or
differentiation into myofibroblasts. There were two publications
that describe the association between AcSDKP and myofibrob-
last differentiation. The first report by Peng et al. (2010) found
that human cardiac fibroblasts treated with TGF-β1 transform
into myofibroblasts as indicated by increased expression of αSMA
and a higher expression of the embryonic isoform of smooth

muscle myosin compared to untreated cells, and this report also
demonstrated that AcSDKP inhibited TGF-β1-induced differen-
tiation of cardiac fibroblasts into myofibroblasts. The second
report by Xu et al. (2012) demonstrated that AcSDKP inhibits
the TGF-β1-induced pulmonary fibroblast transformation into
myofibroblasts and myofibroblast localization in siliconic nodules
in the lung. These reports described the suppressive effects of AcS-
DKP on myofibroblast differentiation, but further investigations
are needed to reveal both the specific origin of myofibroblasts
and specific target molecules affected by AcSDKP. Regard with
this, we have recently shown that AcSDKP may inhibit EndMT
via restoration of fibroblast growth factor receptor (FGFR) and
FGFR-associated induction of microRNA let-7, the critical factors
for the maintenance of endothelial homeostasis (Chen et al., 2012),
in diabetic mice kidneys (Nagai et al., 2014).

We and others have shown that AcSDKP inhibits TGF-β-
induced Smad2 phosphorylation (Figure 5), and the anti-TGF-
β/Smad pathway is the key to understand its antifibrotic effect
(Pokharel et al., 2002; Kanasaki et al., 2003). Additionally, this
observation identifies AcSDKP as the first endogenous circula-
tory molecule that specifically inhibits TGF-β-induced receptor
regulated (R)-Smad phosphorylation. The Smads are transcrip-
tion factors specific to the TGF-β superfamily and play a
central role in signal transduction from cell membrane recep-
tors (Border and Noble, 1994; Miyazono, 2000). Depending
on their role in signaling, Smads are classified into three cat-
egories as follows: (a) receptor-regulated Smads, or R-Smads
(Smad2 and 3); (b) common Smad, or co-Smad (Smad4);
and (c) inhibitory Smads, or I-Smads (Smad6 and 7). Once
TGF-β binding occurs, the type II receptor physically inter-
acts with the type I receptor inducing the phosphorylation of

www.frontiersin.org April 2014 | Volume 5 | Article 70 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Kanasaki et al. AcSDKP: an endogenous anti-fibrotic peptide

FIGURE 5 | AcSDKP is an anti-TGF-β/Smad peptide. Once TGF-β binds to
TGF-β receptors on the cell membrane, the TGF-β and TGF-β-receptor
interaction induces phosphorylation of receptor-regulated (R)-Smads.
Phosphorylated R-Smads interact with the common (co)-Smad in the
cytoplasm. These Smad heterodimers in the nucleus then bind to the
genomic promoter region of DNA, which is called the Smad-binding
element (SBE). AcSDKP may induce Smad7 gene expression, protein
stabilization, or translocation from the nucleus of cells to the cytoplasm as
well as inhibit phosphorylation of R-Smads by TGF-β receptors. However,
detailed mechanisms are not yet known.

serine residues on the type I receptor (Figure 5; Wrana et al.,
1992). The phosphorylated type I receptor phosphorylates R-
Smads, and phosphorylated R-Smads subsequently interact with
co-Smads in the cytoplasm (Figure 5). The R-Smad and co-
Smad heterodimers then translocate into the nucleus (Figure 5)
with the help of importin-β (Xiao et al., 2000; Kurisaki et al.,
2001). The Smad heterodimers bind to the Smad-binding ele-
ments of the target promoter DNA regions (Figure 5). By
contrast, I-Smads localize to the nucleus (Figure 5; Kanasaki
et al., 2003), and nuclear-localized I-Smads translocate to the
cytoplasm following TGF-β stimulation. I-Smad is believed
to competitively inhibit R-Smad phosphorylation by the type
I receptor or induce ubiquitination of the receptors by I-
Smad interaction with E3 ligase smurf proteins (Nakao et al.,
1997; Ebisawa et al., 2001; Gronroos et al., 2002; Suzuki et al.,
2002).

Although the underlying mechanisms by which AcSDKP
inhibits TGF-β-induced phosphorylation of R-Smad are not
completely known, I-Smads are likely involved at least in part
(Figure 5). We have shown that the incubation of human
mesangial cells in the presence of AcSDKP results in the
cytoplasmic translocation of Smad7 (one of the I-Smads) in
the absence of TGF-β stimulation (Figure 5; Kanasaki et al.,
2003). Several studies have reported an increased Smad7
level in vivo following AcSDKP administration supporting the
Smad7-mediated anti-TGF-β/Smad effects of AcSDKP (Figure 4;
Omata et al., 2006; Lin et al., 2008). Alternatively the sup-
pression of TGF-β type I receptor levels via microRNA let-7
(Chen et al., 2012) induced by AcSDKP (Nagai et al., 2014)
may contribute to the AcSDKP-inhibited R-Smad phosphoryla-
tion.

AcSDKP AND APOPTOSIS
AcSDKP was originally identified as a regulator of hematopoi-
etic stem cells (Lenfant et al., 1989; Pradelles et al., 1990, 1991).
AcSDKP can suppress apoptosis of hematopoietic cells induced
by cytotoxic stresses, such as chemotherapy (Bogden et al., 1991;
Grillon et al., 1993), radiation (Watanabe et al., 1996; Deeg et al.,
1997), high temperature (Wierenga and Konings, 1994; Wierenga
et al., 1998, 2000), and photofrin II-mediated phototherapy (Cout-
ton et al., 1994). Enhanced apoptosis is linked to tissue fibrosis,
and inhibition of the apoptosis pathway has been associated with
anti-fibrosis therapy in several organs (Gieling et al., 2008; Cow-
ard et al., 2010; Rodriguez-Iturbe and Garcia Garcia, 2010; Dooley
et al., 2011).

AcSDKP AND INFLAMMATION
Inflammation is essential for tissue repair, except in embryos
where tissue repair can be completed without typical inflam-
mation (Bullard et al., 2003; Redd et al., 2004). In adults, organ
inflammation is closely linked to tissue repair, the regeneration
of parenchymal cells and filling in tissue defects with fibrous tis-
sue, such as scar formation (Wynn, 2007). Moreover, progressive
fibrosis with sustained inflammation is recognized as a type of
chronic wound with normal wound healing defects (Liu, 2011). In
experimental animal models, the amelioration of tissue fibrosis by
AcSDKP has been associated with inhibition of inflammation in
the kidneys, heart, and liver (Yang et al., 2004; Omata et al., 2006;
Peng et al., 2007; Lin et al., 2008; Sharma et al., 2008; Liu et al.,
2009b; Chen et al., 2010). AcSDKP suppresses monocyte chemoat-
tractant protein-1 (MCP-1; Wang et al., 2010), one of the key
chemokines that regulates macrophage infiltration. AcSDKP has
been shown to inhibit the key pro-inflammatory transcriptional
factor, NFκB, and associated chemokines (Nakagawa et al., 2012;
Gonzalez et al., 2014). However, another report has described
AcSDKP-induced MCP-1 expression and an accumulation of
Mac1-positive cells in a model of surgically induced hind-limb
ischemia (Waeckel et al., 2006). In their report, AcSDKP-induced
MCP-1 expression is the key for AcSDKP-mediated tissue repair
and post-ischemic neovascularization based on MCP-1 knockout
mice (Waeckel et al., 2006), thereby suggesting that AcSDKP does
not simply inhibit inflammation but may regulate normal tissue
repair and appropriately control inflammation.

AcSDKP AND ANGIOGENESIS
Angiogenesis is essential for tissue homeostasis and to promote
tissue repair. AcSDKP (Liu et al., 2003; Wang et al., 2004; Fromes
et al., 2006) and its precursor peptide, Tβ4 (Malinda et al., 1997;
Huff et al., 2001; Koutrafouri et al., 2001; Philp et al., 2003) have
been shown to enhance angiogenesis and exhibit anti-fibrotic
effects associated with normalization of organ function (Smart
et al., 2007). AcSDKP improves skin flap survival and acceler-
ates wound healing (Fromes et al., 2006). The association between
tumor angiogenesis and the levels of Tβ4 and AcSDKP has been
studied by Wdzieczak-Bakala et al. (1990), and these authors have
proposed that high levels of Tβ4 and AcSDKP are linked to tumor
progression in hematologic malignancies (Liu et al., 2006, 2008,
2009a, 2010). Angiogenesis plays a pivotal role in cancer develop-
ment (Nyberg et al., 2005; Folkman, 2007), and the AcSDKP level
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has been shown to be higher in hematologic malignancies and solid
neoplasms (Liu et al., 2006, 2008, 2009a, 2010). An association
between the AcSDKP level and tumor angiogenesis was observed
in these previous studies, but the pathophysiological significance
of this result was not clearly shown.

PERSPECTIVE
As described above, AcSDKP has emerged as an attractive anti-
fibrotic molecule to combat fibroproliferative diseases, including
diabetic nephropathy. However, other than its production from
Tβ4 by POP and degradation by ACE, the physiological regula-
tion of AcSDKP and its significance in pathogenesis are largely
unknown. In this regard, recent publications have provided new
clues about the regulation of AcSDKP in experimental animals
and in patients treated with ACE-I.

Recently, microRNAs have been implicated as key players
in physiological homeostasis, and dysregulation of microRNAs
results in pathological conditions, such as tissue fibrosis (He
et al., 2013; Srivastava et al., 2013). A fibroblast-activating path-
way has also been shown to be associated with microRNA
dysregulation (He et al., 2013; Srivastava et al., 2013). Macconi
et al. (2012) recently found that one of the microRNAs, miR-
324-3p, is significantly increased in the glomeruli of Munich
Wistar Frömter (MWF) rats, which is a model for sponta-
neous progressive nephropathy, and they reported that increased
expression of miR-324-3p is present in glomerular podocytes,
parietal cells in Bowman’s capsule, and most abundantly in cor-
tical tubules. Interestingly, the predicted target for miR-324-3p
is POP, and overexpression of a miR-324-3p mimetic in culture
decreased POP protein expression (Figure 1). High miR-324-
3p expression in MWF rats was associated with reduced POP
expression in glomeruli and tubules as well as suppressed urine
AcSDKP levels and increased collagen deposition. Surprisingly,
the ACE-I lisinopril, suppressed miR-324-3p expression and sub-
sequently increased renal POP expression as well as plasma and
urine AcSDKP levels, which were associated with the restora-
tion of a normal kidney structure. This report revealed that
the endogenous AcSDKP synthesis pathway is indeed enhanced
by ACE-I, regulated by miR-324-3p suppression and associated
with induction of POP, the key enzyme for AcSDKP synthe-
sis.

Another important finding in AcSDKP regulation has been
reported in a recent clinical trial. Sodium intake has been
shown to worsen the clinical outcome of renal diseases (Veg-
ter et al., 2012). Kwakernaak et al. (2013) focused on potential
organ-protective effects of AcSDKP and investigated whether
sodium restriction in addition to renin–angiotensin system (RAS)
blockade results in increased levels of AcSDKP. These authors
enrolled 46 non-diabetic chronic kidney disease patients (age
50 ± 13 years) with overt proteinuria and mild to moderate
renal insufficiency. The patients were analyzed using a crossover
design and subjected to a double-blind experiment for a 6-
week study period with a regular sodium diet (194 ± 49 mmol
sodium/day) or a low sodium diet (102 ± 52 mmol sodium/day)
and either lisinopril (40 mg/day; single RAS-blockade) or lisino-
pril plus valsartan (320 mg/day; dual blockade). Surprisingly,
they found that sodium restriction significantly increased the

plasma level of AcSDKP during either single or dual RAS-
blockade (Figure 2). The AcSDKP level was associated with
sodium restriction but independent of sex, age, renal func-
tion, blood pressure, body mass index, single RAS-blockade,
dual RAS-blockade, treatment sequence, or other dietary factors
(calcium and protein intake). This report is indeed surprising
because sodium restriction would decrease the circulatory plasma
volume, and a decreased plasma volume may be associated
with an enhanced RAS feedback, thus resulting in a sup-
pressed AcSDKP level. To understand how sodium restriction
in addition to RAS-blockade may alter the AcSDKP level, fur-
ther investigation is needed. Nevertheless, Kwakernaak et al.’s
(2013) study showed the novel regulation of AcSDKP by a
mechanism other than an ACE-I in humans. The associa-
tion between salt intake and AcSDKP levels without RAS-
blockade remains unknown and requires future analysis (Kwak-
ernaak et al., 2013). This study may provide some hints for
the physiological regulation of AcSDKP in humans, and such
knowledge may reveal the AcSDKP level required for anti-
fibrotic effects in human kidney diseases, including diabetic
nephropathy.

CONCLUSION
In this review, we summarized the findings regarding AcSDKP
focusing on its physiological regulation, function, and potential
as an anti-fibrotic drug. The beneficial effects of AcSDKP could
be significant for treating patients with fibroproliferative diseases,
including diabetic nephropathy. Clearly, future studies will be
required to establish how we can utilize the attractive anti-fibrotic
effects of AcSDKP in the clinic and to monitor safety profiling
of AcSDKP use. Nevertheless, AcSDKP will emerge as a valuable
anti-fibrotic endogenous molecule (Figure 6) with the potential
to cure devastating fibroproliferative diseases, including diabetic
nephropathy.

FIGURE 6 | Beneficial effects of AcSDKP in the process of tissue repair.

AcSDKP exhibits multiple functions shown above, such as regulation of
inflammation as well as anti-fibrotic, anti-apoptotic, and pro-angiogenic
activities. Therefore, AcSDKP could be a candidate target molecule to
combat kidney fibrosis in diabetes.
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