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Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a
core-shell structure have been used as versatile carriers for delivery of drugs as well
as nucleic acids. They have gained immense popularity owing to a host of favorable
properties including their capacity to effectively solubilize a variety of poorly soluble
pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and
the ability to accumulate in pathological areas with compromised vasculature. Moreover,
additional functions can be imparted to these micelles by engineering their surface
with various ligands and cell-penetrating moieties to allow for specific targeting and
intracellular accumulation, respectively, to load them with contrast agents to confer
imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in
response to small changes in the environment. Recently, there has been an increasing
trend toward designing polymeric micelles which integrate a number of the above
functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles.
Such multifunctional micelles can be envisaged as key to improving the efficacy of current
treatments which have seen a steady increase not only in hydrophobic small molecules,
but also in biologics including therapeutic genes, antibodies and small interfering RNA
(siRNA). The purpose of this review is to highlight recent advances in the development
of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite
of the tremendous potential of siRNA, its translation into clinics has been a significant
challenge because of physiological barriers to its effective delivery and the lack of safe,
effective and clinically suitable vehicles. To that end, we also discuss the potential
and suitability of multifunctional polymeric micelles, including lipid-based micelles, as
promising vehicles for both siRNA and drugs.
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INTRODUCTION
Nanotechnology is currently at the forefront of drug delivery
research, and has provided innovative platforms for manage-
ment of diseases like cancer, which pose a significant chal-
lenge for researchers and patients alike. A variety of nanoscale
systems including polymeric and metallic nanoparticles, lipo-
somes, polymeric micelles, nanogels, nanocapsules, dendrimers,
carbon nanotubes, nanocrystals and solid lipid nanoparticles,
are currently under active investigation for delivery of small
molecule drugs as well as therapeutic macromolecules like pro-
teins, peptides, aptamers, DNA and small interfering RNA
(siRNA) (Torchilin, 2006; Peer et al., 2007; Wang et al., 2012a).
These nanomedicines can successfully overcome many draw-
backs of free drugs and therapeutic molecules which include
but are not limited to poor solubility, non-selective activity,
poor biodistribution and pharmacokinetics (PK), dose-limiting
toxicity and also multi-drug resistance (Allen and Cullis, 2004;
Jabr-Milane et al., 2008; Sawant et al., 2012). Some of the salient
advantages of nanocarriers include their increased drug stabil-
ity, ability to solubilize hydrophilic and hydrophobic agents,
improved PK and biodistribution, tunable payload release, the
ability to specifically target their payload to diseased tissues and

cells by modification of their surface chemistries, and finally
their ability to respond to various internal and external stim-
uli for “triggered” release to achieve temporal and spatial con-
trol over the release of therapeutic payloads (Torchilin, 2006;
Peer et al., 2007; Duncan and Gaspar, 2011; Schroeder et al.,
2012).

One has to keep in mind, however, that due to the inherent
advantages of nanomedicines over conventional therapeutics, the
rapid pace of development of nanocarriers and a paucity of
detailed systemic toxicology studies on them, it is easy to overlook
certain toxicity concerns. It is critical to appreciate that material
properties differ significantly at the nanoscale range from those
seen in the bulk, with greatly increased surface-to-volume ratios,
altered surface chemistry and an increased chemical reactivity
(Elsaesser and Howard, 2012). When designing nanocarriers, one
needs to address the variables which may lead to potential safety
concerns including the material used for construction of the
nanocarriers, dose or concentration of the nanocarriers, their size,
shape, surface charge, reactivity and solubility (Ai et al., 2011;
Elsaesser and Howard, 2012). Due consideration of these vari-
ables could enable the development of robust nanosystems with
many promising features.
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Although most of the types of nanocarriers listed in this
section are capable of providing many of the advantages already
mentioned, for the purpose of this review, the discussion is specif-
ically focused on one class of versatile nanocarriers, the polymeric
micelles, which are core-shell nano-constructs formed by self-
assembly of amphiphilic copolymers. Various modifications for
polymeric and lipid-based micelles including those for passive
targeting, active targeting and stimuli sensitive release, are dis-
cussed with recent examples from the literature. The focus then
shifts to micelles which can combine multiple favorable features
to form multifunctional polymeric micelles. Since the discovery
of RNA interference (RNAi), and its ability to silence virtually
any gene, substantial research efforts have been dedicated to
the development of suitable carriers to deliver siRNA for cancer
therapy (Fire et al., 1998; Shen et al., 2012). To that end, this
review also discusses recent progress in siRNA delivery for can-
cer, challenges facing it and the role of multifunctional polymeric
micelles. Finally, we discuss multifunctional micelles which can
simultaneously deliver both small molecule drugs and siRNA to
tumors.

POLYMERIC MICELLES: BACKGROUND AND RELEVANCE AS
THERAPEUTIC NANOCARRIERS FOR CANCER
Polymeric micelles are spherical, colloidal, supramolecular nano-
constructs (10–100 nm) usually formed from the self-assembly of
amphiphilic block copolymers which consist of both hydrophilic
and hydrophobic units in an aqueous environment (Yokoyama
et al., 1998; Jones and Leroux, 1999; Torchilin, 2001, 2007; Croy
and Kwon, 2006). This self-assembly of amphiphilic monomers is
entropically favored, and occurs above their critical micelle con-
centration (CMC) to result in the formation of micelles with a
core-shell structure (Torchilin, 2001; Sutton et al., 2007). The
hydrophobic portion of the block copolymer forms the core of
micelles, while the hydrophilic portion forms the shell or the
corona (Figure 1). Generally, micelles of amphiphilic copolymers
with low CMC values exhibit greater stability even at low con-
centrations of the amphiphile in the medium. Increasing the
hydrophobicity of the copoloymer reduces the CMC which in
turn, increases the micelle stability (Torchilin, 2001; Kabanov
et al., 2002). Non-polar molecules are solubilized within the
hydrophobic core of micelles; polar molecules get adsorbed

on the micelle surface, whereas molecules with intermediate
polarity distribute along the surfactant molecules in intermediate
positions.

Various amphiphilic copolymers including di-block (A-B),
tri-block (A-B-A) as well as graft copolymers can be used to
form micelles (Torchilin, 2001). By far, the most frequently uti-
lized hydrophilic block for both di- and tri-block copolymers
is poly(ethylene oxide) (PEO) also known as poly(ethylene gly-
col) (PEG). Other corona forming polymers like poly (N-vinyl
pyrrolidone) (PVP) (Bailly et al., 2012) and poly (N-isopropyl
acrylamide) (pNIPAAm) (Kim et al., 2013) have also been
reported. A number of different core forming blocks have been
reported to date which include poly(propylene oxide) (PPO)
(Sharma et al., 2008), poly ε-caprolactone (PCL) (Kanazawa et al.,
2013; Laouini et al., 2013), poly (L-lactide) (Xu et al., 2013a),
poly(lactide-co-glycolic acid) (PLGA) (Koyamatsu et al., 2013),
poly(L-aspartic acid) (pAsp) (Yokoyama et al., 1990; Kagaya et al.,
2012), poly(L-histidine) (pHis) (Wu et al., 2013), poly (β-amino
ester) (PbAE) (Min et al., 2010) and short, hydrophobic phospho-
lipid residues like disteroyl phosphatidyl ethanolamine (DSPE)
(Perche et al., 2012; Sawant et al., 2013a; Salzano et al., 2014).

Polymeric micelles exhibit several features that favor their
utility for drug delivery applications in cancer. The most impor-
tant advantage of polymeric micelles is their ability to solubilize
poorly water soluble or hydrophobic drugs within their core,
thus enhancing their bioavailability. A large number of high
throughput screen (HTS) derived hits, lead molecules, devel-
opment candidates and eventually, marketed drugs share the
common characteristic of possessing high hydrophobicities and
consequently, low aqueous solubilities (Williams et al., 2013).
Even with sophisticated combinatorial chemistry approaches to
generate large compound libraries and advanced HTS technolo-
gies, it has been difficult to obtain compounds with acceptable
water solubility without compromising on their potency. About
40% of currently marketed drugs and up to 75% compounds cur-
rently under development have been suggested to be poorly water
soluble (Di et al., 2009, 2012; Williams et al., 2013). Anti-cancer
drugs, which are most often polycyclic compounds, also suffer the
same fate. Moreover, because of the intrinsic hydrophobicity of
many drugs, parenteral administration becomes problematic and
undissolved drug aggregates can lead to embolization of blood

FIGURE 1 | Micelle formation. Drug-loaded polymeric micelle formed from self -assembly of amphiphilic block copolymers in aqueous media.
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capillaries (≤5 μm) before they reach the tumor (Fernandez et al.,
2001). Low solubility coupled with drug excretion and metabolic
degradation also results in poor systemic drug concentrations
(Torchilin et al., 2003). Polymeric micelles can not only solubilize
hydrophobic drugs, but can also protect them from inactivation
in the biological milieu and thus increase their bioavailability
(Torchilin, 2001). Another important advantage of polymeric
micelles is their small size which allows them to circulate in the
blood for extended periods by evading the mononuclear phago-
cytic system (MPS) in the liver. At the same time, their size is
large enough to preclude fast renal clearance (Lu and Park, 2013).
Longer circulation also allows the micelles to accumulate to a
greater extent in areas with a defective or leaky vasculature such as
tumors; via the enhanced permeability and retention (EPR) effect,
which is the basis of passive targeting (Matsumura and Maeda,
1986; Maeda et al., 2000). Polymeric micelles possess a high struc-
tural stability due to the interactions between polymeric chains
in the core-forming hydrophobic blocks, which allows them to
retain encapsulated drugs and also be stable upon dilution in the
body (Torchilin, 2002). Additional advantages of micelles include
reduced side effects of the encapsulated drug, easy and repro-
ducible scale-up, the ability to slow down opsonization and the
possibility of longer circulation times when hydrophilic moieties
such as PEG, that provide an effective steric barrier, are incorpo-
rated in the micelles. Finally, their surface can be modified with
various ligands using different surface chemistries to produce tar-
geted micelles (Torchilin, 2002; Sawant and Torchilin, 2010; Lu
and Park, 2013).

PASSIVE TARGETING OF POLYMERIC MICELLES AND MODIFICATION
FOR LONGEVITY
Passive targeting of nanocarriers including polymeric micelles
relies on the tumor microenvironment. Their accumulation

proceeds mainly via the EPR effect (Maeda et al., 2000). Tumor
vasculature grows aberrantly to meet the ever-increasing nutri-
ent and oxygen demand of the growing tumor, which leaves the
endothelial cells poorly aligned with large fenestrations between
them (Jain, 1987; Folkman, 1995; Roberts and Palade, 1997;
Hobbs et al., 1998). This architectural abnormality and the
production of vascular permeability factors like nitric oxide,
bradykinin, matrix metalloproteinases (MMPs) and vascular
endothelial growth factor (VEGF) make the tumor blood vessels
highly permeable (Wu et al., 1998; Fang et al., 2011). The grow-
ing tumor cells also compress the lymph vessels, particularly in
the central portion of the tumor, causing them to collapse, result-
ing in poor lymphatic drainage from tumors (Padera et al., 2004).
Both these phenomena—the increased vascular permeability and
the defective lymphatic drainage not only allow leakage of blood
plasma components and nanoparticles (e.g., micelles) into tumor
tissues, but also allow them to be retained there (Maeda et al.,
2000; Iyer et al., 2006). This phenomenon is termed the EPR effect
(Matsumura and Maeda, 1986) (Figure 2).

Although the EPR effect plays a crucial role in the accumula-
tion of polymeric micelles, other factors such as the size and sur-
face characteristics of micelles also determine the effectiveness of
passive targeting (Torchilin, 2007; Ganta et al., 2008). Longevity
of the nanocarrier in circulation is very important for pas-
sive targeting (Torchilin and Trubetskoy, 1995; Torchilin, 2006;
Petros and Desimone, 2010). Generally, longevity is imparted
to polymeric micelles by flexible, hydrophilic polymer coatings
like PEG which can be grafted onto their surface (Torchilin and
Trubetskoy, 1995; Torchilin, 2006). PEG acts as a steric barrier
and is effective in preventing rapid opsonization of micelles by
the MPS, lengthening their circulation time in the blood. This,
in turn, gives micelles a better chance of extravasation through
the leaky vasculature and slow accumulation in the tumor via

FIGURE 2 | Enhanced permeability and retention (EPR) effect and passive targeting. Nanocarriers can extravasate into the tumors through the gaps
between endothelial cells and accumulate there due to poor lymphatic drainage.
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the EPR effect (Mahmud et al., 2007; Torchilin, 2011). The
steric barrier provided by PEG shields the surface charge of
micelles, hinders their interaction with blood components and
limits adsorption of plasma proteins on their surface (Torchilin,
2006).

The size of polymeric micelles also has a crucial role in the
EPR effect-mediated accumulation as discussed in the previous
section. Tumor vasculature cutoff sizes can vary between tumors
(200–800 nm), and determine the diffusion and accumulation
of molecules within the tumor interstitium (Yuan et al., 1995;
Torchilin, 2011). The benefit of small sized polymeric micelles,
which are well below the cutoff limit for most tumors, ensures
that they remain in circulation for longer intervals without being
taken up by MPS and eventually enter the tumor vasculature
through the EPR effect. Some examples of polymeric micelle
formulations exploiting the passive targeting effect are listed in
Table 1.

Table 1 | Passively targeted therapeutic preparations of polymeric

micelles.

Micelle

components/formulation

Drug(s) References

PRE-CLINICAL

PEG2000-PE Docetaxel Tong et al., 2012

PEG2000-PE/Vitamin E Paclitaxel and
curcumin

Abouzeid et al., 2014

Paclitaxel and
Elacridar

Sarisozen et al., 2012

PEG2000-PE/Hydrogenated
phosphatidylcholine
(PEG200-PE/HSPC)

Doxorubicin Wei et al., 2012b

Adamantine terminated PEG
and β-cyclodextrin based 7
armed poly(L-glutamic acid)
(mPEG-Ad@β-CD-7PLGA/CDDP)

CDDP Yong et al., 2013

Stearate grafted dextran Doxorubicin Du et al., 2010

mPEG-b-poly(D,L-lactide) Docetaxel Li et al., 2012d

Pluronic P123/F127 Paclitaxel Zhang et al., 2010,
2011b

CLINICAL

Genexol®-PM, mPEG-PDLLA
(Ph-IV/approved in Korea)

Paclitaxel Kim et al., 2004

NK105, PEG-p(Asp) (Ph-III) Paclitaxel Hamaguchi et al., 2007;
Kato et al., 2012

SP1049C, Pluronic L61 and
F127 (Ph-III)

Doxorubicin Danson et al., 2004;
Valle et al., 2011

NK012, PEG-P(Glu)-SN38 (Ph-II) SN-38 Matsumura et al., 2004;
Koizumi et al., 2006

NC-6004, PEG-P(Glu)-cisplatin
(Ph-I/II)

Cisplatin Plummer et al., 2011

NK911, PEG-P(Asp)-DOX (Ph-II) Doxorubicin Matsumura et al., 2004

NC-4016, PEG-P(Glu) DACHPt
(Ph-I)

DACHPtb Cabral et al., 2005,
2007

DACHPt, Dichloro-(1,2-diaminocyclohexane) platinum (II), bCDDP, cis-

dichlorodiamine platinum (II).

Although passive targeting is useful clinically, it is not without
its drawbacks. Major impediments to passive targeting include
the inherent tumor heterogeneity wherein cutoff sizes could vary
between tumors, and even within the same tumor. The vascu-
lature may exhibit varying porosities and consequently different
permeabilities (Monsky et al., 1999; Prabhakar et al., 2013). The
implicit diversity in tumors may lead to some areas not show-
ing the characteristic EPR effect and some tumor vessels may not
be “leaky” which leads to heterogeneous extravasation and deliv-
ery of drug vehicles (Yuan et al., 1995, 1996; Fang et al., 2011).
In addition, nanocarriers such as polymeric micelles that are
modified with a biocompatible surface coating of the hydrophilic
PEG face the so called “PEG dilemma” since PEG may inter-
fere with their endosomal escape and intracellular uptake into
tumors (Hatakeyama et al., 2011). Also, only passive accumu-
lation of micelles based on the EPR effect cannot ensure their
effective delivery to molecular targets within tumors (Mahmud
et al., 2007). It is thus clear that passive targeting alone may
not suffice and additional approaches like active targeting which
enable more selective and robust target recognition may need to
be utilized (Torchilin, 2006; Peer et al., 2007).

ACTIVE TARGETING OF POLYMERIC MICELLES
Tumor cells and/or tumor vasculature frequently show increased
expression of certain molecules (antigens or receptors) which
are generally not expressed, or present at low levels on the sur-
face of normal cells and surrounding normal tissues (Park et al.,
2008; Kamaly et al., 2012). Active targeting exploits this fea-
ture of cancer cells to allow selective accumulation of anti-cancer
therapeutics in the tumor tissue, tumor cells or intracellular
organelles of the cell (Nie et al., 2007). Polymeric micelles can
be functionalized for active targeting by chemically modifying
their surface with targeting ligands that show a strong speci-
ficity for antigens or receptors over-expressed on cancer cells
(Torchilin, 2007; Park et al., 2008) (Figure 3). Usually, the tar-
geting ligands can be attached to the water-exposed free termini
of hydrophilic blocks (PEG) of the micelles, so that they extend
above the PEG brush and avoid steric hindrance when binding
to their target receptors (Torchilin, 2001, 2007). Actively tar-
geted polymeric micelles decrease side-effects of drugs by allow-
ing preferential accumulation in diseased cells and also facilitate
cellular uptake by receptor-mediated endocytosis (Park et al.,
2008; Danhier et al., 2010). Active targeting especially benefits
intracellular delivery of macromolecules like DNA, siRNA and
proteins. The anti-tumoral efficacy of actively targeted deliv-
ery vehicles derives from their enhanced cellular internalization
rather than just an increased tumor accumulation (Kirpotin et al.,
2006).

A wide variety of ligands have been investigated to date for
active targeting of polymeric micelles. Some of the commonly
used targeting ligands include antibodies and their fragments (Jin
et al., 2011a; Sawant et al., 2013a; Zhao et al., 2013), peptides
(Gülçür et al., 2013; Miura et al., 2013; Chung et al., 2014), pro-
teins (Fonge et al., 2012; Riehle et al., 2013; Sawant et al., 2013b),
aptamers (Xu et al., 2013b), sugar moieties (Sun et al., 2011a; Yang
et al., 2011; Yu et al., 2013b), and small molecules like folate (Qiu
et al., 2013; Yang et al., 2013).

Frontiers in Pharmacology | Pharmacology of Anti-Cancer Drugs April 2014 | Volume 5 | Article 77 | 4

http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs
http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs
http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs/archive


Jhaveri and Torchilin Multifunctional polymeric micelles

FIGURE 3 | Drug-loaded polymeric micelles with various targeting functions. (A) Antibody-targeted micelles (B) ligand-targeted micelles (C) Micelles with
cell-pentrating function.

Antibodies have been the most popular targeting ligands for
polymeric micelles to date because of the diversity of their tar-
gets and the specificity of their interaction (Torchilin, 2004). Over
the years, antibody engineering technologies have enabled the
development of murine, chimeric, humanized and human mon-
oclonal antibodies (mAbs) as well as antibody fragments (e.g.,
Fab, scFv, diabodies, triabodies and single-domain antibodies)
(Holliger and Hudson, 2005; Weiner, 2007). Poly(ethylene)glycol-
phosphatidyl ethanolamine (PEG2000-PE) micelles loaded with
doxorubicin (DOX) and targeted with the anti-nucleosome mAb
2C5, which is specific for cancer cells were shown to be effec-
tive in a DOX-resistant ovarian cancer cell spheroid model. The
2C5 targeted DOX micelles showed better uptake and pene-
tration and also induced greater cell death in spheroids com-
pared to free DOX and non-targeted DOX micelles (Perche
et al., 2012). In another example, anti-Her2 antibody Fab
fragment was conjugated to temperature sensitive block copoly-
mer micelles made from poly(N-isopropylacrylmide-co-N,N’-
dimethylacrylamide)118-b-poly(D,L-lactide)71 (Li et al., 2012b).
The dual function of temperature sensitive and Her2 targeted
immunomicelles showed significant in vitro toxicity and accumu-
lation, high in vivo stability, greater intra-tumoral accumulation
and significant tumor inhibition in a Her2 over-expressing mouse
model of gastric cancer compared to various controls (Li et al.,
2012b). Although very popular as targeting ligands, antibodies do
face some challenges. These include their large size (∼150 kDa)
which results in limited ligand densities on micelles, potential
immunogenicity which may lead to rapid clearance, stability
considerations and engineering challenges during scale-up man-
ufacturing (Goldenberg and Sharkey, 2012; Kamaly et al., 2012).
Finally the success of immunomicelles largely depends on the tar-
get antigen being truly “tumor-specific” so as to avoid side-effects
(Firer and Gellerman, 2012).

Proteins and peptides have also been used extensively as tar-
geting ligands for polymeric micelles. The transferrin receptor
(TfR) is over-expressed in many cancers and offers an attractive
option for the development of transferrin-targeted nanocarri-
ers (Singh, 1999). Polymeric micelles may be modified either

with endogenous ligand transferrin (Tf) or antibodies against
TfR (Torchilin, 2006). Sawant et al. showed that drug (R547)-
loaded PEG2000-PE micelles modified with Tf showed a greater
interaction with TfR over-expressing A2780 ovarian carcinoma
cells in vitro at 48 h compared with free drug and non-modified
micelles. Tf-targeted micelles also exhibited greater cytotoxicity
in vitro and a significant tumor growth inhibition in mice vs. the
drug-loaded, non-targeted micelles (Sawant et al., 2013b). Other
protein ligands like tumor necrosis factor related apoptosis induc-
ing ligand (TRAIL), which binds to death receptors up-regulated
in cancer cells to induce apoptosis (Skidan et al., 2009; Lee et al.,
2011a; Riehle et al., 2013) and epidermal growth factor (EGF)
which targets the EGF receptors over-expressed in many can-
cers (Zeng et al., 2006; Fonge et al., 2012) are also utilized for
modification of polymeric micelles for active targeting.

Peptides are used as targeting ligands due to their small
size, lower immunogenicity compared to proteins, better stabil-
ity in vivo, relative ease of conjugation to polymeric micelles and
lower costs (Kamaly et al., 2012). The arginine-glycine-aspartic
acid (RGD) tri-peptide which targets integrin receptors (αvβ3,
αvβ5) has been widely investigated. Recently, Miura et al. reported
polymeric micelles self-assembled from PEG-b-poly(L-glutamic
acid) and (1,2-diaminocyclohexane)platinum(II) (DACHPt), the
parent complex of oxaliplatin, targeted with cyclic RGD (cRGD)
for delivery of anti-cancer drugs to glioblastoma (Miura et al.,
2013). Intravital confocal laser scanning microscopy (IVCLSM)
revealed that the cRGD micelles accumulated rapidly and had
a higher permeability within the tumor parenchyma com-
pared to the non-targeted micelles. The rapid internalization
of these micelles also led to significant antitumor effects in
an orthotopic mouse model of U87 MG human glioblas-
toma compared to the controls (Miura et al., 2013). PEG2000-
PE micelles were modified with vasoactive intestinal peptide
(VIP) to target VIP receptors over-expressed in breast can-
cer (Dagar et al., 2012; Gülçür et al., 2013). Other peptides
like Lyp-1 (Cys-Gly-Asn-Lys-Arg-Thr-Arg-Gly-Cys) which tar-
gets the p32 receptors (p32/gC1qR) over-expressed on some
tumor cells (Wang et al., 2012c), cell-penetrating peptides like
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trans-activating transcriptional transactivator (TAT) from HIV-
1 (Kanazawa et al., 2012; Taki et al., 2012) and octreotide which
targets somatostatin receptors have also been used to modify
polymeric micelles (Xu et al., 2013a). Some groups have reported
the development of peptides with affinities for molecular targets
over-expressed on different types of tumor cells or tumor vascu-
lature using the phage-display technology (Mori, 2004; Petrenko,
2008). Such peptides have been utilized successfully to mod-
ify polymeric micelles for cancer-specific targeting (Wang et al.,
2010c; Qian et al., 2013).

Small molecules are particularly attractive as targeting ligands
for polymeric micellar carriers due to inherent advantages like a
small size, ability to attain higher ligand densities over antibodies,
reproducible and scalable manufacturing, less immunogenicity
when compared to macromolecules, ease of conjugation using
simple chemical methods and the large diversity of such ligands
(Kamaly et al., 2012). Folate receptors (FR) are over-expressed in
a number of cancers, and hence folate is widely used as a target-
ing ligand for cell-specific delivery in these cancers (Leamon and
Low, 1991; Sudimack and Lee, 2000). DOX-loaded and folate-
targeted poly(2-ethyl-2-oxazoline)-b-PCL micelles (FA-PEOz-
PCL) showed better cellular uptake and exhibited lower IC50

values in FR over-expressing cells compared to non-targeted
micelles. In vivo, they exhibited better anti-tumor efficacy and
reduced toxicity compared to free DOX (Qiu et al., 2013).
Other small molecules like biotin (Lin et al., 2013), galac-
tose (Zhong et al., 2013), and mannose (Freichels et al., 2012)
have also been reported for surface modification of polymeric
micelles.

Aptamers—oligonucleotides which have the ability to fold into
defined 3D structures and bind with high affinity and specificity
to their target molecules (proteins, peptides or small molecules)
are also gaining momentum as targeting ligands (Zhang et al.,
2011c). A10 aptamer (Apt), which recognizes the extracellular
domain of the prostate-specific membrane antigen (PSMA), was
conjugated to unimolecular DOX loaded micelles consisting of
a H40 dendritic core, an inner shell of hydrophobic PLA and
an outer hydrophilic PEG shell (H40-PLA-PEG-Apt) for tar-
geted prostate cancer therapy(Xu et al., 2013b). The Apt-targeted
micelles exhibited a significantly higher uptake and hence cyto-
toxicity over the non-targeted micelles. In vivo, they also resulted
in a much higher DOX uptake in tumors than non-targeted
micelles or free DOX (Xu et al., 2013b).

Table 2 lists some examples of actively targeted polymeric
micelles.

STIMULI-RESPONSIVE POLYMERIC MICELLES
An added sophistication to selective delivery of polymeric
micelles can be brought about by utilizing certain cues inher-
ently characteristic of the tumor microenvironment (intrinsic) or
by applying certain stimuli to this region from outside the body
(extrinsic) (Torchilin, 2009). Polymeric micelles can be engi-
neered so as to respond to various intrinsic or extrinsic stimuli
of physical, chemical or biochemical origins to achieve spatial
and temporal control over the release of therapeutic payloads
(Cheng et al., 2013). “Environmentally-responsive” or “smart”
polymeric micelles can release their therapeutic payloads by
undergoing structural modifications in response to the stimulus.

Table 2 | Some examples of actively targeted micelles.

Micelle components Therapeutic agent Targeting ligand Target References

Poly(D,L-lactic-co-glycolic
acid)-PEG

Doxorubicin HAb18(Fab’)2 Hepatocellular carcinoma cells Jin et al., 2011a

PEG2000-PE Curcumin and Doxorubicin Anti-GLUT1 antibody GLUT1 receptors Abouzeid et al., 2013

R547 (cyclin-dependent
kinase CDK-inhibitor)

2C5 and Transferrin Cancer cell surface associated
nucleosomes and transferrin receptors

Sawant et al., 2013a

DM-PIT1 analogs TRAIL Death receptors on cancer cells Riehle et al., 2013

Poly(L-glutamic
acid)-g-α-tocopherol/PEG

Docetaxel and Cisplatin Cyclic(RGD)fk αv β3 integrins Song et al., 2014

DSPE-PEG2000 Curcumin Vasoactive intestinal
peptide (VIP)

VIP receptors Gülçür et al., 2013

PEO-PPO-PEO Epirubicin Biotin Biotin receptors Lin et al., 2013

Poly(lactic acid)-PEG Docetaxel Folic acid Folate receptors Hami et al., 2014

Cholesterol modified glycol
chitosan (CHGC)

Doxorubicin Galactose Asialoglycoprotein receptors Yu et al., 2014

Azide (N3)-PEG-poly(ε-
caprolactone)

TGX-221 (PI3K inhibitor) PSMA a10 aptamer Prostate specific membrane antigen Zhao et al., 2012

DM-PIT-1, N-[(2-hydroxy-5-nitrophenyl)amino]carbonothioyl-3,5-dimethylbenzamide; PEO- PPO- PEO, poly(ethylene oxide)-co-poly(propylene oxide)-co-(polyethylene

oxide).
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The response may result in disintegration/destabilization, iso-
merization, polymerization or supramolecular aggregation of
micelles (Fleige et al., 2012). The commonly encountered intrin-
sic stimuli in tumors include low pH, redox status of the cell, and
the presence of certain over-expressed enzymes while the extrin-
sic stimuli include magnetic fields, light (UV, infrared or visible)
and ultrasound. Hyperthermia is a stimulus that could be either
intrinsic or extrinsic—intrinsically from inflammation, or extrin-
sically upon application of ultrasound or alternating magnetic
fields in conjunction with magnetic nanoparticles which release
heat (Torchilin, 2009).

The acidic pH in tumors results from extensive hypoxia and
cell death which leads to production and accumulation of lac-
tic acid (Tannock and Rotin, 1989). The pH in tumors is ∼6.5
compared to ∼7.4 in the normal tissues and drops even further in
the intracellular organelles like endosomes (∼5–6) and lysosomes
(∼4–5) (Gerweck and Seetharaman, 1996; Casey et al., 2010).
These pH-gradients have been exploited successfully to design
pH-sensitive polymeric micelles which can release their therapeu-
tic payloads when they encounter a change in the pH of their
microenvironment. A number of strategies have been explored
to design pH-sensitive micelles, which have been reviewed else-
where (Felber et al., 2012; Liu and Zhang, 2012; Chen et al., 2013;
Li et al., 2013d).

The redox potential in cancer cells is elevated (100–1000-fold
higher) due to the high intracellular concentration (2–10 mM)
of glutathione tripeptide (γ-glutamyl-cysteinyl-glycine) (GSH)
compared to its concentration (2–10 μM) outside cells (Saito
et al., 2003). Moreover, tumor cells also show elevated GSH lev-
els compared to normal cells. Polymeric micelles with disulfide
bonds have been designed to hold the cargo (drugs, siRNA, DNA
or proteins) under normal conditions and release it upon desta-
bilization in the reducing conditions found inside cancer cells
that can convert disulfide linkages to thiols (Torchilin, 2009;
Wei et al., 2012a). The disulfide linkages can be incorporated
in the hydrophobic backbone (Li et al., 2013e), at the junc-
tion of hydrophobic and hydrophilic blocks (Li et al., 2012a),
or by incorporating reduction sensitive cross-links in the micelle
core (Li et al., 2011), shell (Koo et al., 2012) or the core-shell
interface (Hossain et al., 2010). siRNA has also been delivered
effectively using redox-sensitive micelles (Matsumoto et al., 2009;
Musacchio et al., 2010). Gradients of oxygen tension within the
tumors can be exploited to design hypoxia sensitive nanocar-
riers. In one of the first studies of its kind, Perche, Biswas
et al. reported a hypoxia activated nanocarrier for siRNA to
achieve the down-regulation of a model gene (GFP) in vitro
and in vivo (Perche et al., 2014). Here, azobenzene was used as
a hypoxia-responsive, bio-reductive linker for hypoxia-targeted
delivery of siRNA from PEGylated nanopreparations upon PEG
cleavage. The nanocarrier consisted of PEG2000, azobenzene,
polyethyleneimine (PEI 1.8 kDa) and 1,2-dioleyl-sn-glycero-3-
phosphoethanolamine (DOPE) units, known as PAPD. The
azobenzene was linked to PEG2000 (for stability in circulation)
at one end and to a PEI-DOPE conjugate (to complex siRNA) at
the other end to form the nanocarrier. PAPD showed a hypoxia-
dependent cellular uptake and accumulation and resulted in
30-40% GFP down-regulation in a number of GFP expressing

cell lines under hypoxic conditions. In A2780/GFP tumor bear-
ing mice, GFP down-regulation was detected by ex-vivo imaging
(24%) and flow cytometry (32%) after intravenous (i.v.) admin-
istration of PAPD/siRNA which correlated well with the in vitro
results (Perche et al., 2014).

Enzyme-sensitive micelles take advantage of the altered expres-
sion profile of certain enzymes in cancer or other diseases to
deliver therapeutics to the desired targets (Mura et al., 2013).
Enzyme sensitive moieties can be used to modify the polymers
(main chain or side groups), which upon recognition by the
enzyme cause structural changes in the micelles. Alternatively,
these moieties may also be recognized by a product of the enzy-
matic reaction. Another option is to modify the micelle surface
with peptides or oligonucleotides that can cause physical changes
in the micelles upon enzymatic transformation (De La Rica et al.,
2012; Hu et al., 2012). The enzymes most frequently dysregulated
in cancer include hydrolases (proteases, lipases and glycosidases),
metabolic enzymes including those involved in glycolysis and
fatty acid synthesis and oxidoreductases (De La Rica et al., 2012).
The matrix metalloproteinase (MMP) family of enzymes (MMP-
2 and 9 in particular) is primarily linked to cancer progression
and metastasis. To that end, polymeric micelles containing MMP-
sensitive linkers have been reported for tumor-specific delivery
of drugs and siRNA in response to the over-expressed MMPs
(Li et al., 2013b; Zhu et al., 2014). DOX-loaded polysaccharide-
lecithin reverse micelles, with a triglyceride outer shell that was
sensitive to hydrolysis by lysosomal acid lipase, were reported
to overcome multi-drug resistance (Su et al., 2013). Enzyme-
responsive polyion complex micelles (PICs) that disintegrate
in response to phosphatase and acetylcholinesterase respectively
have been developed by Zhang and co-workers (Wang et al.,
2010a; Xing et al., 2012).

Among the extrinsic stimuli, ultrasound has been investi-
gated widely as a trigger for drug release from polymeric micelles
(Husseini and Pitt, 2008b; Husseini et al., 2009; Mohan and
Rapoport, 2010; Rapoport et al., 2010).Ultrasound refers to the
application of pressure waves above a frequency of 20 kHz to
spatially and temporally control drug release (Husseini and Pitt,
2008a). Pluronic® micelles have been investigated extensively for
ultrasound-triggered delivery of both drugs as well as nucleic
acids (Chen et al., 2006; Husseini et al., 2013). While low fre-
quency ultrasound (20–100 kHz) can penetrate deeper into the
body tissues than high frequency ultrasound (1–3 MHz), it can-
not be focused as well (Rapoport, 2012). In vitro, ultrasound
can perturb the micelle structure and cause the release of ther-
apeutic payloads due to cavitation. In vivo, this mechanical effect
of ultrasound may also be accompanied by local hyperther-
mia, which could lead to increased micelle extravasation and
accumulation in the tumor tissues (Rapoport, 2012). Ultrasound-
sensitive, paclitaxel (PTX)-loaded block copolymer micelles of
methoxy PEG and poly(D,L-lactide) (MePEG-b-PDLLA) resulted
in increased PTX accumulation and subsequently increased cyto-
toxicity in both drug-sensitive and drug-resistant (P-glycoprotein
expressing) cell lines (Wan et al., 2012).

Magnetic field has also been explored as an extrinsic stim-
ulus for polymeric micelles. Micelles can be loaded with drugs
as well as superparamagnetic iron oxide nanoparticles (SPIONS)
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like magnetite (Fe3O4) or maghemite (Fe2O3) which allows them
to be manipulated under the guidance of an externally applied
permanent magnet or an alternating magnetic field to control
either the drug release, result in a temperature increase or even
both when used alternately (Torchilin, 2009; Mura et al., 2013).
Wang et al. reported SPION-loaded poly (D,L-lactide)-b-mPEG
(mPEG-PLA) micelles coated with chitosan and PEI (CP-mag-
micelles) for delivery of plasmid DNA and magnetic resonace
imaging (MRI). The CP-mag micelles had high MRI relaxivity,
showed significantly higher transfection efficiencies compared to
PEI or lipofectamine and a single injection of plasmid-bearing
CP-mag micelles could express genes in vivo for at least 1 week
(Wang et al., 2012b). In another study, folate-targeted, DOX-
loaded magnetic nanomicelles made from Pluronic F127 and PLA
showed enhanced accumulation in vitro and in vivo in the pres-
ence of an external magnetic field (Huang et al., 2012). Magnetic
heating was utilized to trigger drug release from PEG-b-PCL
micelles loaded with iron oxide nanoparticles and DOX. The
release of DOX was faster when the micelles were heated above
the melting point of their PCL cores (Glover et al., 2013).

Temperature is one of the most widely investigated stimuli
for drug delivery and has been extensively explored for can-
cer treatment. Thermo-responsive micelles are constructed from
thermo-sensitive blocks which can undergo a sharp change in
phase that destabilizes the micelles and triggers the release of
the drug (Torchilin, 2009; Mura et al., 2013). The most widely
used polymer for such micelles is poly(N-isopropyl acrylamide)
(PNIPAAm), which exhibits a lower critical solution temperature
(LCST) of 32◦C. It undergoes a phase transition from hydrophilic
(coil) to hydrophobic (globule) state above its LCST. The LCST
can be varied by controlling the hydrophilic and hydrophobic
polymer composition (Dimitrov et al., 2007; Kang et al., 2008).
Yang et al. reported camptothecin (CPT)-loaded micelles formed
from comb-like copolymers of mPEG blocks and hydrophobic
polyacrylate (PA) backbones, with thermosensitive PNIPAAm
graft chains (mPEG-b-PA-g-PNIPAAm).The micelles showed a
thermo-responsive hydrophilic to hydrophobic phase transition
with a LCST from 40 to 45◦C. CPT release from the micelles was
continuous, without an initial burst release, and was accelerated
above the LCST. The CPT- loaded thermo-responsive micelles
were selectively cytotoxic to cancer cells while avoiding toxicity to
normal cells, unlike the free drug (Yang et al., 2014). Prabharan
et al. reported thermo-sensitive poly (N-vinylcaprolactam)-b-
PEG micelles loaded with 5-fluorouracil (5-FU) and coupled with
folate as a targeting agent to target FR over-expressing cancer cells
and showed controlled drug release at 37◦C (Prabaharan et al.,
2009).

Light-sensitive micelles can utilize ultraviolet (UV), visible
or near infrared (NIR) light to trigger drug release with excel-
lent remote spatio-temporal control (Mura et al., 2013). Some
recent reviews have discussed the design principles of such photo-
responsive micelles and mechanisms of photo-induced drug
release from delivery carriers (Schumers et al., 2010; Fomina et al.,
2012; Gohy and Zhao, 2013). Photo-responsive groups can be
incorporated within the micelle core, corona or at the core-shell
interface in the design of light-sensitive micelles (Gohy and Zhao,
2013). Generally, the chromophores or light-sensitive moieties

are incorporated within the core, or conjugated to it (Oerlemans
et al., 2010). Azobenzenes and their derivatives comprise the
most commonly encountered reversible photo-responsive groups.
They undergo a reversible trans-cis photoisomerization upon
UV light irradiation which converts the apolar trans isomer
to a polar cis isomer, while visible light reverses this isomer-
ization (Zhao, 2007). To develop photo-sensitive micelles with
increased dispersion stability, Boissiere et al. reported flower-
like micelles containing hydrophobically modified PNIPAAm
with multiple azo-benzene segments incorporated into the main
chain (Boissiere et al., 2011). The micelles responded to both
UV and visible light by undergoing reversible trans-cis iso-
merization and remained well dispersed even above the LCST
of PNIPAAm due to the multiple chain-folding of multi-azo-
PNIPAAm chains caused by aggregation of azobenzene moieties
(Boissiere et al., 2011). Recently, spiropyran- initiated hyper-
branched polyglycerol (SP-hb-PG) micelles were reported, which
responded to UV/visible light and could dissociate due to con-
version of the hydrophobic chromophore SP to zwitterionic and
hydrophilic merocyanine (ME) (Son et al., 2014). Chromophores
like coumarin, o-nitrobenzyl, stilbene, dithienylethene and 2-
diazo-1,2-napthoquinone (DNQ) have also been employed in
light-responsive micelles, which can respond either to UV/visible
or NIR irradiation to undergo structural or phase changes and
trigger the drug release from micelles (Chen et al., 2011; Jin
et al., 2011b; Menon et al., 2011; Liu et al., 2012; Cao et al.,
2013). Table 3 highlights selected examples of stimuli-responsive
polymeric micelles from the recent literature.

MULTIFUNCTIONAL POLYMERIC MICELLES
DEFINING THE CONCEPT OF MULTIFUNCTIONALITY
The preceding sections describe various targeting strategies and
modifications of polymeric micelles including very basic modi-
fications for longevity which are important for passive targeting
of therapeutics solubilized within micelles, surface modification
with ligands to allow for selective targeting as well as intracellular
delivery of drugs and nucleic acids and finally the modifica-
tions which allow micelles to respond to a number of intrinsic
and extrinsic stimuli for “triggered” drug release at disease sites.
Polymeric micelles, while allowing for the different modifications
individually, also offer a platform that allows for integration of
multiple components within a single micelle. We can thus engi-
neer micelles to have two or more different modifications that
enable them to simultaneously or sequentially perform impor-
tant therapeutic and diagnostic functions (Torchilin, 2006). Such
micelles which can combine a number of distinct functions or
properties within a single carrier, with each individual compo-
nent functioning seamlessly and in perfect coordination with the
other components, give rise to the so-called “multifunctional”
micelles. In addition to the various modifications just men-
tioned, contrast or reporter moieties can be incorporated within
micelles which allow real-time imaging of these micelles and their
accumulation within cells (Torchilin, 2006). Thus, an ideal multi-
functional micelle may simultaneously deliver drugs/biologics,
circulate in the body for extended periods, allow for passive
or active targeting-mediated accumulation, respond to various
stimuli to release incorporated cargoes, and may also provide
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Table 3 | Some examples of stimuli-responsive polymeric micelles.

Micelle components Payload Stimulus Mechanism References

INTERNAL STIMULI

Chondroitin sulfate-histamine
(CS-His)

Doxorubicin pH Protonation of His residue alters the
hydrophilic-hydrophobic balance of CS-His
conjugate to release DOX at low pH

Yu et al., 2013a

Poly(ketal adipate)-co-PEG
(PKA-PEG)

Camptothecin/Nile
red

pH Ketal linkages in the backbone cleaved under
acidic pH to release payloads

Lee et al., 2013

mPEG–PCL–CH2R4H2C (cell
penetrating peptide) (C: Cys,
H:His, R:Arg)

VEGF siRNA GSH (redox) siRNA condensed in micelles through
disulfide links via Cys (in CPP) released upon
S-S cleavage in cytoplasm.

Tanaka et al., 2013

siRNA-SS-Poly(D,L-lactic
co-glycolic acid)/linear PEI

GFP siRNA GSH (redox) Reductive cleavage of disulfide bond to
release GFP siRNA in cytoplasm

Lee et al., 2011b

PEG-b-poly(2-methyl-2-carboxyl-
propylene
carbonate)-g-Gemcitabine-g-
dodecanol
(PEG-b-PCC-g-GC-g-DC)

Gemcitabine Enzyme
Cathepsin B

Cathepsin B cleaves amide bonds used to
conjugate drug to polymer and enhances
release, or acts on amide bonds in
hydrolytically dissociated micelles to release
free drug

Chitkara et al., 2013

PEG-b-poly(L-glutamic
acid)-b-poly(L-phenylalanine)
(PEG-b-PGlu-b-PPhe)

Cisplatin (CDDP) and
paclitaxel

Enzyme
Cathepsin B

Cathepsin B induced disintegration of
polypeptide based building blocks in micelles
to release drugs, also facilitated by pH

Desale et al., 2013

EXTERNAL STIMULI

Pluronic F105 (PEO-PPO-PEO) Doxorubicin Ultrasound 70 kHz ultrasound induced transient
cavitation led to micelle disruption to release
DOX

Husseini et al., 2013

Hetero-assembly of
mPEG-b-P(L-lysine) micelles with
siRNA and gas cored liposomes
to form siRNA nanobubbles (NB)

SIRT2 siRNA Ultrasound Low freq. ultrasound induced cavitation of
siRNA-nanobubbles (NB) to release
siRNA-micelles from NB and deliver them to
the cell cytoplasm by a sonoporation effect

Yin et al., 2013

Folic acid/dextran-retinoic acid Doxorubicin and
magnetic NPs

Magnetic field Localization and internalization of micelles in
cells driven by MNPs in response to external
magnetic field (0.42T)

Varshosaz et al., 2013

PEG-b-PCL Doxorubicin and
SPIO

Magnetic field Hyperthermia due to heating of SPIO caused
DOX release from micelles

Glover et al., 2013

P-(NIPAAm-co-NHMAAm)-b-PCL Doxorubicin Thermo-
responsive

Increased DOX release above LCST (38◦C)
due to hydrophilic to the hydrophobic
transition in the poly-(NIPAAm-co-HMAAm)
shell resulting in collapse of micelle sturcture

Wang et al., 2014

PEC micelles assembled from
chitosan-g-PNIPAAm and
carboxymethyl
cellulose-g-PNIPAAm

5-fluorouracil Thermo-
responsive
(also pH
responsive)

Deformation of micelles and controlled
release of 5-FU above LCST (37◦C)

Li et al., 2013a

PEO-b-P(LGA-co-COU) Paclitaxel/Rifampicin NIR Light Two-photon absorption of NIR light by
coumarin moiety causes shift in the
hydrophilic-hydrophobic balance toward
destabilization of micelles to release drugs

Kumar et al., 2012

Dialkoxycyanostilbene
polymethacrylate-b-PEO
(PDACS-b-PEO)

Curcumin UV Light Trans-cis photoisomerization of stilbene upon
UV irradiation reduces hydrophobicity of
polymer and disrupts micelles to release
curcumin

Menon et al., 2011

SPIO, Superparamagnetic iron oxide; P-(NIPAAm-co-NHMAAm)-b-PCL, P-(N,N-isopropylacrylamide-co-N-hydroxymethylacrylamide)-b-caprolactone; PEC,

Polyelectrolyte complex micelles; 6-bromo-7-hydroxycoumarin-4-ylmethyl (COU); NP, Nanoparticles.
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diagnostic and therapeutic monitoring abilities (Figure 4). The
key to developing such multifunctional micelles is to ensure that
each of the components function in a coordinated manner so that
the combined contribution of each adds up to something bet-
ter than the individual components themselves. It is analogous
to an orchestra, where each instrument must be played in per-
fect harmony to create a beautiful symphony. Cancer is a complex
disease characterized by molecular and phenotypic heterogene-
ity within and between tumor types which makes chemotherapy
very challenging. Although, molecularly targeted therapies have
been developed, a selection of tumor cells may still escape the tar-
geted pathway and lead to adaptive resistance, causing the failure
of therapy (Blanco et al., 2009). It follows from the discussion
above that using a multi-faceted approach for targeting cancer
seems imperative. While it may be difficult to incorporate all the
features of the “ideal” multifunctional polymeric micelle, a com-
bination of two or more of the desirable features is feasible and
also necessary for the success of cancer therapy using micellar
nanocarriers. A lot of the focus of current research has been in
the direction of such multifunctional micelles for their obvious
advantages in enhancing the efficacy, maximizing the safety and
specificity of existing as well as novel chemotherapy regimens.

MULTIFUNCTIONAL MICELLES FOR DELIVERY OF DRUGS
Multifunctional polymeric micelles have been investigated exten-
sively in recent times for delivery of drugs as well as nucleic acids.
A number of interesting combinations have been explored for
drug-loaded multifunctional polymeric micelles, a select few of
which are discussed here.

Multifunctional micelles made of block copolymers of PLGA-
PEG were reported for the combined delivery of DOX and
PTX (Duong and Yung, 2013). A cell penetrating moiety (TAT)
and a targeting ligand (folate) were used to modify PLGA-
PEG to achieve an enhanced therapeutic effect for the drug

combination vs. the single drugs. The authors tested single and
dual drug-loaded micelles modified either with folate or with
both TAT and folate ligands respectively, and found that dual
drug-loaded micelles modified with both ligands exhibited a
significantly lower IC50 value in KB cells (mouth epidermal carci-
noma) compared to the single drug-loaded micelles. Although a
synergistic effect was observed with both methods (co-delivery of
two single drug-loaded micelles and dual drug-loaded micelles),
the authors hypothesized that the drug ratio would be better
maintained in the dual drug-loaded multi-functional formula-
tion in vivo compared to the co-delivery of dual targeted, single
drug-loaded micelles (Duong and Yung, 2013). MRI-responsive
micelles typically incorporate magnetic nanoparticles within the
core, but in a novel approach Li et al. developed hybrid micelles
fabricated from Pluronic F127 and a peptide-amphiphile (PA)
consisting of segments of a palmitic part, aspartic acid residue
and three histidine residues (pal-AAAAHHHD), in which the
magnetic nanoparticles were embedded in the shell (Li et al.,
2013f). Micelle formation was driven by hydrophobic interac-
tions between hydrophobic segements of Pluronic F127 and PA,
with hydrophobic DOX encapsulated within the micelles. The
chelating ability of the aspartic acid and histidine residues in
the peptide enabled the in situ growth of magnetic nanoparti-
cles within the shell by chemical precipitation of iron oxides. The
shell-embedded magnetic nanoparticles significantly improved
stability and retarded the release of DOX from the hybrid micelles,
due possibly to their crosslinking effect on the shell. The DOX-
loaded hybrid micelles also served as effective T2 weighted MRI
contrast agents both in vitro and in vivo and also had the advan-
tage of a simple, convenient and “green” synthesis under ambient
conditions devoid of organic solvents (Li et al., 2013f).

Another novel, targeting-clickable and tumor-cleavable
multi-block polyurethane (MPU) nanomicelle formulation was
reported for the multifunctional delivery of chemotherapeutics

FIGURE 4 | A hypothetical multifunctional polymeric micelle. Multifunctional polymeric micelles can be designed to incorporate two or more of these
different functions.
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FIGURE 5 | Design and construction of targeting-clickable and

tumor-cleavable polyurethane nanomicelles. (A) Schematic molecular
structure of multiblock polyurethanes; (B) self-assembled clickable
polyurethane nanomicelles; (C) conjugation of folate ligand via click
chemistry; (D) extracellular pH-activated detachment of PEG shell through the
cleavage of benzoic-imine linkage; (E) intracellular drug release triggered by
the cleavage of disulfide bond in response to GSH. Reprinted with permission
from Song et al. (2013), Copyright © 2013 American Chemical Society.

(Song et al., 2013).The polyurethane backbone was composed of
poly(ε-caprolactone) (PCL) and L-lysine ethyl ester diisocyanate
(LDI). It was extended using a L-cystine-derivatized chain
extender bearing redox-sensitive disulfide bonds in the backbone
and two clickable alkynyl groups (Cys-PA) in the side-chain for
post-functionalization with ligands (Figure 5).

The terminal group was comprised of a detachable mPEG
with a pH-sensitive benzoic-imine linkage (BPEG) which could
cleave in the slightly acidic conditions (pH, 6.5–7.2) found in
the extracellular tumor environment. The prepared multi-block
polyurethanes self-assembled into nanomicelles in an aqueous
solution, and DOX was loaded into micelles using the dialysis
method. Folic acid (FA) was modified with azide and conjugated
to the micelles by the copper catalyzed alkyne-azide cycloaddi-
tion (CuAAC) click reaction. The MPU micelles were sensitive

to multiple stimuli (intracellular GSH-sensitive drug release and
extracellular pH-sensitive PEG detachment) and had a high DOX
loading capacity. The folate-targeted micelles showed a higher cel-
lular uptake and increased cytotoxicity over non-targeted micelles
in FR positive HeLa cells in vitro (Song et al., 2013). The
same group also reported multifunctional MPU micelles loaded
with PTX and targeted with C225 monoclonal antibody against
the EGFR extracellular domain for intracellular drug delivery.
These micelles possessed hydrazone linkages for pH-responsivity,
cell penetrating gemini quaternary ammonium (GQA) cationic
groups for enhancing cell internalization and a tripeptide con-
taining reactive carboxyl anion groups to provide an active site
for conjugation of the targeting antibodies (Ding et al., 2013).

Zhu et al. developed a unique tumor-targeted micellar drug-
delivery platform combining several key strategies in a col-
laborative manner to simultaneously counter many of the
key challenges faced by chemotherapeutics (Zhu et al., 2013).
The authors synthesized a self-assembling drug-polymer con-
jugate/prodrug, PEG2000-peptide-PTX with an MMP cleavable
linker GPLGIAGQ between PEG and PTX. This functioned
as a tumor environment-sensitive water-soluble PTX prodrug
and an MMP2-sensitive building block for a PTX nanoprepa-
ration. MMP-2 sensitive micelles were composed of the PTX
prodrug PEG2000-peptide-PTX (50 mol%) and two other poly-
mers, TATp-PEG1000-PE (10 mol%) (cell-penetration enhancer)
and PEG1000-PE (40 mol%) (nanocarrier building block) fol-
lowing their self-assembly in an aqueous environment as shown
in Figure 6. In the MMP-2 sensitive nanopreparation (TATp-
PEG1000-PE/PEG2000-peptide-PTX), PTX was loaded in the
core surrounded by the hydrophilic PEG shell. After accumula-
tion of micelles within tumors by the EPR effect, the peptide
linker was cleaved by the upregulated extracellular MMP2, to
allow liberation of the active PTX and exposure of the hidden
TATp (attached to a shorter PEG chain) for cell internaliza-
tion. The MMP2-sensitive, TATp-modified, micellar formulation
showed a high PTX loading (15% w/w) with low risk of prema-
ture drug release/leakage, had a superior cell internalization and
hence cytotoxicity in vitro, as well as greater tumor targeting and
anti-tumor efficacy in vivo compared to the non-MMP2 sensi-
tive formulation, free PTX or conventional micelles (PEG2000-
PE/PTX). This formulation thus exhibited its potential for cancer
cell-selective intracellular delivery for enhanced cancer therapy
by combining multiple delivery strategies including self-assembly,
PEGylation, accumulation by EPR effect, stimulus sensitivity, cell-
penetrating moiety and the concept of a prodrug (Zhu et al.,
2013).

In addition to micelles made from common diblock copoly-
mers, asymmetric tri-block copolymers have also been reported.
Bastakoti et al. developed multifunctional core-shell-corona poly-
meric micelles using a special type of asymmetric tri-block
copolymer poly(styrene-acrylic acid-ethylene glycol) (PS-PAA-
PEG) (Bastakoti et al., 2013). The self assembly of PS-PAA-PEG
in aqueous solutions produces micelles with a PS core, an anionic
PAA shell and a neutral and hydrophilic PEG corona. Nile red
(NR), a phenoxazine dye was loaded in the PS core using the
dialysis method. Cisplatin was incorporated in the pH-sensitive
PAA shell to allow for faster release at mildly acidic pH (5.0)
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FIGURE 6 | MMP-2 sensitive nanopreparations. Modified from Zhu et al. (2013), Copyright © 2013 PNAS.

compared to the normal physiological pH. The interaction of
cisplatin with micelles was enhanced due to the abundant car-
boxylic groups on the PAA shell. Calcium phosphate (CaP) was
selectively mineralized on the PAA shell, which enhanced the flu-
orescence intensity of NR, provided improved diagnostic efficacy
and detection sensitivity and also acted as a diffusion barrier
for controlled release of cisplatin. The PEG shell provided steric
protection and prevented micelles from aggregating. The NR con-
taining polymeric micelles were taken up by Hep G2 cells and
localized in the nuclei and cytoplasm. They were non-toxic and
had excellent biocompatibility, exhibiting 90% viability at poly-
mer concentrations upto 500 μg/mL. Cisplatin-loaded micelles
exhibited a dose-dependent cytotoxic effect on the Hep G2 cells
(Bastakoti et al., 2013).

Additional examples of multifunctional drug-loaded micelles
are outlined in Table 4.

CHALLENGES FOR THE DELIVERY OF siRNA AND THE ROLE
OF POLYMERIC MICELLES
Since the discovery of RNAi, there has been an increased interest
in developing siRNA based therapies to achieve sequence-specific
post-transcriptional silencing of aberrant genes in diseases such as
cancer (Fire et al., 1998; Elbashir et al., 2001). RNAi is an endoge-
nous pathway which is utilized by all eukaryotic cells to silence
genes post-transcriptionally, and can be triggered by double
stranded RNAs (dsRNA) like endogenous microRNA (miRNA),
short hairpin RNA (shRNA) and synthetic siRNA (Wang et al.,
2010b). The detailed mechanism of the RNAi pathway has been
reviewed elsewhere (Hannon, 2002; Rana, 2007; Sashital and
Doudna, 2010). Briefly, the dsRNA is processed by the Dicer
enzyme into small fragments which are 21–23 nucleotide (nt)
base pairs in length (Meister and Tuschl, 2004). The fragments,
which possess a sense (passenger) strand and an antisense (guide)

strand with respect to the target mRNA, are loaded into the
RNA-induced silencing complex (RISC). Here the strands are
separated, and the sense strand is cleaved and discarded. The
activated RISC-guide strand complex is then directed to the com-
plementary region of the target mRNA to cause it to degrade and
prevent its translation (Martinez et al., 2002). Synthetic siRNAs
can be introduced into the cell directly and avoid processing by
Dicer (Whitehead et al., 2009).

To access and activate the RNAi machinery, the siRNA must be
delivered to the cytoplasm of the cell. However, this “delivery of
siRNA” poses one of the most formidable challenges to realizing
the potential and utility of siRNA therapeutics. Whereas localized
targets are accessed directly, the main hurdle is encountered when
siRNA is delivered to tissues which are accessed only through sys-
temic administration of agents via the blood (Whitehead et al.,
2009). A number of barriers prevent the successful systemic deliv-
ery of siRNA. After intravenous administration, naked siRNA
exhibits low in vivo stability due to quick degradation by nucle-
ases. It has a short half-life due to rapid clearance by the kidneys
and uptake by the MPS. The hydrophilic nature and negative
charge of siRNAs prevent them from crossing the plasma mem-
brane easily, despite their relatively small size (about 13 kDa) (Liu
et al., 2013; Navarro et al., 2013). Other challenges with siRNA
include the potential to generate off-target effects due to silenc-
ing of genes that have partial homology with the siRNA and
engagement of the immune system components to cause immune
stimulation (Bumcrot et al., 2006). Moreover, because siRNAs
also share the RNAi pathway with endogenous miRNAs, they
may compete for the RNAi machinery, saturate it and inhibit
normal gene regulation by miRNAs (Kanasty et al., 2012). A
number of approaches have been suggested to overcome some
of the aforementioned challenges. Chemical modification of the
sugars, phosphate linkage or bases of siRNA can increase its
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Table 4 | Some examples of multifunctional drug-loaded micelles.

Micelle components Drug(s) Targeting ligand Stimulus Imaging moiety References

P(NIPAAm-co-AAm)-b-PCL DOX Integrin β4 mAb
(recognizes A9 antigen)

Thermo-responsive
LCST: 43◦C
-Magnetic
hyperthermia

SPIONs for MRI Kim et al., 2013

POEGMA-b-P(NIPAAm-co-
NBA-co-Gd)

DOX – UV Light Gd for MRI Li et al., 2012c

DSPE-PEG, biotin-DSPE-PEG,
and lissamine-rhodamine
(phospholipid encapsulated
SIPP cores) SIPP-PTX
micelles

PTX J591 (against PSMA) – Superparamagnetic
iron platinum NPs
(SIPP) for MRI

Taylor and Sillerud, 2012

PEG-b-PCL DOX Cetuximab(anti-EGFR
mAb)

– SPIO for MRI Liao et al., 2011

PEG2000-PE/DC-Chol/DOPE
micelles

DOX and DNA – – MnO NPs for MRI Howell et al., 2013

Folate-poly(ethylene
glycol)-b-poly[N-(N’,N’-
diisopropylaminoethyl)
glutamine]
[folated-PEG-P(GA-DIP)]

DOX Folate pH SPION for MRI Li et al., 2013c

PEG-b-PCL Auger electron
radiotherapy by 111In

Trastuzumab-Fab (targets
HER2) and 13-mer NLS

– SPECT/CT imaging
by 111In label

Hoang et al., 2013

Poly(amidoamine)-poly(L-
lactide)-b-PEG

DOX Anti-CD105 mAb
(TRC105) and NOTA

pH 64Cu for PET imaging Guo et al., 2013

PEG-b-PCL Sorafenib Folate SPIONs for MRI Zhang et al., 2013

POEGMA-b-P(NIPAAm-co-NBA-co-Gd), Poly(oligo(ethylene glycol) monomethyl ether methacrylate-b-Poly(N-isopropylacrylamide)-co-o-nitrobenzyl acrylate-co-Gd;

DOX, Doxorubicin; PTX, Paclitaxel; CREKA, Cys-Arg-Glu-Lys-Ala; NLS, Nuclear localization signal (13 mer peptide CGYGPKKKRKVGG); NOTA, 1,4,7-triazacyclononane-

N, N’, N-triacetic acid (macrocyclic chelator for 64Cu).

stability and also reduce the immune stimulation. Modifications
of the 2′ sugar position [2′-fluoro (2′-F), 2′-O-methyl (2′-O-Me)
and 2′-O-methoxyethyl (2′-MOE)], locked nucleic acids (LNA)
and unlocked nucleic acids (UNA) increase the endonuclease
resistance and reduce immunostimulatory activity, whereas intro-
duction of a phosphorothioate (PS) linkage at the 3′ end in
the backbone is known to increase stability and resist against
exonucleases (Bumcrot et al., 2006). Base modifications are less
common than those of sugar or phosphate linkages, but have been
employed. The use of 2-thiouracil or pseudouracil can increase
the binding specificity and potency and 5-methylation of pyrim-
idines (using T and 5-Me-C instead of U and C) is also common
(Watts et al., 2008). The off-target effects of siRNA and its satu-
ration of the RNAi machinery can be avoided by optimizing the
siRNA sequence and structure, and limiting doses of exogenous
RNA respectively (Kanasty et al., 2012; Navarro et al., 2013).

The issues of instability in circulation, rapid clearance and
short half-life of naked siRNA can be addressed by chemi-
cally modifying siRNA or by employing nanocarriers which can
protect it from degradation and immune recognition as well as
modify its pharmacokinetics favorably in vivo (Pecot et al., 2011;

Kanasty et al., 2012). The negative charge of siRNA can be masked
using cationic carriers which complex the siRNA electrostati-
cally. The positive charge of these carriers also helps in cellular
internalization (Musacchio and Torchilin, 2013).

A nanocarrier must possess certain features to be successful
as a carrier for systemic siRNA delivery. Ideally, a nanocarrier
should: (a) be non-toxic and non-immunogenic, (b) condense
siRNA effectively, (c) be stable in the presence of nucleases, (d)
protect the siRNA from immune recognition, (e) be large enough
to avoid clearance by kidneys, yet small enough to avoid phago-
cytosis by MPS, (f) avoid non-specific interactions with serum
proteins and non-target cells, (g) reach target tissues from the
blood and eventually the intracellular compartment, and (h)
release the entrapped siRNA efficiently in the cytoplasm to access
the siRNA machinery (Daka and Peer, 2012; Kanasty et al., 2013).
Polymeric micelles have been used successfully as drug deliv-
ery vehicles for the past few decades, which has prompted their
use as vehicles for siRNA. Moreover, by engineering micelles
with suitable modifications discussed in the previous sections,
they may likely meet most criteria for an “ideal” nanocarrier for
siRNA.
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So far, two main strategies have been used to design polymeric
micelles for siRNA delivery. The first involves direct conjuga-
tion of hydrophilic (PEG) or hydrophobic (lipid) moieties to
siRNA via degradable (e.g., disulfide) or non-degradable link-
ages, followed by their condensation with polycationic ions to
form micellar structures called polyion complex micelles (PICs)
or polyelectrolyte complex micelles (PECs). In PIC micelles,
the polyion segments are usually made of poly(amino acids)
like poly(aspartic acid) or poly(L-lysine) or PEI (Oishi et al.,
2005; Kim et al., 2008; Suma et al., 2012). In the second strat-
egy, siRNA is complexed with an amphiphilic block copolymer
containing polycation (or lipid) segment followed by micelliza-
tion of the block copolymer-siRNA complex (Falamarzian et al.,
2012; Navarro et al., 2013). Nanoparticles including polymeric
micelles enter cells by endocytosis (Decuzzi and Ferrari, 2008).
One of the major intracellular barriers for siRNA delivery is that
of endosomal escape following its delivery by various carriers.
Following endocytosis, the siRNA-loaded carriers in membrane-
bound endocytic vesicles fuse with early endosomes to become
increasingly acidic as they mature into late endosomes (pH 5–
6). Finally the endosomal contents are delivered to the lysosome,
where the pH drops further (pH ∼4.5), and where hydrolysis of
proteins and nucleic acids take place (Dominska and Dykxhoorn,
2010; Singh et al., 2011). To avoid lysosomal degradation, it is
essential for the siRNA to escape the endosome, be released into
the cytosol and interact with the RNAi machinery (Dominska and
Dykxhoorn, 2010). To overcome this “endosomal escape barrier,”
polymeric micelles can be designed to incorporate cationic poly-
mers such as PEI which act as “proton sponges” to disrupt the
endosomes and release siRNA in the cytosol. Alternatively, pH-
responsive polymers can be used to construct polymer micelles,
so that they disrupt and release the siRNA at the endosomal pH.
Finally fusogenic lipids, cell penetrating peptides, other polymers
with high buffering capacity and photosensitizers (upon light
activation they induce endosomal disruption via singlet oxygen
production) can be used to engineer polymeric micelles to over-
come the issue of endosomal escape (Dominska and Dykxhoorn,
2010). In the sections that follow, we discuss some examples of
multifunctional micelles from the recent literature which have
been used to deliver either siRNA alone or siRNA in combination
with drugs.

MULTIFUNCTIONAL MICELLES FOR DELIVERY OF siRNA
Many interesting micelle-forming amphiphilic block copolymers
have been developed for siRNA delivery over the past few years.
These basic platforms are being modified continuously to achieve
maximum benefit from them, by introducing targeting ligands
or incorporating environmentally-sensitive blocks or links within
them. For all siRNA delivery platforms including micelles, a major
focus is on preventing siRNA degradation from the time it is
introduced in the systemic circulation, until it reaches the RNAi
machinery in the cytoplasm, after navigating the endocytic path-
way for intracellular trafficking and its subsequent endosomal
escape.

Christie et al. reported the development of multifunctional
micelles for siRNA delivery formed from the stable assembly of
siRNA with block copolymers possessing three main features:

a siRNA binding segment containing thiols, a hydrophilic
non-binding segment and a cell-surface binding peptide (Christie
et al., 2012). The block copolymer used was PEG-b-poly(L-
lysine) (PEG-b-PLL) containing lysine amines modified with
2-iminothiolane (2IT). Building on their previous work where
the RNAi activity of the micelles formed using this copolymer
was found to be low (Matsumoto et al., 2008), the authors
further modified the block copolymer with cyclo-Arg-Gly-Asp
(cRGD) peptide at the PEG terminus to enhance tumor accu-
mulation, cell uptake and sub-cellular distribution. The 2IT
modification of the lysine amines introduced amidines and free
thiols into the lysine segment of the block copolymer, which
increased the stability of micelles through disulfide cross-linking
in the core. It also imparted micelles with a site-specific siRNA
release function in response to the highly reducing environ-
ment within cells. The 2IT modification also had a micelle-
stabilizing effect due to the formation of cyclic-N-substituted
2IT ring structures in the lysine side chains. Electrostatic inter-
actions between oppositely charged macromolecules resulted in
charge neutralization and self-assembly to form micelles, with
siRNA incorporated into the micelle core and PEG forming
the shell. The cRGD-targeted micelles improved siRNA deliv-
ery both in vitro and in vivo. Micelles incorporating siRNAs
against VEGF (to target tumor mass) and those incorporat-
ing siRNA against vascular endothelial growth factor receptor
2 (VEGFR2) (to target blood vessel endothelial cells) were pre-
pared. The siRNA-loaded, cRGD-modified micelles enhanced
the gene silencing ability, improved cell uptake, and had better
sub-cellular distribution in vitro. They also improved accumu-
lation in the tumor mass and tumor-associated blood vessels
following i.v. injection in mice. They also effectively inhibited
growth of subcutaneous HeLa-Luc tumors and silenced genes
in the tumor mass following treatment with antiangiogenic siR-
NAs. No tumor growth reduction was observed with naked
siRNA, micelles lacking the cRGD peptide, or those without
2IT-modified lysines, which was consistent with in vitro results
(Christie et al., 2012). TAT, another cell-penetrating peptide
was conjugated via a disulfide bond to an amphiphilic block
copolymer mPEG-PCL and evaluated for siRNA delivery both
in vitro and in vivo (Kanazawa et al., 2012). The MPEG-PCL-
SS-TAT/siRNA micelles showed a significantly higher intracellular
uptake of 6-carboxyfluorscein-aminohexyl (FAM)-siRNA than
naked FAM-siRNA and an uptake equivalent to the positive con-
trol LipoTrust at a nitrogen to phosphate (N/P) ratio of 30. The
micelles without siRNA (MPEG-PCL-SS-TAT) did not induce
substantial cytotoxicity in S-180 sarcoma cells at any of the
reported N/P ratios. The MPEG-PCL-SS-TAT/anti-VEGF siRNA
micelle complexes were evaluated in vivo in S-180 sarcoma tumor-
bearing mice. Relative to control mice and to groups injected with
naked VEGF siRNA or control siRNA bearing micelles, the tumor
volumes were significantly suppressed for the MPEG-PCL-SS-
TAT/siVEGF group, which correlated with the reduction in VEGF
secretion from these tumors. The suppressed VEGF secretion was
attributed to improved siRNA release in the cytosol after cleav-
age of the S-S bond by intracellular GSH, which enables release
of TAT and the dissociation of siRNA from micelles (Kanazawa
et al., 2012).
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Significant levels of resident macrophages have been observed
in many cancers, which have been correlated with poor prog-
noses. Tumor associated macrophages thus represent an interest-
ing target for cancer therapy (Lewis and Pollard, 2006). However,
the delivery and cytoplasmic release of siRNA in macrophages
is a challenging task, due to their high degradative poten-
tial. Yu et al. reported pH-responsive polymeric micelles which
were mannosylated using “click” chemistry to allow CD206
(mannose receptor)-targeted siRNA delivery to tumor associated
macrophages which show an up-regulation of these receptors
(Yu et al., 2013b). The mannosylated micelles had been incor-
porated with various functions in their polymer blocks and
were synthesized in three stages: (I) Sequential reverse addition-
fragmentation chain transfer (RAFT) polymerization and purifi-
cation was first used to synthesize the polymeric components,
(II) Alkyne functionalized mannose was synthesized separately,
and (III) The polymers from stage (I) were formed into micelles
and reacted with alkyne functionalized mannose from stage
(II) using alkyne-azide click chemistry which immobilizes man-
nose on the micelle corona. The micelle blocks consisted of a
pH-responsive, core-forming terpolymer capable of disrupting
endosomes at low pH (butyl methacrylate-co-2-propyl acrylic
acid-co-2-dimethylaminoethyl methacrylate) (BMA-co-PAA-co-
DMAEMA), a cationic block for condensing siRNA (DMAEMA)

and an azide-presenting corona-forming block for the attach-
ment of alkyne-functionalized mannose (2-azidoethyl methacry-
late (AzEMA) (Figure 7).

The resulting triblock copolymers poly(BMA-co-PAA-co-
DMAEMA)-b-poly(DMAEMA)-b-poly(AzEMA) self-assembled
into micelles in aqueous media at pH 7.4. The mannosylated
micelle nanoparticles (ManNPs) had a four-fold improved siRNA
delivery into macrophages compared with non-targeted carri-
ers and achieved 87 ± 10% knockdown of a model gene in
primary macrophages following a 24 h treatment. They prefer-
entially delivered siRNA into immortalized human macrophages
(13-fold higher) relative to model breast cancer cell lines. The
ManNPs as well as diblock copolymers without the targeting
agent were both capable of escaping the endosomal compart-
ment in a pH-dependent manner as confirmed by the red blood
cell (RBC) hemolysis assay, a function conferred by the core-
forming, pH-responsive, endosomolytic terpolymer block (Yu
et al., 2013b). The same pH-responsive terpolymer block was
previously reported by Palanca-Wessels et al. in another multi-
functional micellar system for CD22 receptor-targeted delivery of
siRNA to lymphoma cells. The CD22-targeted polymeric micelles
were effective at a low dose of 15 nmol/l siRNA and produced a
70% reduction in glyceraldehyde-3-dehydrogenase (GAPD) gene
expression in DoHH2 lymphoma cells (Palanca-Wessels et al.,

FIGURE 7 | Smart polymeric nanoparticles for mannose receptor-targed

cytosolic delivery of siRNA. Schematic representation of the triblock
copolymers and formulation into multifunctional nanoscale siRNA delivery
vehicles. The blocks include a pH-responsive block that is capable of

disrupting endosomes at low pH (red), a cationic block for condensation of
nucleic acids (blue), and an azide-displaying block (green) for conjugation of
targeting motifs (purple) via click chemistry. Reprinted with permission from
Yu et al. (2013b), Copyright © 2013 American Chemical Society.
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2011). Leroux and co-workers also reported pH-responsive, core-
shell type PIC micelles (PICMs) decorated with an antibody frag-
ment directed against the transferrin receptor (anti-CD71) for
delivery of siRNA (Felber et al., 2011). The micelles were prepared
by complexing poly(ethylene glycol)-b-poly(propyl methacrylate-
co-methacrylic acid) (PEG-b-P(PrMA-co-MAA) with different
polyamidoamine (PAMAM) dendrimers and nucleic acids to
form the PICMs. Under mildly acidic conditions found within
the endosomal compartment, the PICMs lose their shell to
release the PAMAM/nucleic acid core due to protonation of MAA
units. The micelles were stable in serum and protected siRNA
from degradation. Cell uptake studies with PC-3 (prostate can-
cer) cells using flow cytometry revealed a significantly higher
uptake for the anti-CD71 Fab′-PICMs when compared to native
PICMs and non-specific antibody-bearing micelles. The targeted,
siRNA-loaded PICMs down-regulated the expression of the anti-
apoptotic oncoprotein Bcl-2 in vitro, when using either the
unmodified or 2′-modified (2′F-RNA and 2′F-ANA) sequences.
The chemically modified siRNA however required a five-fold
lower concentration (10 vs. 50 nM to achieve the same silencing
as the unmodified siRNA (Felber et al., 2011).

Additional examples for multifunctional siRNA-loaded
micelles are given in Table 5.

MULTIFUNCTIONAL MICELLES FOR THE COMBINED DELIVERY OF
DRUGS AND siRNA
siRNA therapy using polymeric micelles has shown considerable
promise and is being investigated widely. However, tumors are
highly prone to genetic mutations, which may hinder the effec-
tiveness of siRNA as a single agent in the treatment of malignan-
cies (Liu et al., 2013). Moreover, conventional anti-cancer agents
also suffer from limitations like off-target effects and multi-drug
resistance (MDR), both of which hamper cancer therapy signifi-
cantly. Efforts to develop molecules which inhibit the function of

the drug transporter proteins like P-glycoprotein (Pgp) (encoded
by the MDR1 gene) to sensitize tumor cells to anti-cancer agents
have met with limited clinical success so far, due to the non-
specific nature of these inhibitors (Shukla et al., 2008). In such
cases, employing RNAi to down-regulate the expression of MDR
genes to specifically inhibit Pgp expression rather than merely
its function, followed by conventional chemotherapy could reap
greater benefits for cancer therapy (Wu et al., 2003). A number
of studies have reported that pre-treatment of cancer cells with
siRNAs followed by conventional anticancer drugs can sensitize
the cells significantly toward the drug and make therapy more
effective (Spankuch et al., 2007; Macdiarmid et al., 2009; Zhang
et al., 2011a; Salzano et al., 2014). However, to gain the max-
imum effect from both siRNA and drug in vivo, they must be
delivered simultaneously to the same tumor cell following sys-
temic administration and, ideally, distribute within cells at an
optimized ratio for maximal cooperation (Sun et al., 2011b). In
this section, we discuss some examples of multifunctional poly-
meric micelles which incorporate siRNA as well as drug within
the same nanocarrier.

Multifunctional micelles composed of PEO-b-PCL block
copolymers were reported with functional modifications on both
the blocks (Xiong and Lavasanifar, 2011). These micelles could
co-deliver siRNA and DOX, enable passive and active target-
ing, provide for cell membrane translocation and provide a
pH-triggered drug release in the endosomes. The PCL core of
the micelles incorporated short polyamines (spermine (SP)) to
complex MDR1 siRNA, conjugated DOX chemically via a pH-
sensitive hydrazone linkage, and they could also conjugate fluo-
rescent imaging probes to track micelles in vitro and in vivo. To
the virus-like shell of these micelles, two ligands were attached:
an active targeting ligand, RGD4C specific for integrin (αvβ3)
receptors and a cell penetrating TAT-peptide to facilitate the
intracellular uptake (Figure 8).

Table 5 | Examples of multifunctional siRNA-loaded micelles.

Micelle forming components siRNA Targeting ligand Stimulus References

PEO-b-PCL MDR1 siRNA RGD4C (targets αvβ3)/TAT (CPP) – Xiong et al., 2010

PEG-b-poly(L-lysine)-g-(ss-lPEI) XIAP (anti-apoptotic) siRNA Herceptin (targets Her2/neu) Redox (disulfide bonds) Li et al., 2014

PEG-b-P(PrMA-co-MAA) shell
and PAMAM core PIC micelles

Bcl-2 siRNA Anti-CD71 Fab’(targets
transferrin receptors

pH Elsabahy et al., 2009

6 arm PEG-Hph1/cl KALA PECs GFP or VEGF siRNA Hph1 (CPP) Redox Choi et al., 2010

PDMAEMA-b-PDPAEMA
(Amphotericin B loaded in
PDPAEMA core)

GL3 luciferase siRNA – Dual pH (amphotericin
B caused endosomal
escape via membrane
destabilization)

Yu et al., 2011

mPEG-b-PCL and PCL-b-PPEEA
mixed micelles

Apolipoprotein B siRNA
(hepatocyte specific)

N-galactosamine (targets
ASGPr)

– Wang et al., 2013

lPEI, Low mol weight polyethyleneimine; PEG-b-P(PrMA-co-MAA), poly(ethylene glycol)-block-poly(propyl methacrylate-co-methacrylic acid); PAMAM, polyami-

doamine; cl KALA peptide, cross-linked CWEAKLAKALAKALAKHLAKALAKALKAC; Hph1, cell penetrating peptide (YARVRRRGPRR); PDMAEMA-b-PDPAEMA,

poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate); ASGPr, asialoglycoprotein receptor; PPEEA, poly(2-aminoethyl ethy-

lene phosphate.
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FIGURE 8 | (A) Schematic illustration of acetal- and TAT-PEO-b-P(CL-g-SP) (I
and II) and acetal- and RGD4C-PEO-b-P(CL-Hyd-DOX) (III and IV). (B) Rational
design of a multifunctional micellar nanomedicine for targeted co-delivery of
siRNA and DOX to overcome multidrug resistance. (a) Chemical structure of
functionalized copolymers with ligands at the end of the PEO block and
conjugated moieties on the PCL block. (b) Assembly of multifunctional
micelles with DOX and siRNA in the micellar core and RGD and/or TAT on the

micellar shell. (c) Schematic diagram showing the proposed model for the
intracellular processing of targeted micelles in MDR cancer cells after
receptor-mediated endocytosis, leading to cytoplasmic siRNA delivery
followed by P-gp down-regulation on the cellular and nuclear membrane and
endosomal DOX release, followed by DOX nuclear accumulation. Reprinted
with permission from Xiong and Lavasanifar (2011), Copyright © 2011
American Chemical Society.

The final micelle formulation was obtained by mixing plain
or peptide-modified PEO-b-P(CL-g-SP)/siRNA and PEO-b-
P(CLHyd-DOX) block copolymers. The micelles were taken up
by the cells through receptor-mediated endocytosis, and released
siRNA in the cytoplasm due to endosomal rupture facilitated
by spermine and TAT peptide. The traceable micelles were pre-
pared by conjugating a near-infrared fluorophore (Cy5.5) (NIRF)
to the spermine side chain or by using fluorescently labeled
(Dy677) siRNA which allowed tracking of both the carrier as
well as incorporated siRNA in vivo. The RGD/TAT-micelles con-
taining MDR1-siRNA demonstrated significant cellular uptake,
improved penetration and enhanced the cytotoxicity of DOX
in DOX-resistant cells. The cytotoxicity was a result of down-
regulation of P-gp expression on cell and nuclear membranes
caused by cytoplasmic delivery of siRNA and DOX (Xiong and
Lavasanifar, 2011).

Zhao et al. reported on multifunctional micelles capable of co-
delivering docetaxel as well as siRNA against polo-like kinase 1
(Plk1), which is over-expressed in a number of tumors and plays
a crucial role in cell mitosis (Zhao et al., 2013). The authors con-
jugated siPlk1 to D-α-tocopheryl polyethylene glycol succinate
(vitamin E TPGS or TPGS), a water soluble vitamin E derivative,
using a disulfide bond to form TPGS-siPlk1. The disulfide bond

was susceptible to high intracellular GSH concentrations, which
caused the release of siPlk1 and also accelerated drug release due
to reduced stability of micelles following cleavage of the disul-
fide bond. To develop Herceptin-conjugated micelles, a mixture
of TPGS-siPlk1conjugate and TPGS or amine terminated TPGS
(TPGS-NH2) was used at a designated ratio for co-delivery of
siRNA and docetaxel (Figure 9).

The micelles were evaluated in vitro in cells expressing low
(NIH3T3), moderate (MCF-7) or high levels of HER2 (SK-BR-
3). To functionalize micelles with Herceptin, TPGS-NH2 was used
instead of TPGS followed by Herceptin conjugation via EDC-
NHS chemistry. The siPlk-1 and Herceptin modified micelles
successfully internalized into the cytoplasm of SK-BR-3 cells.
Moreover, the Herceptin modification enhanced the therapeu-
tic efficacy of micelles due to its inherent toxicity to cancer cells
as well as its ability to undergo receptor mediated endocyto-
sis and assist the nanocarrier’s entry into the cytoplasm. The
Herceptin modified micelles showed significantly higher cellular
uptake and low IC50 values in SK-BR-3 cells compared to micelles
not modified with Herceptin (Zhao et al., 2013).

Another study also reported the delivery of siRNA against
Plk-1 in combination with DOX to sensitize ovarian cancer cells
(NCI/ADR-RES) to DOX (Benoit et al., 2010). The cationic
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FIGURE 9 | Schematic illustration of formulation of the docetaxel loaded TPGS–siPlk1/TPGS micelles (micSD) and the herceptin-conjugated

docetaxel loaded TPGS–siPlk1/TPGS micelles (micSDH). Reprinted from Zhao et al. (2013).

micelles were formed from diblock copolymers of dimethy-
laminoethyl methacrylate (pDMAEMA) and butyl methacrylate
(BMA). The butyl core was responsible for micelle formation
while the siRNA condensation was facilitated by the positively
charged p(DMAEMA). A pH-responsive endosomolytic copoly-
mer of poly(styrene-alt-maleic anhydride) (pSMA) was com-
plexed to the positively charged siRNA/micelle to form a ternary
complex by electrostatic interaction. DOX was loaded in the
micelle cores to demonstrate simultaneous dual delivery with
siRNA from a single carrier. However, for this particular study,
the authors found that with dual delivery the effects on caspase
activation and cell toxicity were weaker than those obtained with
singly loaded siRNA ternary complexes due to a limitation in
DOX loading concentration (0.2 μg/ml) (Benoit et al., 2010).

Cao et al. synthesized diblock copolymers of linear PEI and
PCL (PEI-PCL) which self-assembled into cationic biodegradable
polymeric micelles (Cao et al., 2011). Furthermore, the micelles
were able to load and co-deliver anti-apoptotic Bcl-2 siRNA and
DOX and utilized folic acid as a targeting agent for human hep-
atic cancer cells Bel-7402 (Figure 10). To incorporate folic acid,
it was first conjugated to a polyion, poly(ethylene glycol)-block-
poly(glutamic acid) (FA-PEG-PGA) and then coated electrostat-
ically onto the surface of cationic PEI-PCL micelles preloaded
with siRNA and DOX. This multifunctional hierarchial nano-
assembly was capable of simultaneous delivery of drug and siRNA
in a targeted manner to yield a synergistic effect of RNAi and
chemotherapy on cancer targets.

The approach for incorporation of folate was relatively simple,
avoided the toxicity associated with cationic carriers and did not
affect siRNA complexation. At certain ratios of PEI-PCL nitrogen
-to-siRNA phosphate (N/P) and FA-PEG-PGA carboxyl-to-PEI-
PCL amine (C/N), the micelles demonstrated high transfection
efficiency as well as controlled release of DOX. The folate-targeted
delivery of anti-apoptotic Bcl-2 siRNA resulted in significant
gene suppression at both the mRNA and protein expression lev-
els compared to the non-targeted micelles. The suppression of
DOX-inducible up-regulation of the anti-apoptotic Bcl-2 gene
led to enhanced cell apoptosis in Bel-7402 cells and potentiated
the effect of DOX in inducing cell death through a synergis-
tic effect of siRNA and DOX (Cao et al., 2011). Following up
on these promising in vitro results, the authors extended their
research to determine if this multifunctional nanoplatform would
show a synergistic effect in vivo, and to elucidate the molecular

mechanism of the synergistic effect (Cheng et al., 2012). A rat
model with an in situ C6 glioma implant was used for in vivo
studies. In the in vitro studies the folate-targeted multifunctional
micelles induced significant cell apoptosis in C6 cells even at a low
dose of DOX (0.5 μg/mL) compared to free DOX, which caused
apoptosis only at high doses (15 μg/mL). Molecular investiga-
tions showed that the targeted nanocarriers effectively suppressed
the anti-apoptotic response induced by DOX, and sensitized C6
cells to DOX treatment both in vitro and in vivo. In the ani-
mal studies, the folate-targeted co-delivery of Bcl-2 siRNA and
DOX caused a significant down-regulation of the Bcl-2 gene and
also up-regulated the pro-apoptotic Bax gene, which increased the
activated caspase-3 levels significantly, resulting in cell apoptosis
in the tumor tissues. The targeted co-delivery strategy led to a syn-
ergistic effect in vivo causing effective tumor growth inhibition
as well as prolonged survival time over treatment with micelles
with single agents or non-targeted micelles (Cheng et al., 2012).
Zou et al. from the same group reported a triblock copolymer
PEG-PEI-PCL instead of PEI-PCL mentioned above and conju-
gated it to FA. This copolymer self-assembled to form cationic
micelles which could then complex Bcl-2 siRNA. These micelles
simultaneously delivered siRNA and DOX with successful results
in vitro in SKOV-3 ovarian cancer cells. This ternary copolymer
complex was reported to have better stability than that formed
using the hierarchial multilayer assembly where the PEG coat-
ing was achieved by electrostatic interaction rather than covalent
linkage (Zou et al., 2012).

In a recent study, Zhu et al. reported the development of
MMP-2 sensitive multifunctional polymeric micelles for the
co-delivery of siRNA (anti-survivin or anti-GFP) and PTX
(Zhu et al., 2014). They developed a simple MMP-2-sensitive
self-assembling copolymer, PEG-pp-PEI-PE using a synthetic
octapeptide (GPLGIAGQ) which was also utilized in their previ-
ous investigations with both, liposomes and micelles for MMP-2-
sensitive tumor targeting (Zhu et al., 2012, 2013). The micelles
exhibited efficient down-regulation of the reporter gene (GFP)
in GFP expressing cells (copGFP A549) and survivin in PTX-
resistant non-small cell lung cancer cells (A549 T24). The PEG-
pp-PEI-PE/PTX micelles significantly increased the cytotoxicity
of PTX in both PTX-sensitive (A549) and resistant (A549 T24)
cells relative to the free drug or non-sensitive micelles. The simul-
taneous delivery of anti-survivin siRNA and PTX resulted in a
synergistic effect, significantly reducing the IC50 of PTX to 15 nM
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FIGURE 10 | Formation of hierarchical nano-assemblies for combinatorial delivery of siRNA and anticancer drugs. Reprinted from Cao et al. (2011).

(from 96 nM for free PTX). In vivo, although the co-delivery
efficacy for siRNA and PTX was not as pronounced as that
under in vitro conditions, the MMP-2 sensitive micelles showed
a 2.4-fold higher internalization of siRNA and PTX compared
to the non-sensitive micelles due to the de-shielding of PEG and
exposure of PEI (Zhu et al., 2014).

CONCLUSIONS AND FUTURE DIRECTIONS
The last several years have seen rapid advances in the use of
polymeric micelles for delivery of a variety of cargoes from con-
ventional anti-cancer drugs to biological macromolecules such as
DNA, siRNA, antibodies and oligonucleotides. Chemical modifi-
cations in the structure of micelle-forming block copolymers have
enabled the development of sophisticated micelles which combine
multiple modalities within a single carrier. There is a clear shift
from developing just single-therapeutic agent loaded micelles to
micelles which combine more than one type of therapeutic pay-
load and which can also be modified for active targeting, delivery
of imaging agents and response to special cues provided either
by the tumor microenvironment or externally, to spatially and
temporally control the release of entrapped cargoes.

This review has discussed a number of examples which cover
a wide range of polymeric micelle modifications—from poly-
meric micelles which are modified for passive targeting and rely

on the EPR effect, to progressively more complex systems which
incorporate targeting ligands, respond to various stimuli and
finally to systems which simultaneously and seamlessly incor-
porate multiple modifications as well as combinations of drugs
and biologics like siRNA to give rise to multifunctional poly-
meric micelles. We may certainly look to the future of polymeric
micelles with a lot of optimism, given their inherent advantages
and ease of introducing structural modifications. In part, this is
supported by the wide variety of amphiphilic copolymers avail-
able for manipulation, better control of micelle characteristics
and clinical success with passively targeted polymeric micelles for
anti-cancer drugs. However, as far as siRNA delivery is concerned,
much work remains before polymeric micelle therapeutics can
be successfully translated into clinical usage. This stems from
the inherent difficulty in delivering siRNA and a host of biologi-
cal barriers encountered en route to its ultimate destination, the
RNAi machinery in the cytoplasm. There exist certain established
criteria for the successful development of polymeric micelles for
siRNA delivery based on the previous as well as ongoing investiga-
tions. These include controlling the micelle size to be large enough
to preclude renal filtration but small enough to avoid phagocyto-
sis, chemical modifications of siRNA to improve stability against
nuclease degradation and avoid immunostimulation, PEGylation
to prevent rapid elimination, non-specific interactions and to
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evade immune surveillance, use of polycations in micelle blocks
to effectively condense siRNA and improve transfection, incorpo-
ration of endosomolytic agents to assist the endosomal escape of
siRNA, and finally the use of targeting ligands to improve uptake
by specific cells (Kanasty et al., 2013). However, to arrive at an effi-
cacious micellar formulation for siRNA, it is critical to optimize
each of these parameters so that enhancing one of them does not
adversely affect the other. For example, polycations enhance the
condensation of siRNA in the micelles and improve its transfec-
tion efficacy, but may negatively affect the overall safety of the
micelles in vitro and in vivo, which necessitates the use of low
molecular weight polycations that are relatively safer to use. To
date, many oncogenic targets including those involved in apop-
tosis, drug resistance, proliferation and angiogenesis have been
investigated for siRNA-mediated therapy of cancer. However, the
safe and efficient delivery of siRNA into target cells still presents
a formidable challenge (Liu et al., 2013). We must address key
challenges in siRNA delivery to optimize micelle formulations
to enable their translation into clinically acceptable therapeu-
tics. There is a need to develop polymers which allow efficient
siRNA loading and protection within the formulation without
the accompanying adverse effects. Efforts need to be focused on
development of more stable micelle formulations with siRNA
that allow long term storage if they are to eventually reach the
clinics. In vivo safety issues like immune stimulation and off-
target effects of both siRNA and micelle forming materials need
to be given serious consideration as well. The PK/PD parame-
ters and biodistribution of siRNA after systemic administration
must be studied systematically to arrive at optimal siRNA dosing
regimens. Finally, studies must also be undertaken to investigate
optimized ratios of drug and siRNA when loaded simultaneously
in the same carrier to ensure their synergistic therapeutic effect
(Liu et al., 2013).

Multifunctional micelles have gained immense popularity
because of their versatility in simultaneously incorporating a vari-
ety of different payloads (therapeutic and imaging) and their
ability to withstand multiple modifications (active and passive
targeting, response to stimuli, imaging) to enable cancer cell spe-
cific targeting and therapy. In the light of what has been discussed,
we can consider these “smart” polymeric micelles as our best
current option for delivery of nucleic acid therapeutics, in par-
ticular, siRNA, albeit not without certain limitations. It is crucial
to ensure that the functionalities incorporated within a poly-
meric micelle function seamlessly in perfect coordination with
each other. With many different functions and modifications, the
architecture of the micelles becomes more complex which can
lead to difficulties in their reproducible synthesis and scale-up
for manufacture. Impediments to clinical translation may result
from the challenge in developing a robust manufacturing pro-
cess, its cost effectiveness, and finally the regulatory requirements
that have to be met when introducing a complex nanocarrier in
the clinic. Incorporating siRNA along with drugs and various lig-
ands within a multifunctional micelle may prove to be technically
challenging on a large scale.

In spite of the evident hurdles, there are a number of ele-
gantly designed multifunctional micellar formulations under
active investigation, and as new technologies develop, there will be

more data on such multifunctional platforms for further research.
It is a well-known fact that the translational potential of a system
increases if it has a simplified design and ease of development. To
that end, polymeric micelles, like their nanocarrier counterparts,
liposomes; are already well ahead of other nanocarriers in terms
of proven clinical success. The challenge then remains to har-
ness the success with passively targeted micelles to design elegant
multifunctional polymeric micelles capable of delivering multiple
therapeutic molecules simultaneously.
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