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Among neurodegenerative disorders, Alzheimer’s disease (AD) represents the most
common cause of dementia in the elderly. Several genetic and environmental factors
have been identified; however, aging represents the most important risk factor in the
development of AD. To date, no effective treatments to prevent or slow this dementia
are available. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes, implicated
in the control of a variety of biological processes that have the potential to modulate
neurodegeneration. Here we tested the hypothesis that activation of SIRT1 or inhibition
of SIRT2 would prevent reactive gliosis which is considered one of the most important
hallmark of AD. Primary rat astrocytes were activated with beta amyloid 1-42 (Aβ 1-42) and
treated with resveratrol (RSV) or AGK-2, a SIRT1 activator and a SIRT2-selective inhibitor,
respectively. Results showed that both RSV and AGK-2 were able to reduce astrocyte
activation as well as the production of pro-inflammatory mediators. These data disclose
novel findings about the therapeutic potential of SIRT modulators, and suggest novel
strategies for AD treatment.
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INTRODUCTION
Alzheimer’s disease (AD) represents one of the major health con-
cern and it is a research priority since there is a pressing need to
develop new agents to prevent or treat it. A part of the progres-
sive deposition of beta amyloid peptide (Aβ) and accumulation of
phosphorylated tau, several other alterations occur in AD brain,
all concurring to neuronal loss. Among these, growing interest has
been attracted by the role of inflammation in the onset and pro-
gression of this disorder. In fact, senile plaques and neurofibrillary
tangles (which are considered the more characteristic hallmarks of
AD) co-localize with activated astrocytes, suggesting for these cells
a key role in the pathogenesis of AD (Meda et al., 2001; Craft et al.,
2006). Along this line, in several experimental models it has been
demonstrated that Aβ peptide fragments markedly alter astrocytes
functions. This process is accompanied with a noticeable neuroin-
flammatory response, accounting for the synthesis of different
cytokines and pro-inflammatory mediators which amplify neu-
ropathological damage (Mrak and Griffin, 2001; Caricasole et al.,
2003; Tuppo and Arias, 2005; Griffin, 2006; Scuderi et al., 2011,
2012, 2013). It is established that neuroinflammation is directly
linked to neural dysfunction and cell death, representing a pri-
mary cause of neurodegeneration (Block and Hong, 2005). In fact,
over-release of pro-inflammatory cytokines by glia cells causes
neuronal dysfunction and loss of synapses, which correlates with
memory decline. These phenomena are believed to precede neu-
ronal death. Thus, research focused on developing therapeutic
strategies directed at controlling the prolonged and uncontrolled
glia activation should be encouraged.

An uncommon opportunity to improve inflammation and neu-
rodegeneration simultaneously is provided by compounds able
to modulate histone acetylation/deacetylation, since they partic-
ipate in brain immune control and neuroprotection, in addition
to their well-known effects on the molecular mechanisms associ-
ated to senescence and metabolic syndromes. Mounting evidence
indicates sirtuins (SIRTs) exert neuroprotective effects in several
models of neurodegeneration (Outeiro et al., 2008; Tang and Chua,
2008; de Oliveira et al., 2010). SIRTs, a family of NAD+-dependent
enzymes with seven isoforms identified (SIRT1-7), are implicated
in the control of a variety of biological processes including tran-
scriptional silencing, chromosomal stability, cell cycle progression,
apoptosis, autophagy, metabolism, growth suppression, inflam-
mation, and stress response (Gan and Mucke, 2008; Haigis and
Sinclair, 2010).

Recent observations indicate both SIRT1 and SIRT2 regu-
late neuronal survival, but with divergent functional outcomes.
Indeed, activation of SIRT1 mainly exerts neuroprotective actions,
while SIRT2 fosters neurodegeneration. The reason for such oppo-
site effect may be due to their different sub-cellular localization,
which gives SIRT1 and SIRT2 distinct molecular targets (Harting
and Knöll, 2010). It has been demonstrated that the overexpres-
sion of SIRT1 prevents neuronal death in tissue culture models
of AD, amyotrophic lateral sclerosis, and polyglutamine toxic-
ity, and it reduces hippocampal degeneration in a mouse model
of AD (Kim et al., 2007; Li et al., 2007). Moreover, treatment
with resveratrol (RSV), a polyphenolic compound acting as a
pharmacological activator of SIRT1, is protective in a number
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of experimental neurodegeneration paradigms (Anekonda, 2006;
Sun et al., 2010). Resveratrol, like other polyphenol compounds
including curcumin, displays a plethora of actions, behaving as a
potent antioxidant agent, increasing SUMOylation, and activat-
ing protein kinase C, all mechanisms able to counteract astrocyte
reactivity and protect neurons (Jefremov et al., 2007; Hoppe et al.,
2013; Menard et al., 2013). Finally, it has been observed that both
SIRT1 overexpression and RSV treatment are able to significantly
decrease the Aβ-induced activation of NF-κB, thus operating a
simultaneous control on both neurodegeneration and neuroin-
flammation processes (Chen et al., 2005). Indeed, NF-κB is a
transcription factor which controls the expression of gene prod-
ucts involved in key cellular signaling, including those associated
to inflammatory and degenerative events. Post-mortem studies
on cerebral cortices from AD patients have established a corre-
lation between loss of SIRT1 and the accumulation of Aβ and
hyperphosphorylated tau proteins (Julien et al., 2009). Growing
evidence indicates that also SIRT2 is involved in regulating several
brain processes including oligodendrocyte mitosis and differen-
tiation, cytoskeletal dynamics necessary for trafficking, neurite
outgrowth and synaptic remodeling. Unlike SIRT1, SIRT2 appears
to promote neuronal death. In fact, blocking SIRT2 counteracted
alpha synuclein toxicity in Parkinson’s disease models (Outeiro
et al., 2007). However, less is known about the role of SIRT2 in
AD.

On the basis of these considerations, we explored the effects
of modulators of SIRTs on astrocyte activation and the sub-
sequent inflammatory process. In particular our experiments
focalized the ability of RSV, a SIRT1 activator, and AGK-2, a
SIRT2-selective inhibitor, to control astrocyte activation and to
suppress the production of pro-inflammatory mediators in pri-
mary rat astrocytes exposed to Aβ peptide. These findings suggest
that either RSV or AGK-2 may be an effective agent for neu-
rodegenerative diseases initiated or maintained by inflammatory
processes.

MATERIALS AND METHODS
CELL CULTURES AND TREATMENTS
Newborn Sprague-Dawley rats (1 or 2 days old) were used to
obtain primary astroglial cultures (Vairano et al., 2002; Scud-
eri et al., 2011). Briefly, brain cortices were homogenized and
processed to obtain single cells. Astrocytes were cultured at a
density of 3 × 106 cells/75-cm2 flask and incubated at 37◦C
in a humidified atmosphere containing 5% CO2. The culture
medium used was DMEM supplemented with 5% inactivated
fetal bovine serum, 100 IU/ml penicillin and 100 μg/ml strep-
tomycin (all from Sigma–Aldrich, Milan, Italy), replaced 24 h
after isolation and again one a week until astrocytes were grown
to form a monolayer. Approximately 14–15 days after dissec-
tion, astrocytes were mechanically separated from microglia
and oligodendrocytes. Obtained astrocytes were seeded onto
10-cm-diameter Petri dishes (1 × 106 cells/dish) or onto 24
well plates (1 x 105 cells/well). The monoclonal anti-glial fib-
rillary acidic protein (GFAP) was used to verify cell culture
purity. Only cultures with more than 95% GFAP-positive cells
were utilized. The 5% of non-astrocyte cells were microglia and
oligodendrocytes.

All experiments were performed in accordance with the Italian
Ministry of Health (DL 116/92), the Declaration of Helsinki, and
the Guide for the Care and Use of Mammals in Neuroscience and
Behavioral Research, and they were approved by the Institutional
Animal Care and Use Committee at our institution.

Mature astrocytes were challenged with 0.23 μM Aβ 1-42
(Tocris Bioscience, Bristol, UK) in the presence or absence of the
following substances: RSV (2 – 10 – 50 μM), a well-known SIRT1
activator, or AGK-2 (0.35 – 3.5 – 35 μM), a potent SIRT2-selective
inhibitor (both from Sigma–Aldrich). After 24 (for viability and
protein expression analyses) or 72 h (for proliferation assay) of
treatment, astrocytes were collected for experiments. The con-
centration of the substances was chosen according to literature
(Howitz et al., 2003; Outeiro et al., 2007; Scuderi et al., 2011, 2012).

ANALYSIS OF ASTROCYTE VIABILITY BY NEUTRAL RED UPTAKE ASSAY
Astrocyte viability was evaluated 24 h after treatments by the neu-
tral red uptake assay according to Repetto et al. (2008), with some
modifications (Scuderi and Steardo, 2013). Cells were seeded in
24-well plates and treated as previously described. 24 h after
treatments, the plates were incubated for 3 h at 37◦C with a
neutral red working solution (50 μg ml−1 in PBS 1X without
calcium and magnesium, Sigma-Aldrich). The cells were washed
and the dye removed from each well through a destain solution
(ethanol:deionized water: glacial acetic acid, 50:49:1, v/v). The
absorbance was read at 540 nm using a microplate spectropho-
tometer (Epoch, Bio Teck, Winooski, VT, USA). The values of
treated cells were referred to control non-exposed cultures, and
expressed as percentage variation.

ANALYSIS OF ASTROCYTE PROLIFERATION BY TRYPAN BLUE ASSAY
Trypan blue exclusion assay was performed to monitor astrocyte
proliferation 72 h after treatments. This method is based on the
principle that living cells do not take up the dye, whereas dead cells
do. To determine the number of cells and their viability using try-
pan blue, 20 μl of trypsinized and re-suspended cells were mixed
with 20 μl of 0.4% solution of trypan blue dye (Sigma–Aldrich)
for 1 min. Cells were immediately counted using a Bürker chamber
with a light microscope. All counts were done using four technical
duplicates of each sample.

ANALYSIS OF PROTEIN EXPRESSION BY WESTERN BLOTTING
Western blot analyzes were performed on extracts of cell cultures
challenged as previously described. 24 h after treatment, cells
were detached from petri dishes and each pellet was suspended
in ice-cold hypotonic lysis buffer containing NaCl 150 mM;
Tris/HCl pH 7.5 50 mM; Triton X-100 1%; ethylenediaminete-
traacetic acid [EDTA] 1 mM, supplemented with PMSF 1 mM,
Aprotinin 10 μg/ml, Leupeptin 0,1 mM (Roche, Mannheim,
Germany). After incubation for 40 min at +4◦C, homogenates
were centrifuged at 14000 rpm for 15 min and the supernatant
removed and stored in aliquots at −80◦C until use. Equivalent
amounts (70 μg) of each sample calculated by Bradford assay
were resolved on 12% acrylamide SDS-PAGE precast gels (Bio-
Rad Laboratories). Proteins were transferred onto nitro-cellulose.
Membranes were blocked with 5% wt/vol no-fat dry milk pow-
der in Tris-buffered saline-Tween 0,1% (TBS-T) for 1 h before
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overnight incubation at 4◦C with one of the following primary
antibodies: rabbit anti-GFAP (1:50000, Abcam plc, Cambridge,
UK), rabbit anti-S100B (1:1000, Epitomics, Burlingame, CA,
USA), rabbit anti-inducible nitric oxide synthase (iNOS; 1:9000,
Sigma–Aldrich), rabbit anti-cyclooxygenase-2 (COX-2; 1:1000,
Cell Signaling Technology, MA, USA), rabbit anti-β-actin (1:1500,
Santa Cruz Biotechnology, Santa Cruz, CA, USA). After being
extensively washed in TBS-T, membranes were incubated for 1 h
at 25 ◦C with the secondary horseradish peroxidase-conjugated
antibody (HRP conjugated goat anti-rabbit IgG, 1:30000, Jackson
Immunoresearch Europe, Suffolk, UK). The immunocomplexes
were visualized using an ECL kit (Amersham, Bucks, UK). Pro-
tein expression was quantified by densitometric scanning of the
X-ray films with a GS 700 Imaging Densitometer (Bio-Rad labo-
ratories) and a computer program (ImageJ software v1.44p, NIH,
USA).

STATISTICAL ANALYSIS
Analysis was performed using GraphPad Prism (GraphPad Soft-
ware, San Diego, CA,USA). Data were analyzed by one way analysis
of variance (ANOVA) to determine statistical differences between
experimental groups. Multiple comparisons were performed with
Bonferroni’s test for post hoc analyzes. Differences between mean
values were considered statistically significant when p < 0.05.

RESULTS
EFFECT OF RSV AND AGK-2 ON ASTROCYTE VIABILITY AND
PROLIFERATION.
First of all, we decided to perform experiments to assess the effect
of the SIRT modulators on astrocyte viability and proliferation
after Aβ 1-42 challenge. In fact, it has been already demonstrated
that Aβ peptides are able to affect cell viability and to induce astro-
cyte proliferation (Allaman et al., 2010; Scuderi et al., 2012). Our
results highlighted a significant increase in cell viability after 24 h
treatment with Aβ 1-42 (Figures 1A,C, p < 0.01). RSV and AGK-
2 were able to reduce this effect at the two higher concentrations
used (Figures 1A,C). In addition, we found a reduction in cell via-
bility after treatment with AGK-2 at the concentration of 35 μM
on un-stimulated cells, indicating a cytotoxic effect (Figure 1C).
Trypan blue experiments revealed a significant astrocyte prolifer-
ation after 72 h treatment with Aβ 1-42 (Figures 1B,D, p < 0.01).
Once again, both RSV and AGK-2 significantly controlled such
increase at the two higher concentrations used. Surprisingly, RSV
50 μM and AGK-2 35 μM caused a reduction in proliferation rate
also in un-challenged astrocytes (Figures 1B,D).

EFFECT OF RSV AND AGK-2 ON ASTROCYTE ACTIVATION
In order to test the effect of RSV and AGK-2 on Aβ-induced
astrogliosis, the expression of GFAP and S100B, specific mark-
ers of astrocyte activity, was explored. Reactive astrocytes display
hypertrophied cell bodies and thickened processes exhibiting
GFAP-immunoreactivity (O’Callaghan and Sriram, 2005; Olabar-
ria et al., 2010). Using Western blot analysis, we observed a
marked increase in the expression of GFAP after Aβ 1-42 challenge
(p < 0.01; Figure 2). RSV was able to significantly attenuate such
increase in a concentration dependent manner (Figures 2A,B).

Likewise, the Aβ-induced GFAP overexpression was counteracted
by AGK-2 at the three concentrations used (Figures 2C,D).

Similarly, the expression of S100B was investigated by Western
blot. S100B is an astroglia-derived protein which acts as a neu-
rotrophic factor and neuronal survival protein, even though the
overproduction of S100B by activated astrocytes lead to further
neurodegeneration. Elevated S100B levels are generally associated
with a sustained reactive gliosis (Griffin, 2006; Donato and Heiz-
mann, 2010). Results from cultured astrocytes showed a significant
increase in S100B protein expression after Aβ 1-42 exposure
(p < 0.01; Figure 2). Both RSV and AGK-2 controlled such
increase. Also in this case, RSV exerted its effect in a concentration
dependent manner (Figures 2A,B). Instead, all the AGK-2 con-
centrations completely abolished the Aβ-induced S100B increase
(Figures 2C,D).

EFFECT OF RSV AND AGK-2 ON INFLAMMATION
Another set of experiments was aimed at assessing the effect of RSV
and AGK-2 on the production of inflammatory factors induced
by Aβ 1-42 challenge. In fact, astrocyte activation is linked to the
production of pro-inflammatory mediators which, in turn, stim-
ulate gliosis and can kill neighboring neurons (Mrak and Griffin,
2001; Ferreira et al., 2014). Treatment with Aβ 1-42 resulted in
an increase in iNOS expression, as determined by Western blot
analysis (Figure 3; p < 0.05). Interestingly, this observed effect
was reduced by both RSV and AGK-2 at the two higher concen-
trations used (Figures 3A–D). Parallel results were obtained with
immunoblot experiments aimed at studying COX-2 expression.
In fact, Aβ 1-42 significantly increased COX-2 protein expression
(Figure 3; p < 0.05). Also in this case, both RSV and AGK-2 sig-
nificantly decreased such effect at the two higher concentrations
used (Figures 3A–D).

DISCUSSION
The purpose of this study was to assess the efficacy of RSV, a
well-known SIRT1 activator, and AGK-2, a potent SIRT2-selective
inhibitor, in counteracting reactive gliosis, now considered one
of the characteristic phenomena occurring in AD. AD leads to
disability and death in a significant proportion of the world’s
aged population (Alzheimer’s Association Report, 2013). However,
the available treatments are limited and exert only symptomatic
effects. Several promising drugs have recently failed to provide
benefit, so there is urgent need to develop new, and hopefully
more efficacious, drugs to affect AD course. To this attempt, in the
last years researchers focused their attention on the role of reactive
gliosis in the onset and progression of many neurodegenerative
disorders, including AD. Produced results gave evidence that neu-
roinflammation and neurodegeneration mutually have a critical
impact on AD course (Wyss-Coray and Rogers, 2012). For this
reason, it is possible to assume that early combination of neuropro-
tective and anti-inflammatory treatments represents a particularly
appropriate approach to AD (Di Filippo et al., 2008). Although
neurodegenerative disorders have distinct clinical manifestations,
many of the underlying pathogenic processes are similar (intra-
or extracellular accumulation of misfolded proteins, cytoskeletal
abnormalities, disruption of calcium homeostasis, mitochondrial
dysfunction, and inflammation), and most of them are strongly
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FIGURE 1 | Resveratrol (RSV) and AGK-2 affect astrocyte viability and

proliferation induced by Aβ 1-42 challenge. Cells were challenged with
0.23 μM Aβ 1–42 in the presence or absence of one of the following
substances: RSV (2 – 10 – 50 μM), a potent SIRT1 activator; AGK-2 (0.35 – 3.5
– 35 μM), a selective SIRT2 inhibitor. 24 h later cell viability was assessed by
neutral red uptake assay (A,C). 74 h after treatments cell proliferation was

evaluated by trypan blu assay (B,D). Results are expressed as cell
viability-fold increase versus unchallenged (open bars) or Aβ-challenged cells
(black bars). Results are the mean ± SEM of four experiments in triplicate.
Statistical analysis was performed by one-way ANOVA followed by Bonferroni
multiple comparison test. p < 0.01 Aβ-challenged versus unchallenged cells;
*p < 0.05; **p < 0.01; ***p < 0.001 for multiple comparison among groups.

influenced by and increased during aging. In particular, in both
early- and late-onset sporadic AD, aging represents a major con-
tributing factor for the disease development and progression,
although the precise role remains still unclear. Transcriptional pro-
filing studies revealed that expression of genes that play central
roles in synaptic plasticity, vesicular transport and mitochon-
dria function is reduced, whereas expression of genes encoding
for stress, inflammatory or immune factors is increased in aged
human frontal cortex (Lu et al., 2004). These findings impli-
cate ongoing DNA damage, oxidative stress and inflammation
as contributors to the functional decline occurring in age-related
neurodegenerative diseases, including AD.

In this context, the discovery of SIRTs, indicated as class III
histone deacetylases (HDACs), offers a close relationship between
aging, metabolism and neurodegeneration, thereby representing
an innovative target to develop therapeutic strategies (Outeiro
et al., 2008). SIRTs play pleiotropic biological functions that range
from repression of gene expression (through histone deacetyla-
tion) to regulation of cellular differentiation and/or apoptotic
processes, from control of energetic cell metabolism to that of
aging events. These enzymes have been extensively studied because
of their involvement in mediating the effect of caloric restriction

(CR) in fostering longevity and healthy aging. In addition, many
data indicate that SIRTs are potentially able to delay neurode-
generative diseases related to senescence, including AD. (Michan
and Sinclair, 2007). It has been demonstrated that CR reduces
the content of Aβ in the temporal cortex of squirrel monkeys,
and such effect is inversely linked to SIRT1 expression in the
same brain region (Qin et al., 2006a). Moreover, in a transgenic
mouse model of AD, the same authors previously demonstrated
that CR antagonizes Aβ neuropathology by increasing the SIRT1
and NAD+/nicotinamide ratio (Qin et al., 2006b). Recently, SIRT2
inhibition has been proposed as a promising therapeutic strategy
to achieve neuroprotection in in vitro and in vivo models of Parkin-
son’s and Huntington’s diseases (Outeiro et al., 2007; Luthi-Carter
et al., 2010). Moreover, Spires-Jones et al. (2012) demonstrated
that inhibition of SIRT2 is a safe and promising neuroprotective
agent in both tau-associated frontotemporal dementia and AD.

It is recognized that Aβ affects cell viability and proliferation
(Allaman et al., 2010; Scuderi et al., 2012). It is possible to specu-
late that these Aβ actions are due to its ability to enhance astrocyte
metabolism turning on morpho-functional changes in such cells
(Verkhratsky and Butt, 2007). Interestingly, our experiments high-
lighted alterations in astrocyte viability and proliferation after Aβ
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FIGURE 2 | Effect of RSV and AGK-2 on GFAP and S100B expression. 24 h
after treatments, astrocytes were lysated and protein expression was
evaluated. Representative Western blots for GFAP and S100B proteins in
lysates from astrocytes challenged with Aβ 1-42 (0.23 μM) in the presence of
RSV (2 – 10 – 50 μM; A) or AGK-2 (0.35 – 3.5 – 35 μM; C). Densitometric

analyzes normalized to β-actin loading controls (B,D for RSV and AGK-2,
respectively). Results are the mean ± SEM of four experiments in triplicate.
Statistical analysis was performed by one-way ANOVA followed by Bonferroni
multiple comparison test. p < 0.01 Aβ-challenged versus unchallenged cells;
*p < 0.05; **p < 0.01; for multiple comparison among groups.

1-42 challenge, and both RSV and AGK-2 markedly controlled
these effects. SIRTs are considered as sensors of cell metabolic state
because they finely modulate physiological processes. For this rea-
son it is important to establish the appropriate concentrations to
avoid dangerous unwanted consequences. In fact, in our condi-
tions, we found that the highest concentrations used of both RSV
and AGK-2 caused cytotoxic effects.

As a consequence of exogenous insults, glial cells lost their
physiological functions and acquire a reactive phenotype, char-
acterized by profound morphological and functional alterations,
such GFAP and S100B overexpression (O’Callaghan and Sriram,
2005; Donato et al., 2013). In our model, we detected marked alter-
ation of both these proteins. In fact, Western blot analysis showed
that astrocytes express higher GFAP and S100B protein levels after

Aβ challenge. Interestingly, RSV and AGK-2 negatively modulated
the expression of both GFAP and S100B.

As mentioned before, the direct correlation between the
Aβ-induced toxicity and the production of pro-inflammatory
mediators prompted us to investigate the expression of the two
main inducible enzymes related to inflammation, iNOS and COX-
2. In our experimental condition, we highlighted the existence of
an inflammatory state induced by Aβ 1-42 treatment, as detected
by the increased expression of both iNOS and COX-2. The alter-
ation of these two proteins was significantly blunted by RSV and
AGK-2, indicating a key role in regulating astrogliosis and impor-
tant astrocyte changes, which contribute to disease progression.
In the current study it was observed that SIRT1 and SIRT2 can
represent promising targets, whose manipulation could prevent
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FIGURE 3 | Effect of RSV and AGK-2 on iNOS and COX-2 expression.

Astrocytes were treated with Aβ 1-42 (0.23 μM) in the presence of RSV (2 –
10 – 50 μM) or AGK-2 (0.35 – 3.5 – 35 μM). Western blot experiments were
carried out 24 h after treatments. Representative immunoblots for iNOS and
COX-2 proteins (A,C for RSV and AGK-2, respectively). Densitometric analyzes

normalized to β-actin loading controls (B,D for RSV and AGK-2, respectively).
Results are the mean ± SEM of four experiments in triplicate. Statistical
analysis was performed by one-way ANOVA followed by Bonferroni multiple
comparison test. p < 0.001 and p < 0.05 Aβ-challenged versus unchallenged
cells; *p < 0.05; **p < 0.01; for multiple comparison among groups.

over-activation of neuroglia upon pro-inflammatory stimulation.
These data suggest a SIRT-dependent mechanism to restrain detri-
mental effects of excessive astrocyte activation. Moreover, the
findings bear major implications in the context of several inflam-
matory conditions of the central nervous system where astroglia
are known to mediate deleterious consequences. In conclusion, the
results of the present study provide evidence that SIRT modulation
can represent a strategy to counteract reactive gliosis, and suggest
new avenues to walk for the discovery of novel and promising
therapy for AD.
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