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Characterizing the relationship between the pharmacokinetics (PK, concentration vs. time)
and pharmacodynamics (PD, effect vs. time) is an important tool in the discovery and
development of new drugs in the pharmaceutical industry. The purpose of this publication
is to serve as a guide for drug discovery scientists toward optimal design and conduct of
PK/PD studies in the research phase. This review is a result of the collaborative efforts
of DMPK scientists from various Metabolism and Pharmacokinetic (MAP) departments of
the global organization Novartis Institute of Biomedical Research (NIBR). We recommend
that PK/PD strategies be implemented in early research phases of drug discovery projects
to enable successful transition to drug development. Effective PK/PD study design,
analysis, and interpretation can help scientists elucidate the relationship between PK and
PD, understand the mechanism of drug action, and identify PK properties for further
improvement and optimal compound design. Additionally, PK/PD modeling can help
increase the translation of in vitro compound potency to the in vivo setting, reduce the
number of in vivo animal studies, and improve translation of findings from preclinical
species into the clinical setting. This review focuses on three important elements of
successful PK/PD studies, namely partnership among key scientists involved in the study
execution; parameters that influence study designs; and data analysis and interpretation.
Specific examples and case studies are highlighted to help demonstrate key points for
consideration. The intent is to provide a broad PK/PD foundation for colleagues in the
pharmaceutical industry and serve as a tool to promote appropriate discussions on early
research project teams with key scientists involved in PK/PD studies.
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INTRODUCTION
Effective and successful pharmacokinetics/pharmacodynamics
(PK/PD) studies during drug discovery and development phases
require input from scientific experts in complementary disci-
plines in the pharmaceutical industry. In the majority of cases, the
pharmacodynamic portion of PK/PD studies (e.g., animal dosing
and measurement of response) are conducted by pharmacology
laboratories within a given disease area whereas the measurement
of concentrations and evaluation of pharmacokinetics are con-
ducted by DMPK laboratories. In some cases pharmacokinetics
are not determined in the same animals used in the PD study.
Rather, the PK and PD datasets might be generated completely
independent of each other, not only in different laboratories but
also different timeframes. In the latter scenario, generation and
reporting of data can happen in isolation, and project teams are
then faced with downstream integration and evaluation of results

that lack an integrated analysis defining a concentration and effect
relationship. Optimally, when PK/PD studies are designed and
conducted, the PK/PD analysis, conclusions and interpretations
are performed by both DMPK and pharmacology experts, with
input from other relevant partners (e.g., formulation and math-
ematical modeling experts). The resulting report thus reflects
integration of all relevant data and addresses the hypothesis or
question asked at the outset of the study. The report will capture
any assumptions made in the analysis and suggest what subse-
quent studies the results enable, and reflects shared ownership
and responsibility of both the DMPK and pharmacology experts.
The major objective of early drug development is to select promis-
ing compounds and to identify potentially safe and effective doses
and dosing regimens. Integration of PK/PD in early development
helps with compound selection and guides creation of an efficient
clinical development strategy (Miller et al., 2005).
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INITIATE AND REFINE A PK/PD MODEL
PK/PD modeling is a valuable approach to integrate quantitative
information about the pharmacologic properties of a compound
with its pharmacokinetics. Rational study design is based on
the assumption of a causal relationship between exposure to a
medication and its therapeutic activity. Such relationships are
generally complex. Therefore it is important to design robust
preclinical studies that will provide information to build mecha-
nistically relevant PK/PD mathematical models. As data becomes
available, initial models can be refined through an iterative pro-
cess. The ultimate output is a powerful predictive tool based on
an in-depth understanding of the requirements for efficacy. A
well designed PK/PD study offers a rational approach to effi-
cient and informative drug development and can help the project
team to understand the mechanism of action of a drug and
select the optimal compound. Applying PK/PD modeling in
early discovery and development programs can minimize animal
usage, shorten the development time, estimate the therapeu-
tic index, and predict the dose ranges in early clinical testing.
PK/PD models allow integration of data from different stud-
ies in a logical manner based on the understanding of drug
and disease. Drug discovery and development can be viewed as
a model building exercise during in which the knowledge of
new compounds is continuously updated and used to inform
decision-making and drug development strategy (Lalonde et al.,
2007).

ESTABLISH EFFECTIVE PARTNERSHIPS OF PHARMACOLOGY AND
DMPK
A core drug discovery team in the pharmaceutical industry
(e.g., disease area pharmacologist, DMPK scientist, biologist and
chemist) will often gather information, literature and reports
about the current animal experimental model and study designs
used in the project. It is essential that a partnership between phar-
macologists and pharmacokineticists starts as early as possible
in the course of a discovery program, and that the collabora-
tion continues through to the transition of the program to early
stage development and beyond into the clinic. It is highly recom-
mended that the team set up an infrastructure for data sharing.
Historical data highlighting examples of both success and failure
with disease models are valuable additions to this collection, and
teams are encouraged to determine whether a mechanistic or dis-
ease animal model is suitable for the project. Discussions with
partners in pharmacology and on the core team will enable the
team to address key questions and aspects of the PK/PD study.
Such discussions may include selection of the pharmacodynamic
readouts such as biomarker or efficacious endpoints; the study
design with respect to dose regimen, time points and PK anal-
ysis; and evaluation of the technical limitations and challenges
associated with the PK/PD studies. An important consideration is
whether robust and clinically validated biomarkers are available.
If not (as in case of working with a novel target or rare disease),
it may be necessary to evaluate the translatability of preclinical
PD biomarker data to the clinical setting. It is equally important
to determine whether the PD markers are amenable to quan-
titative PK/PD, including simultaneous and continuous PK/PD
sampling.

CONDUCT PRELIMINARY PK/PD ANALYSIS
One approach to help establish confidence in, and optimize sub-
sequent PK/PD experiments, is to start with a tool or reference
compound for which internal or external reports are available. In
cases where those data are not available, it may be advantageous
to invest adequate resources to generate a complete data pack-
age with a reference compound before starting to test a series of
novel compounds in the model. Although project teams may see
this as a significant investment at a very early stage of the pro-
gram, extensive early understanding of the relationship between
PK and PD will likely decrease the resource investment in the
long term. One risk of moving directly into assessment of novel
compounds with limited insight on optimal study design is that
considerable effort and resources might be spent on a model that
is not fully understood, characterized, or optimized based upon
the intrinsic pharmacokinetic and pharmacologic properties of
the compounds of interest.

The initial goal at this very early stage is to establish funda-
mental PK/PD principles and hypotheses. Care must be taken to
analyze the data and draw first conclusions and establish a work-
ing hypothesis that can be tested by subsequent study design.
Ultimately, the goal with studies using a reference or tool com-
pound is to understand the driving force(s) for response, i.e., the
relationships between drug concentration and PD readouts. It is
advisable to set up a PK/PD model using the most relevant matrix
(e.g., blood/plasma or target tissue) which would yield a clearly
defined dose-response relationship. Once a PK/PD model has
been validated with a suitable tool compound, the team needs to
establish if data from the reference compound can be extrapolated
to future molecules.

DEFINE A PK/PD HYPOTHESIS
Once a preliminary PK/PD analysis has been completed, trans-
lation of this understanding into a sound scientific hypothesis
and PK/PD strategy for the project will follow. The analysis will
allow the scientists to determine if meaningful interpretations and
decisions can be made on the basis of the PK/PD studies. This
can be achieved in a process where contributing scientists meet
repeatedly to discuss data and evaluate whether further optimiza-
tion is possible or necessary. Validation of PK/PD models using
known model compounds may be required to ensure desired out-
come and sensitivity. If the PK/PD strategy is found suitable to
triage new compounds, integration of the PK/PD analysis into the
project workflow is highly encouraged.

REFINE AND IMPLEMENT THE PK/PD STRATEGY
Early engagement and discussion within the team helps to define
an appropriate hypothesis that can be refined as data emerges
from preliminary studies. At this stage the team members need to
have effective mechanisms in place to exchange and share data. As
a drug discovery program matures and more PK/PD data become
available, it is beneficial to compile all the data and integrate
results from multiple compounds. Relevant data (e.g., in vitro
EC50, in vivo exposure, in vivo efficacy) from preliminary stud-
ies form the basis for selection of compounds that will be profiled
in more robust and detailed follow-up PK/PD studies. This in-
depth analysis can permit refinement of initial PK/PD hypotheses
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as well as promote sophisticated modeling with more data-rich
datasets. Overall, the key to successful PK/PD studies is the active
partnership between the relevant scientists on the project team.
The ultimate PK/PD strategy will reflect not only a discussion
of the questions outlined above, but also those that emerge from
collaborative discussions between DMPK, pharmacology, and the
remainder of the project team. The larger team will arrive at a
consensus for the role of the PK/PD data to address key scientific
questions that is limiting the progression of the program into fur-
ther development. At this time it is advantageous to initiate plans
for translation of PK/PD into the development phase of research.

PK/PD STUDY DESIGN
The typical steps involved in the design of PK/PD studies are as
follows: First, in vitro pharmacological and in vivo pharmacoki-
netic data are collected to help design a PK/PD study protocol.
An acute pilot PK/PD model is then conducted to examine the
exposure-response relationship. The acute disease models are
fairly simple in scope and of short duration (e.g., single dose, one
dose level, sparse sampling, and monitoring a single biomarker)
with the objective to select compounds that demonstrate acute
efficacy. The set-up and screening with a PK/PD model in drug
discovery is typically an iterative process that requires ongoing
refinement as new information become available and the project
moves forward (Figure 1).

PK/PD models are continuously updated throughout differ-
ent stages of drug development to incorporate relevant new
data (Rajman, 2008). Once suitable drug candidates are identi-
fied, sub-chronic main PK/PD studies are performed to establish
dose-exposure-response relationships and the effective plasma
target concentration ranges. Sub-chronic disease models involv-
ing repeated dosing for days at multiple dose levels may be utilized
to determine the effective concentration range of the compounds.
Finally, full chronic disease models are conducted on promis-
ing drug candidates to determine the minimum efficacious dose
and the relationship between steady-state exposure levels and sus-
tained efficacy (Gabrielsson et al., 2009). Chronic disease models,
often complex in nature and of long duration (e.g., 2 weeks daily

FIGURE 1 | The iterative process of PK/PD modeling in drug discovery.

dosing at multiple dose levels, frequent sampling in blood and
target tissues, monitoring of multiple biomarkers) will follow at
a later stage to fully characterize the exposure–response relation-
ship (Figure 2). The outcome of the mechanistic biomarker and
disease models serve as feedback or validation of the selection
process of compounds in earlier screens such as different in vitro
assays.

Prior to starting a PK/PD study, it is imperative to define
the objectives of the study and identify strengths, weaknesses,
and gaps in results that might be obtained from the study. It is
advisable for teams to consider the correlation of in vitro data
and in vivo efficacy and to understand the PK in the animal test
species. Furthermore, it is important to select a relevant, sensi-
tive and reproducible PD read-out, and to appreciate effects of
time on the PD read-out. The approaches may differ depend-
ing on the stage of the program, previous understanding of the
concentration-effect relationships, and the data available a priori
to guide the study design. Careful planning of the study design
with input from DMPK, pharmacology, and relevant team mem-
bers will be beneficial. The scientists need to agree on the protocol
details including route of administration, study duration and
sampling frequency. At such time, existing PK and efficacy data
may be used to guide the experimental design, which will depend
on the stage of the project and the objective of the study. Early
stage projects focusing on the discovery of efficacious compounds
may apply different PK/PD study methods compared to those
used in projects at lead selection or candidate nomination stages.
Furthermore, specific design strategies should be implemented in
early proof of concept studies of tool compounds, acute disease
PK/PD screens to triage discovery compounds, sub-chronic effi-
cacy models, or later stage chronic disease model to thoroughly
characterize the exposure-response relationship.

Historically, PK/PD modeling has been applied in the devel-
opment of small molecule drugs; however, modeling has more
recently been successfully applied to characterize the efficacy
and disposition of biotherapeutical drugs such as monoclonal

FIGURE 2 | Progression from acute exploratory PK/PD studies to

subchronic and chronic PK/PD studies as drug candidates are

identified and profiled.
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antibodies or antibody-drug conjugates (Agoram et al., 2007; Yu
et al., 2009; Jumbe et al., 2010; Gao and Jusko, 2012). The PK and
PD of large molecules differ in several aspects from those of small
molecules. For instance, the PK may depend on the PD in a pro-
cess called target-mediated drug disposition (TMDD) (Gibiansky
and Gibiansky, 2009). Understanding the factors that affect the
PK of antibodies is of high importance for effective therapeutic
application (Tabrizi et al., 2006). Several excellent review papers
and books have been published on the topic of PK/PD model-
ing of antibody and protein therapeutics (Lobo et al., 2004; Wang
et al., 2008; Meibohm, 2011).

SAMPLES FOR PK AND PD
Ideally, samples for the PK and PD readouts are collected from
the same animals. When collection from the same animals is
not possible due to animal limitations, or due to the nature of
the PD readout (e.g., where PD readout is perturbed by sam-
ple collection for PK purposes), a satellite group of animals may
be employed. In such a situation it is important to match all
aspects of the study design, e.g., gender, strain, species, dose,
dose-administration, sample-times, disease state, and operator
to minimize variability. In cases where the access to the disease
model animals is limited and a satellite group is not available for
PK sampling purposes, a “bridging experiment” in an alternate
strain may be carried out to provide confidence in similarity of PK
behavior between two groups. It is important to include a vehicle
treated control group with drug treated groups when designing
a PK/PD study. Changes in biomarker response after drug treat-
ment are often obtained from comparison with control groups.
Assessment of PD behavior in vehicle treated control group is crit-
ical in cases where biomarkers display circadian rhythm or when
formulation vehicles are suspected to influence pharmacological
effect.

SAMPLE NUMBERS AND TIME POINTS
PK/PD analysis seeks to quantify drug concentration-
pharmacological response-time relationships. In order to
model PK/PD relationships, it is necessary to fully characterize
drug concentration with time (pharmacokinetics) and modula-
tion of PD effect with time (pharmacodynamics) after dosing.
Sampling of data points should ideally allow detailed description
of rise and decay of plasma concentrations as well as the onset,
duration, and offset of PD response. The goal is to obtain well
defined plasma exposures (AUC, Cmax, Tmax) and time to achieve
maximum PD response, such that temporal delays between drug
exposure and PD effects can be ascertained. It is recommended
to collect samples up to and including time points where PD
response has dissipated and returns to baseline, or matches that
of control group.

Typical outputs of PK/PD models are Emax (maximum effect)
and EC50 (drug concentration that causes 50% of Emax) parame-
ters, that define relationships of PD effect to drug concentration.
Emax relates to intrinsic efficacy of drug and EC50 to its potency.
Additional parameters, such as EC20, EC80 or EC90 may be use-
ful that relate to concentrations that cause 20, 80, and 90% of the
maximum effect, respectively. In order to obtain a reliable drug
concentration-effect relationship and understand the magnitude

of potential response, a robust PK/PD study design includes mul-
tiple dose levels such that adequate number of data points around
a range of PD effects, including absence of effect, is obtained and
at least one dose shows maximum PD effect. Ideally, but often
not possible, adequate PD data will be obtained in the following
three concentration ranges ≤ EC20, between ranges of EC20 and
EC80, and at ≥ EC80. Once a PK/PD relationship has been estab-
lished, it may be possible to refine sample collection based upon
the understood relationship. However, care must be exercised
when extrapolating findings between two different compounds,
especially those from different chemical series.

SELECTING PD BIOMARKERS
Biomarkers are factors that are objectively measured and eval-
uated as indicators of normal biologic processes or pathologic
processes, and/or as indicators of pharmacological responses
to therapeutic intervention (Colburn, 2003). When designing a
PK/PD study it is important to consider the selection of the PD
biomarker, and properties of the PD readout that could impact
PK/PD correlations. One aspect to bear in mind is the prox-
imity of PD biomarker or endpoint to the target and to the
ultimate measure of efficacy. The measured PD response is ide-
ally a direct measure of the target modulation; however, multiple
steps frequently exist between the target and the biomarker being
measured. Each of these steps would have a unique time-course
of onset, duration, and offset of response that need to be consid-
ered to optimize the sampling design aspect of the PK/PD study.
Other considerations prior to the start of a PK/PD study include
whether in vitro and in vivo mechanisms are similar and whether
the PD readout mimics the cell based assay. The target selectiv-
ity and specificity will ideally not impact the pharmacokinetics.
Importantly, a biochemical link must exist between biomarker
and disease state, and the dynamic range of biomarker response
should relate to an efficacious readout in the animal model (Wang
et al., 2008; Yamazaki et al., 2008). It is useful to examine if sub-
tle changes in biomarker levels can be accurately and precisely
captured, and whether the PD response after a single dose is pre-
dictive of the PD response after repeated dosing. In certain cases
repeated dosing may lead to sensitization or tolerance of phar-
macological effect, thus introducing dose- or time- dependent
nonlinearity in biomarker response.

The hypothesis that the team is testing when designing PK/PD
sampling time points is worth careful consideration. In the recent
case of designing PD sampling points for an oncology program,
the team aimed to characterize the off-rate of pharmacodynamic
response and hypothesized that the Axin2 mRNA (PD response)
levels would return to baseline when the circulating concentra-
tions of the drug candidate dropped below the Axin2 EC50. As a
result, the team selected a rigorous sampling regimen of 16, 20, 24,
and 30 h post dose to sample the Axin2 mRNA levels in the PK/PD
study at 30 and 100 mg/kg (Figure 3). Only by including the later
time points 24 and 30 h were the scientists able to observe the
prolonged PD response followed by the gradual return of Axin2
mRNA response to baseline at the 100 mg/kg dose level.

Occasionally one may find that the PD effect influences the
PK and vice-versa. For example, LXR agonists are known to have
an agonistic effect on PXR due to very high homology between
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FIGURE 3 | PK and PD profiles of an oncology drug candidate in a

mouse xenograph model. (A) Displays the pharmacokinetic profiles of a
compound following oral administration at 30 and 100 mg/kg to mice. (B)

Illustrates the PK/PD results at 100 mg/kg with the drug showing return of
the PD response to baseline.

the two receptors, and consequently result in an induction of the
CYP3A4 enzyme (Shenoy et al., 2004). If the drug is a substrate
for CYP3A4, repeated administration of the test compound might
result in altered pharmacokinetics.

UNBOUND CONCENTRATIONS IN PLASMA AND TISSUE
It is desirable that PK concentrations and PD readouts are
obtained from the same samples and animals, or matrix if using
satellite animals. The preferred samples for PK/PD correlations
are either blood or plasma. These matrices offer several advan-
tages easy collection, straightforward approach to bioanalysis, and
potential for translation across species through to the clinical
setting.

Based upon theory of receptor pharmacology, it is unbound
drug in blood or tissues that can interact with the target and
elicit a pharmacological response (Smith et al., 2010). Once dis-
tributional equilibrium is achieved, assuming passive diffusion of
compound throughout the body, the unbound concentration in
plasma will reflect that in any given tissue. Therefore, it is rec-
ommended that colleagues consider unbound concentrations in
plasma as a starting point for establishing PK/PD relationships.

In situations where the PD readout is obtained from a different
matrix (e.g., tumor, eye, brain etc.), and unbound tissue con-
centrations cannot be predicted from blood or plasma exposure,
collection of PK information from tissue in addition to blood or
plasma samples may aid in ultimate data interpretation. In these
scenarios, PK/PD relationships may be derived from both target
tissue and plasma exposure (Read and Braggio, 2010).

Whole tissue concentrations are often obtained from animals
by homogenizing or lysing tissue and subsequently determin-
ing the drug concentration in the tissue homogenate. Common
examples include tumors and brain which are collected primarily
with the objective to get information about drug distribution to
the target tissues. However, tissues are made up of distinct com-
partments (interstitial fluid, various cell types, various subcellular
organelles) in which the drug is not necessarily distributed in a
homogenous fashion. Moreover, total drug concentrations in tis-
sue homogenates do not give any information about whether the
drug is available for binding to the target receptor. Thus, when
whole tissue concentrations are determined by measuring overall
drug concentrations in the tissue homogenate, the concentrations
found are not informative with respect to the pharmacologically
active concentration of the drug at the site of action (Mouton
et al., 2008).

Unbound target tissue concentrations might be useful to draw
initial PK/PD correlations such as in brain. Unbound fraction of
compound in target tissue can be estimated from ex vivo measure-
ments in tissue homogenates using traditional techniques, such as
rapid equilibrium dialysis (RED) in a similar fashion to measure
unbound fraction in plasma (Banker and Clark, 2008). In other
cases, in vivo unbound concentrations in tissues might be acces-
sible using microdialysis techniques (Heinzen and Pollack, 2004;
Raje et al., 2005; Kalvass et al., 2007). It is not uncommon that
unbound concentrations in target tissues are in rapid equilibrium
with unbound concentrations in plasma, which can then be used
to establish and drive PK/PD relationships (Figure 4).

PLASMA PROTEIN BINDING ASSESSMENTS
Good experimental designs will take into consideration that
unbound concentrations of compound may be responsible for
driving the pharmacodynamic response. Although testing this
hypothesis typically requires at least two compounds with differ-
ent plasma protein binding (PPB) and PK profiles, fundamental
principles of pharmacology would suggest that only unbound
drug is capable of eliciting a pharmacological response. It is there-
fore important to incorporate some understanding of plasma
and/or tissue binding of compounds into PK/PD study design and
data interpretation (Trainor, 2007).

A current standard PPB measurement method in DMPK
groups in the pharmaceutical industry is equilibrium dialysis
using RED device (Waters et al., 2008). This assay is simple and
straightforward and can be modified to permit determination of
compound binding to homogenate from various tissues (e.g., a
surrogate for tissue binding). When conducting binding studies,
the compound must have adequate solubility in the assay buffer to
eliminate any artifacts of poor physicochemical properties on the
assay results. Species differences exist in the abundance of alpha-
aminoglycoprotein (AAG) between rodents (2 μM) and humans
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FIGURE 4 | Impact of non-specific binding on the total and unbound

concentrations of a drug candidate in plasma and brain. (A) Shows the
total drug concentrations in brain and plasma, while (B) shows the
corresponding unbound drug concentrations. Both plasma protein and brain
homogenate binding studies were conducted using the Rapid Equilibrium
Dialysis (RED) device.

(20 μM). In vivo, protein binding in disease models and disease
states can differ from protein binding measured in vitro. When
changes in binding are suspected, measuring ex vivo PPB or in
plasma collected from animals is suggested.

In vitro potency measurements are often assessed in the pres-
ence of serum or plasma. If an in vitro assay medium contains
plasma or albumin, apparent IC50 (or EC50) may be affected by
compound binding to such proteins. As a first step, it is rec-
ommended to consider compound potency in the absence of
serum/protein while taking into consideration the unbound frac-
tion as determined in a separate in vitro PPB study. Rarely is
there value in assessing a serum/protein-shifted potency in con-
junction with total plasma concentrations to establish a PK/PD
relationship (Smith et al., 2010).

SIMULATING THE EXPOSURE—EFFECT RELATIONSHIP
Observations of PK exposure after a specific single dose can be
utilized to predict the exposure after administration of a different

FIGURE 5 | Simulation of steady-state exposure and efficacy data of

hypothetical dosing regimens in a preclinical mouse model. A drug was
dosed at 30 mg/kg once daily (QD) or 3 mg/kg twice daily (BID) in a mouse
xenograph model. Observed and predicted plasma levels were plotted with
the simulated PD responses to aid selection of dose and dosing frequency
in a follow-up efficacy study.

dose or after repeated dosing. For example, the concentration-
time data from a single oral dose at 10 mg/kg in rat can be
used to simulate the PK exposure after repeated administration
of 20 mg/kg twice daily (BID) for 7 days in the same animal
model. The goal of the simulation is to predict a reasonable dose
and dosing frequency that would result in desirable PK exposure
and consequently a measurable biomarker or efficacy response.
Depending on the target and whether the animal model is acute or
chronic, the recommended dosing regimen could consist of a sin-
gle dose or multiple doses that would produce steady-state blood
concentrations.

Once exposure and efficacy data from a preclinical animal
model using a specific dosing regimen are fitted in a suitable
PK/PD model, the fitted parameters can be used to simulate expo-
sure and efficacy using different dosing paradigms. In the example
below, steady state exposure and percent inhibition of biomarker
response of a test compound was simulated from early preclinical
data. In the protocol planning phase before conducting elabo-
rate chronic studies, the team simulated the exposure and PD
responses using a variety of hypothetical dosing regimens. The
simulations enabled the team to compare and contrast the impact
of dose and dosing frequency on exposure and response changes.
Consequently, the team was able to make informed decisions
regarding selection of dose and dosing frequency in the chronic
study, which ultimately increased the probability of obtaining the
desired efficacy outcome (Figure 5).

Gao and Jusko used simulations to predict the maximum
insulin responses in rats after glucose challenge with various
infusion rates of glucacon-like peptide 1 (GLP-1) analog (Gao
and Jusko, 2012). Simulations of exposure and efficacy in pre-
clinical models may help select the best molecule from multiple
compounds of same class. For example, simulations of time
course of concentration at the effect site and pharmacologi-
cal response enabled investigators to differentiate between three
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similar compounds, and results obtained in subsequent clini-
cal trials confirmed the simulation results (Miller et al., 2005).
Investigators at Novartis used simulations of exposure and effi-
cacy from a rat model to predict human PK and PD of new
drug candidates (Heimbach et al., 2009). The predicted human
oral plasma concentration time profile was in good agreement
with the observed clinical data, and rat PD effect parameters were
predictive for human PD.

DOSE FRACTIONATION STUDIES
The observed pharmacodynamic effect in a given preclinical
model system is associated with a specific pharmacokinetic driver
such as parameters AUC, Cmax, or Cmin compared to the in vitro
potency measure. In order to examine the pharmacokinetic driver
for efficacy, one could consider dosing strategies to discern the
relationship between different non-compartmental PK parame-
ters relative to the observed pharmacodynamic effect. However,
for compounds with linear pharmacokinetics, changes in dose
alone will result in equivalent changes in each of the pharma-
cokinetic exposure parameters. Thus a two-fold higher dose will
result in two-fold increase in both Cmax and AUC rather than a
differential change in which one PK parameter shows superior
correlation with the efficacy readout. Therefore, the PK driver
can’t be determined by changing the dose alone and the driv-
ing exposure parameter may remain elusive even after extensive
preclinical PK/PD profiling.

Interestingly, by fractionating the dosing intervals throughout
the course of a given time frame, e.g., once daily (QD) vs. twice
daily (BID), one can design studies that result in identical AUC
over a given time interval but that has an altered Cmax and/or Cmin

when comparing different dosing regimens. For example, a dose
split into half the dose given twice over the same time interval
will have the same AUC (34 h∗nM) but half the Cmax(30,000 vs.
60,000 nM, Figure 6).

FIGURE 6 | Dose fractionation studies to determine the

pharmacokinetic driver. Impact of once daily (QD) vs. twice daily (BID)
dosing regimens of the same total daily dose; both doses yield identical
overall AUC0−24 h values but different Cmax concentrations over the course
of the dosing regimens.

When done at several dose levels, each with two or three
dosing regimens and combined with PD/efficacy, this method
may elucidate the exposure effect relationship for a compound
in a given model system and enable both identification of an
optimal “target” PK profile, as well as significantly streamline
future PK/PD study design. Although this approach is somewhat
resource intensive, the power of the data that a study of this nature
provides can bring major impact to a project. Investigators at
Genentech used dose fractionation studies to examine the driver
of efficacy for anti-tumor activity of T-DM1. By systematically
varying the dose, dosing frequency and treatment duration in
a mouse xenograph model they were able to demonstrate that
the antitumor activity of T-DM1 is both concentration and time
dependent, i.e., AUC is the PK driver of efficacy (Jumbe et al.,
2010).

Antimicrobial agents can be categorized on the basis of the
PK/PD measure that is most predictive of efficacy (Craig, 1998;
Andes and Craig, 2002). Three common PK/PD measures of
antimicrobial activity in preclinical infection models are the
duration of time a drug concentration remains above the min-
imal inhibitory concentration (T>MIC), the ratio of maximal
concentration to the MIC (Cmax:MIC), and the ratio of the
area under the concentration–time curve at 24 h to the MIC
(AUC0−24 h:MIC). Various antimicrobial agents including amino-
glycosides and quinolones have been shown to have concentration
dependent (AUC0−24 h:MIC or Cmax:MIC) efficacy, while peni-
cillins and tetracyclins were demonstrated to have time dependent
(T>MIC) efficacy (Ambrose et al., 2007).

DATA ANALYSIS AND INTERPRETATION OF PK/PD STUDIES
Once DMPK and pharmacology colleagues have designed and
executed a PK/PD study and the sample analysis has been com-
pleted, the team is left with a dataset from both PK and PD
aspects of the study. A thorough analysis of such data will help to
understand the mechanism of action of the drug, to compare dif-
ferent compounds, and to help select compound for progression
to further development.

CORRELATION OF CONCENTRATION AND EFFECT
The initial approach to evaluate the correlation of the concen-
tration vs. time (PK) and effect vs. time (PD) profiles is through
visual representation. By plotting effect vs. concentration and
removing the time variable, the relationship between PK and
PD will manifest as either a direct (instantaneous) or indirect
(temporal delayed) relationship. In order to represent the con-
nection between PK and PD adequately, careful preparation in
the study design phase of the experiment will enable a phar-
macological measurement in conjunction with a PK sampling
point. In the case of instantaneous equilibrium, plotting effect
vs. concentration will yield a linear, or non-linear, relationship
such that increasing concentration yields an increasing effect and
decreasing concentration will result in a decreasing effect. When
concentration ranges obtained cover a wide range, the relation-
ship may better be described by a log (conc)-linear (effect) plot to
better describe the PK/PD.

Often, the same concentration can yield different pharmaco-
logical responses. This phenomenon is referred to as hysteresis,
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which can be characterized as either clockwise or counterclock-
wise depending upon the directionality of time in concentra-
tion relative to response. By plotting concentration vs. effect
and observing hysteresis, one can not only hypothesize as to
the underlying biological mechanism driving response, but also
can select subsequently an appropriate PK/PD model to “col-
lapse” the hysteresis loop and estimate parameters that describe
the concentration-effect relationship. Several textbooks provide
excellent summaries of various PK/PD models and equations
to support the analysis of linear, log-linear, sigmoidal Emax and
Emax/Imax models as well as PK/PD relationships that show
hysteresis (Gabrielsson and Weiner, 2007; Rowland and Tozer,
2010).

SELECTING APPROPRIATE PK/PD MODEL
As highlighted above, plotting the effect vs. concentration data
will yield a relationship between PK and PD and provide insight
as to appropriate PK/PD model selection for subsequent data
analysis. Although the ultimate choice of model will often be dic-
tated by the available data set, analysis will generally fall into two
different categories: instantaneous effects and temporal delayed
effects. Strategies, considerations, and examples of applications
of PK/PD models in drug discovery and early development have
been presented in several outstanding review papers (Derendorf
and Meibohn, 1999; Derendorf et al., 2000; Gabrielsson et al.,
2009, 2010; Amore et al., 2010; Van der Graaf and Neil Benson,
2011; Visser et al., 2013).

Instantaneous effects
When compounds achieve rapid equilibrium with the biophase
and effects are directly mediated by drug concentrations, PK/PD
relationships can be characterized with models ranging from
simple linear models to more complex sigmoidal Emax mod-
els. All of the models can incorporate a baseline response but
simple linear, log-linear, and exponential models operate under
the premise that the effect is not limited, e.g., increasing con-
centration will always increase a response. Comparison of effect
vs. concentration plots where concentration is plotted on a lin-
ear vs. logarithmic scale as well as an apparent lack of maximal
effect can be valuable in helping confirm the selection of these
models.

In cases where the pharmacodynamic response asymptotically
approaches a maximum effect, an Emax model will likely better
describe the data set. When effect-concentration data are plotted
on a linear-log scale, data appear as a sigmoidal shape with a max-
imal effect that shows a plateau. Often referred to as the Sigmoidal
Emax model, the slope of the relationship can be better charac-
terized by applying a shape factor (or Hill coefficient, ϒ) in the
mathematical description of the data. When the Hill coefficient
is equal to unity (ϒ = 1.0), the equation below is reduced to the
Simple Emax model.

Effect = E0 + Emax • Cγ

ECγ
50 + Cγ

(1)

Equation 1: Sigmoidal Emax equation where E0 is the baseline
response, Emax is the maximal response, C is the drug plasma

concentration, ϒ is the Hill coefficient, and EC50 represents the
concentration at 50% response.

Although in the context of in vivo data, the shape factor is
purely empirical and lacks any in vivo relevance, the use of the Hill
coefficient can significantly improve the model fit to the data. In
cases where several receptor systems work together or compete to
drive ultimate PD response, composite Imax/Emax models (vari-
ations of fundamental Emax models) can be applied to describe
more complex direct concentration-response relationships.

In a hyperglycemic clamp study in a rat model of diabetes, a
test compound was administered orally and glucose was infused
simultaneously at a variable rate to raise and maintain blood glu-
cose concentrations at approximately twice the level of baseline
blood glucose levels. The glucose infusion rate (GIR) needed to
maintain the glucose level correlated with the systemic exposure
of a test compound (Figure 7). By plotting PK exposure (x-axis)
vs. PD response (y-axis) on a log-linear scale, a direct and time
independent relationship of PK and PD data became apparent.
At high systemic exposures, the PD response was approaching
an asymptotic maximum value, Emax. These PK/PD data were
modeled successfully using the Sigmoidal Emax direct response
model.

Temporal delays in effects (Hysteresis)
Relative to the time course of pharmacokinetics, the pharma-
codynamic effect can be delayed or shifted for several reasons.
Distributional delay to the target site, indirect action, kinetics
of receptor activation, active metabolites, and changes in base-
line over time all represent underlying mechanisms that can
manifest in delayed effects. Models to fit to data sets that show
disconnects between plasma concentration and pharmacological
effect include PK/PD link models (Jusko and Ko, 1994), indirect
response models (Jusko and Ko, 1994; Salphati et al., 2010), and
receptor-based models (Ploeger et al., 2009). Selection of appro-
priate models relies upon visual inspection of the data as well as
insight on the underlying pharmacokinetics and pharmacology.
Fundamental assumptions behind the PK/PD link model are that
the delay in response is dictated by distribution to the effect site,
that loss of effect is driven by loss of compound from the bio-
phase, and that re-input of compound from the biophase back
into plasma is negligible.

The premise behind turnover models (also known as indirect
response models) is that the compound does not elicit a direct
response; rather it acts to either stimulate or inhibit the onset or
offset of response. As a result, four different relationships have
been established: stimulation or inhibition of turnover rate (Kin)
and stimulation or inhibition of fractional turnover rate (Kout).
Understanding the mechanism of action and baseline turnover
rates can aid in both model selection and establishment of initial
parameters for modeling (Danhof et al., 2008).

In the example below, temporal delay in inhibition of tumor
biomarker response was observed for oncology drug candidates
when administered as a single oral dose to tumor bearing mice
(Figure 8). While the plasma concentration peaked one hour
post-dose, maximal inhibition of the biomarker response was
observed at 8–10 hours. When plotting exposure vs. response, a
hysteresis plot emerged in which concentration and response were
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FIGURE 7 | Dose dependent PK and PD observed in a rat model of

diabetes. (A) Shows the PK with time, (B) shows the PD with time, and
(C) plot of PK vs. PD. There was instantaneous equilibrium between
exposure and effect, thus the PK/PD data were modeled using a direct
Sigmoidal Emax response model.

time dependent. The arrows in the counter-clockwise hysteresis
plot represent the directionality of time throughout the course of
the experiment. Equipped with knowledge about the target and
presumed mechanism of action of the drug, the PK/PD modeler
applied a turn-over model (indirect response model) to this data
set to get an estimate of EC50.

FIGURE 8 | Effect vs. plasma concentration of a drug candidate

following a single oral dose to tumor bearing mice. (A) Shows the PK
and PD response both plotted against time. (B) Shows the PK plotted
directly against PD. Delayed pharmacodynamic response resulted in a
hysteris plot. An indirect response model (inhibition of input function) was
subsequently developed to describe and predict PD response inhibition
based upon various dosing regimens.

Complex PK/PD relationships such as peak shifts, a change
in baseline response, transduction, synergy, and tolerance will
require modifications to turnover models to fully characterize
these datasets (Mager et al., 2003). Mechanism based PK/PD
models can provide improved insight in drug actions and effect,
such as to describe the phenomenon of TMDD of biotherapeu-
tics (Gao and Jusko, 2012). The time course of the therapeutic
effect of anticancer agents in mouse xenograph models is often
delayed relative to the systemic exposure. Modeling the complex
time course and temporal delay of anticancer agents was suc-
cessful by introducing a series of transit compartments that were
related to a cascade of kinetic events that yield drug effects (Lobo
and Balthasar, 2002). Tumor growth kinetics were included in
similar models to characterize tumor growth inhibition of anti-
cancer drugs (Simeoni et al., 2004; Bernard et al., 2012), while a
semi-mechanistic transit compartment tumor kill PK/PD model
was used to describe anti-tumor activity of Trastuzumab-DMI
(Jumbe et al., 2010). Finally, target binding kinetics may be an
important consideration for compounds that bind tightly to the
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receptor target. The duration of effect of compounds exhibiting
slow target binding dissociation kinetics can be highly correlated
with the drug-target residence time (Dahl and Aherud, 2013).
The PK/PD modeling of such drugs, particularly if the drug
binds covalently to the target, should incorporate dissociation
rates from the target and/or turnover rates of the biological target
itself.

The models described above provide a context for the general
types of models that can be applied to PK/PD datasets. Ultimate
factors impacting the selection of an appropriate model include
the quality of the data and the richness of the dataset, the success
of the study design to adequately capture the entire concentration
and effect vs. time profiles, the fundamental understanding of the
biological system or animal model, and statistical and mathemat-
ical output. Output from the model including visual inspection,
evaluation of residuals, and statistical analyses are critical fac-
tors that drive final model selection. Other more complex models
that support instantaneous equilibrium (e.g., power function,
biphasic, composite models, etc.) can be found in a textbook
titled “Pharmacokinetic and Pharmacodynamic Data Analysis:
Concepts and Applications” (Gabrielsson and Weiner, 2007).

RELEVANCE OF IN VITRO POTENCY TO IN VIVO PLASMA/TISSUE
LEVELS
In theory, if an in vitro system completely mimics the in vivo
environment with respect to target interaction, concentrations
needed to elicit an effect in vitro (e.g., EC50) should manifest into
in vivo response at an equivalent effective plasma or tissue con-
centrations. Implicit in the validity of this relationship are several
pharmacokinetic assumptions, including the lack of a distribu-
tional barrier between the target and the site of measurement
(e.g., plasma), the lack of differences in binding in vitro vs. in vivo
(e.g., PPB, non-specific binding), as well as linearity of pharma-
cokinetic disposition over the relevant concentration range. In
addition, multiple pharmacodynamic assumptions such as the
absence of any response from non-specific pathways, absence
of response from non-target tissues, and the lack of any tar-
get manipulation (e.g., tolerance development, sensitivity) that
might not be captured in vitro when moving to an intact in vivo
model need to be considered. Given these challenges when mov-
ing from a cell-based system to the complex in vivo animal, it
can’t be expected that in vitro potency will translate directly into
in vivo potency. However, occasionally this direct relationship
may hold and one may be able to leverage this observation to
develop subsequent hypotheses as well as possibly validate the
above assumptions.

In the case of the inhibition of a lipid biosynthesis target
in the liver, the project team sought to establish a PK/PD rela-
tionship between plasma or liver concentrations and the percent
inhibition of a liver pharmacodynamic marker in rats. Figure 9
shows the fit of a Sigmoidal Emaxmodel to the data in both liver
and plasma. From these data the team was able to determine an
in vivo EC50 and then compare to the in vitro potency observed
in the HepG2 cell based assay. When total concentrations were
compared, plasma EC50, in vivo (4.5 μM) was much higher than
expected from the in vitro data (0.7 μM). However, when adjusted
for PPB, EC50 values were similar (0.9 vs. 0.7 μM). From this

FIGURE 9 | Total plasma and liver exposures relative to

pharmacodynamics response. Rat total plasma and target tissue (liver)
exposure was plotted with PD effect. A sigmoidal Emax model with baseline
and Hill coefficient (γ) correction factors was used to describe the dataset.
Improved in vitro-in vivo correlation was obtained when converting total
plasma concentration to free plasma concentration for the estimate of in
vivo EC50.

observation, the team was able to hypothesize that unbound
concentrations in plasma of discovery compounds when nor-
malized for in vitro potency might enable streamlined PK/PD
study design in the future and eliminate a need to assay any liver
concentrations of compounds.

BINARY RESPONSE DATA
In some cases due to experimental limitations or lack of a priori
considerations for study design, PK/PD data are obtained where
the response is a simple conclusion of “Effect” or “No effect.” In
other situations, the output of a study may be efficacy wherein
the response is not graded but categorical (e.g., death vs. sur-
vival). In these cases, further interpretation is often difficult due
to the limited response dataset and detailed PK/PD modeling may
not be possible. However, some considerations from a pharma-
cokinetic and pharmacodynamic viewpoint are helpful, such as
arriving at a study design that can achieve adequate exposure in
the animals to elicit the desired PD response. Based upon the
time needed to achieve the endpoint, subsequent studies may be
designed to better understand the dynamics of response and the
relationship to concentration. An important goal of such studies
is to be able to differentiate compounds based upon the results.
A mechanistic hypothesis as to why some compounds showed
a response vs. others that didn’t is beneficial at this stage. One
may consider a dose fractionation approach or altered dosing reg-
imen help to define the pharmacokinetics needed to achieve the
endpoint.

Modeling behavioral pharmacology of psychotropic drugs is
often complicated by the fact that non-continuous pharmacody-
namic endpoints are reported on a categorical scale (Geldof et al.,
2007). Proportional odds models have been successfully applied
to data from analgesic trials in which severity of pain, albeit a
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Table 1 | Parasitemia reduction and survival in a Plasmodium Berghei

mouse model of Malaria infection (Meister et al., 2011).

Dose Animals Parasitemia Survival

mg/kg p.o. tested reduction (%) (days)

Untreated n/a 10 0 6.5

GNF179 1 × 100 3 99.5 19.0

Artesunate 1 × 100 >10 97 6.7

Chloroquine 1 × 100 >10 >99.9 12

continuous measurement, is recorded on a categorical scale and
used at the pharmacodynamic measure (Nestorov et al., 2001;
Bender et al., 2009).

On a quest to discover and develop a new class of anti-malaria
drugs, Novartis scientists studied efficacy in a malaria infected
mouse model (Meister et al., 2011). The team used measurements
of parasitemia reduction and days of survival as pharmacologi-
cal endpoints. Compound GNF179 reduced Plasmodium Berghei
parasitemia levels by 99.7% with a single 100 mg/kg oral dose and
prolonged mouse survival by an average of 19 days (Table 1). In
contrast, average survival times for Chloroquine and Artesunate
in the same model at 100 mg/kg single dose were 12 and 6.7
days, respectively. While “days of survival” is a semi-quantitative
measure of efficacy, it is a categorical endpoint that can’t easily
be modeled. By rank ordering compounds according to percent
parasite reduction and survival length at multiple dose and expo-
sure levels, the team was able to identify an anti-malaria drug
candidate for clinical development.

In preclinical models of Hepatitis C viral replication, the end-
point in the study is a 1-log reduction in viral replication. To gain
insight on the PK/PD relationship of inhibiting viral replication,
studies are often designed over a dose range, with altered dosing
regimens, or by leveraging historical results with compounds that
have demonstrated efficacy (Kamiya et al., 2010). This integra-
tive process provides a better understanding of the mechanism
of drug action, suggests improved animal models to evaluate
drug targets and drug-disease interactions, and helps to design
animal experiments that provide more clinically useful informa-
tion. Furthermore, it allows investigators to predict drug class
liability with respect to safety, and generate exposure-response
relationships for efficacy and safety which can be extrapolated
from animals to humans. Translation to the clinic with binary
data should be made with caution, especially in the absence of
robust dose response.

MULTIPLE BIOMARKER DATA
Access to a well characterized drug target and biological path-
way(s) involved in modulation of disease is a tremendous
advantage when selecting biomarker(s). In cases where disease
pathways are well-understood, collaboration and input from
the developmental-molecular pathways and modeling-simulation
groups may aid in quantitatively modeling the pharmacodynamic
cascade and may expedite PK/PD model development.

When presented with several potential biomarkers, teams are
asked to qualify the validity of one biomarker over another and
select the most appropriate PD endpoint for analysis (Vaidya

et al., 2010). In some cases, teams may have the ability to mon-
itor multiple biomarkers within a single PK/PD study. Although
this may aid in a more comprehensive capture of the biological
response, it may also complicate the data analysis and provide
limited additional insight toward subsequent study design. A con-
sideration of the experimental question being asked (e.g., prove
target engagement vs. demonstrate a pre-clinical endpoint such
as reduction of tumor volume) is key for proper selection of a
biomarker relevant to the study purpose. Scientists from Astra-
Zeneca have outlined a biomarker classification (e.g., nomencla-
ture) system for use during target validation, lead generation,
lead optimization and candidate selection stages (Visser et al.,
2013).

It is known that normal cells can convert to cancer cells when
mutations occur in genes that control kinase signaling cascades
and thus regulate cell proliferation and differentiation. For exam-
ple, more than 40 different mutations have been identified in
the BRAF gene in human cancer. A change at residue 600 in
the BRAF gene (V600E) leads to 500-fold increased activation of
BRAFV600E-MEK-ERK signaling in tumor cells, a signaling path-
way that is frequently mutated in melanoma (Cantwell-Dorris
et al., 2011). Pharmaceutical scientists have relatively recently
developed anti-cancer agents that target specific kinase signal-
ing pathways relevant to tumorigenesis. Small molecule BRAF-
specific inhibitors block the kinase activity of BRAFV600E, thus
preventing it from activating its downstream targets and subse-
quently inhibiting tumor cell proliferation (Figure 10).

When presented with multiple biomarker data, it is impor-
tant to identify the rate-limiting steps that might be driving the
response of a given biomarker. The closeness of the drug tar-
get to the biomarker in a signaling cascade will impact the data
interpretation. In the case of the BRAF program, a Novartis
team was able to measure both phospho-MEK and phospho-
ERK as biomarkers to indicate modulation of the BRAFV600E

pathway. Based upon these results, the model to describe the
effect-concentration relationship between p-ERK and plasma
vs. p-MEK and plasma was evaluated. Assuming the goal of
the study is to understand target engagement in BRAF, the
phospho-MEK:plasma analysis could enable subsequent study
design around better understanding of the duration of response
and decline of the phospho-MEK signal. Alternatively, if one
attempts to understand the relationship to the potential for tumor
shrinkage in a follow up efficacy study, the phospho-ERK:plasma
analysis might better enable this.

Figure 11 shows a depiction of PK/PD data of multiple
biomarkers in the BRAFV600E pathway where one can observe
time delay between plasma peak concentrations and maximal
biomarker response. As a result the project team decided to use
a PK/PD-link model to further describe the data and characterize
the PK/PD relationship.

As outlined in the earlier Section “Selecting Appropriate
PK/PD Model,” modeling of the time-dependent signal trans-
duction (i.e., the signaling cascade) of anticancer agents may
be accomplished using extended versions of indirect response
models (Lobo and Balthasar, 2002; Simeoni et al., 2004; Jumbe
et al., 2010; Bernard et al., 2012). Several pharmaceutical com-
panies have published sophisticated preclinical PK/PD models
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that successfully characterized plasma and tumor concentrations,
tumor pharmacodynamics and antitumor efficacy of multiple
promising anti-cancer drugs (Yamazaki et al., 2008; Wong et al.,
2011, 2012; Marsilje et al., 2013).

FIGURE 10 | Biological cascade of BRAFV600E activation and cell cycle

implications. The BRAFV600E pathway includes multiple biomarkers whose
direct or indirect response could be indicative of efficacy.

FIGURE 11 | Using multiple biomarkers to indicate modulation of the

BRAFV600E pathway. A single oral dose was administered to tumor bearing
mice. Plasma and tumor tissue were collected from the same mice to
simultaneously obtain plasma PK and biomarker response of phospho-MEK
and phospho-ERK in tumors.

VARIABILITY IN PK AND PD
When fitting a model to pharmacokinetic and pharmacodynamic
data, variability associated with PK and PD data within each study
is a possible concern. When large variability in measured PK/PD
data is expected or observed, the use of pooled data from different
studies can help define the mean relationship between concentra-
tion and effect. In other cases it may be valuable to understand
the reason for variability in the PK (e.g., different absorption pro-
files in different animals) and PD (e.g., variability in the tumor
expression of target between animals) to better understand the
underlying biology. Factors that could impact the variability are
the number of animals (“n”) adequate to best capture the expo-
sure and response data. When planning the PK/PD protocol, it
may be helpful to collaborate with a statistician to ensure the
study will have sufficient power to achieve statistically significant
results.

When assessing the impact of variability in a dataset, it is
important to consider the dosing and sampling strategy used
for PK and PD measurements. If the PK and PD were collected
from different animals within the same study (e.g., using a satel-
lite group for the PK sampling), the variability may be reduced
compared to a study where PK and PD data were generated
independently of each other. In some cases variability is intro-
duced as different dosing regimens are employed to assess PK/PD
data from several individual studies, or PK sampling captures a
limited portion of the overall pharmacokinetic disposition of the
compound (e.g., 1–2 time points).

In any of these cases data analysis can still be conducted.
However, it is important to identify when discussing and
presenting the data that the results reflect multiple studies, and to
interpret such data with the caveats of the study design. Variability
can impact not only the quality of the data and the selection of the
relevant PK/PD mathematical model, but also the interpretation
of the resulting PK/PD relationship. If data from multiple stud-
ies and animal models are combined to support the modeling,
the resulting parameter values may not be single point estimates

FIGURE 12 | Variability in PK and PD data. Dose-dependent suppression
of biomarker response in rats following administration of a drug candidate.
The error bars represent variability in both plasma AUC and biomarker
response.
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but rather a distribution of parameter values generated from the
uncertainty in the parameters estimated from the preclinical data
(Chien et al., 2005).

In Figure 12 the variability in both the plasma AUC (x-axis)
and biomarker (y-axis) is depicted. Although the model fit of the
data shows a very good representation of the mean values in the
study, the appropriate use of error bars indicates to the reader
that there is variability associated with the predicted response.
Based upon these data, a log-linear relationship may have also
well described the PD. In this case, additional data points at
both higher and lower concentrations might better refine selec-
tion of the appropriate model in future studies. Consideration
of statistical significance is helpful when interpreting data sets.
This statistical analysis will not only aid in the selection of
an appropriate model, but also help to guide subsequent study
design.

TRANSLATION OF PRECLINICAL PK/PD TO THE CLINICAL SETTING
Once a robust PK/PD relationship has been developed in a
preclinical species or relevant model system, these data can
be used to help predict anticipated effects in the clinic with
some assumptions (Mager and Jusko, 2008; Beaumont and
Smith, 2009; Heimbach et al., 2009; Mager et al., 2009; Bueters

FIGURE 13 | Extrapolating preclinical PK/PD data to the clinic.

et al., 2013). Understanding species differences in the bio-
logical target, pharmacokinetics, protein binding, and physiol-
ogy can all aid in more robust translation of preclinical data
into the patient population. A general schematic is shown
below for extrapolating preclinical PK/PD data to the clinic
(Figure 13).

When human dose predictions were required, a Novartis
project team used an approach much like the one illustrated
below. The team made the assumptions and showed supporting
data that a whole blood PD biomarker could be measured ex vivo,
that the ex vivo response in monkey was translatable to humans,
and that the data were best characterized by a direct effect PK/PD
model (Figure 14). From the ex vivo monkey studies, plasma con-
centrations needed to be maintained above a Ctrough value in
order to show sustained pharmacological response (>80% inhi-
bition of the target). Assuming that there were no differences in
the target pharmacology between monkey and human, correc-
tions for PPB and intrinsic potency across species were made
to predict what type of response might be observed in vivo in

FIGURE 14 | Translation of preclinical PD data to humans. (A) Illustrates
the ex vivo incubation data of a drug molecule in whole blood from
Cynomolgus monkey when used to determine concentration dependent
changes in the desired PD effect. (B) Shows how the model fit of PD
parameters from the incubations were used to predict the in vivo efficacy.
Allometric scaling of PK parameters enabled simulations of plasma
concentrations in humans.
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the clinic over a given concentration range. Pharmacokinetics
were scaled to humans in using allometric scaling (Mahmood,
2007; Sinha et al., 2008) and the Wajima method (Wajima et al.,
2004), thus plasma concentration vs. time profiles were simulated
along with anticipated pharmacodynamic response. Equipped
with this information, the team could make predictions regard-
ing human dose requirements and anticipated duration of action
in the clinic.

CONCLUDING REMARKS
Effective translation of preclinical data is critical to the design
of appropriate and successful clinical trials. In this review, we
emphasize the early implementation of hypothesis-driven pre-
clinical experimental study designs, guided by model-based
PK/PD analysis in the drug discovery phase.

A well designed PK/PD strategy enables a project team to
design the critical studies needed to address the team’s key sci-
entific hypotheses. Incorporating these experimental outcomes
back into an established PK/PD framework allows for test-
ing and refinement of the model structure, provides a bet-
ter mechanistic understanding of the exposure-effect relation-
ship, and most importantly, guides a tailored experimental
design to further probe the perturbation of the biological
pathway by the compound. This iterative process offers a ratio-
nal approach to both better understand the mechanism of action
of a drug as well as select the optimal compounds for further
profiling.

As a drug discovery project moves into the development phase,
the sound understanding of the lead compound’s PK/PD rela-
tionship will provide for a pharmacokinetic basis for anticipating
the therapeutic index and aid in pharmacokinetic and biomarker
driven design of efficacious dose regimens for clinical proof of
concept studies. Several factors are important for maximizing
the utility of a rigorous PK/PD analysis. The dataset should ade-
quately capture the following: the entire concentration vs. time
and effect vs. time profiles, the model should incorporate a funda-
mental understanding of the biological pathway being perturbed,
a consideration of unbound concentrations, and the statistical
and mathematical output should be sound. The ultimate benefit
of a PK/PD strategy relies on the continuous integration of exper-
imental outcomes from new compounds in the early discovery
phase with the knowledge and results from later stage clinical test-
ing. By incorporating a translational PK/PD framework that can
be validated with clinical outcomes, we will improve our ability to
treat and cure disease.
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