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Labisia pumila (Kacip Fatimah) is a popular herb in Malaysia that has been traditionally
used in a number of women’s health applications such as to improve libido, relieve
postmenopausal symptoms, and to facilitate or hasten delivery in childbirth. In addition, the
constituents of this plant have been reported to possess anticancer, antioxidant, and anti-
inflammatory properties. Clinical studies have indicated that cytochrome P450s (CYPs),
P-glycoprotein (P-gp), and Pregnane X receptor (PXR) are the three main modulators of
drug-drug interactions which alter the absorption, distribution, and metabolism of drugs.
Given the widespread use of Kacip Fatimah in dietary supplements, the current study
focuses on determining the potential of its constituents to affect the activities of CYPs, P-
gp, or PXR using in vitro assays which may provide useful information toward the risk
of herb-drug interaction with concomitantly used drugs. Six compounds isolated from
the roots of L. pumila (2 saponins and 4 alkyl phenols) were tested, in addition to the
methanolic extract.The extract of L. pumila showed a significant time dependent inhibition
(TDI) of CYP3A4, reversible inhibition of CYP2C9 and 2C19 and a weak inhibition of
1A2 and 2D6 as well as an inhibition of P-gp and rifampicin-induced PXR activation. The
alkyl phenols inhibited CYP3A4 (TDI), CYP2C9, and 2C19 (reversible) while saponins
inhibited P-gp and PXR. In conclusion, L. pumila and its constituents showed significant
modulation of all three regulatory proteins (CYPs, P-gp, and PXR) suggesting a potential to
alter the pharmacokinetic and pharmacodynamic properties of conventional drugs if used
concomitantly.

Keywords: Labisia pumila, Myrsinaceae, herb-drug interactions, PXR, CYP450 enzymes, P-gp

INTRODUCTION
Labisia pumila (Blume) Fern.-Vill., locally termed as Kacip
Fatimah (KF), is a popular herb in South East Asian countries. It
belongs to the Myrsinaceae family. Recently it has been identified
as one of the top five herbs used in Malaysia for treating vari-
ety of ailments (Karimi et al., 2013). Traditionally, KF is mainly
used in a wide spectrum of women’s health related issues; the
effects are presumed as attributable to the presence of estrogen-
like compounds. KF is often taken during and after pregnancy for
its beneficial effects on uterine function and delivery. The primary
route of administration of KF is oral, whereby the leaves, roots,
or whole plant are boiled in water and consumed. Additionally,
it is sold commercially in the form of herbal tea, powder, cap-
sules, and tablets in many countries (Abdul Kadir et al., 2012).
Clinical studies have also suggested the usefulness of KF extract in
treating postmenopausal symptoms (Abdul Kadir et al., 2012) with

Abbreviations: CYPs, Cytochrome P450 enzymes; FDA, Food and Drug Admin-
istration; HepG2, human hepatocellular carcinoma; hMDR1-MDCK-II, human
multidrug resistance-1-transfected Madin-Darby canine kidney; MDCK-II, Madin-
Darby canine kidney; Ly, Lucifer yellow; P-gp, P-glycoprotein; PXR, Pregnane X
receptor; TDI, Time dependent inhibition.

no acute toxicity (Singh et al., 2009). Furthermore, the extract and
constituents of KF have been shown to possess anticancer, antioxi-
dant, anti-osteoporosis, and anti-inflammatory properties (Nadia
et al., 2012; Fathilah et al., 2013).

Due to the increasing popularity and wide spread use of
herbal supplements throughout the world, there is a potential
risk of herb-drug interactions when these supplements are taken
in combination with conventional drugs, as there is often lim-
ited standardization of dose of herbal supplements taken. This
is evident by the increasing reports of clinical cases of toxic-
ity caused by herb-drug interactions (Chen et al., 2011, 2012).
Early identification of drug interaction potential of herbal sup-
plements and their constituents will aid in lowering the risk
of herb-drug interactions. It is widely documented that CYPs,
P-gp, and PXR are the three main modulators of drug-drug
interactions as these are involved in affecting the pharmacoki-
netic and pharmacodynamic properties of xenobiotics (Alissa,
2014). Despite the use of KF as a herbal medicine, limited stud-
ies exist in literature for its drug interaction potential. A recent
study has indicated that different extracts of L. pumila show
potent inhibition of CYPs, specifically CYP2C isoforms (Pan

www.frontiersin.org August 2014 | Volume 5 | Article 178 | 1

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/about
http://www.frontiersin.org/journal/10.3389/fphar.2014.00178/abstract
http://community.frontiersin.org/people/u/114284
http://community.frontiersin.org/people/u/108485
http://community.frontiersin.org/people/u/172860
http://community.frontiersin.org/people/u/170600
mailto:skhan@olemiss.edu
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmaceutical_Medicine_and_Outcomes_Research/archive


Manda et al. Kacip Fatimah drug interactions

FIGURE 1 | Chemical structures of two saponins and four alkyl phenols isolated from the roots of Labisia pumila.

et al., 2012). However, there are no studies identifying the chem-
ical constituents of KF responsible for CYP inhibition. As part
of our phytochemical studies on medicinal plants, several con-
stituents have been isolated from the roots of L. pumila; these
belong to various chemical classes, including saponins, alkyl phe-
nols, cerebroside, glycerogalactolipids, and lipids (Ali and Khan,
2011).

In the extension of these studies, the current investigation
focuses on determining the potential of KF methanolic extract
and its constituents to affect the activities of major drug metab-
olizing enzymes (CYP 3A4, 2D6, 1A2, 2C9, and 2C19), P-gp,
and PXR using in vitro assays which may provide useful informa-
tion toward the risk of herb-drug interactions with concomitantly
used drugs. The inhibition of CYP 3A4, 2D6, 1A2, 2C9, and
2C19 was determined by employing C-DNA baculovirus expressed
recombinant enzymes and specific fluorescent substrates. The
inhibition of P-gp was determined in hMDR1-MDCK-II (Madin-
Darby canine kidney) and MDCK-II cells by using two widely
used substrates calcein-AM and digoxin. Modulation of PXR
activity was monitored through a reporter gene assay in HepG2
cells transfected with PXR plasmid DNA and a luciferase reporter
plasmid PCR5. Additionally, we used FDA guided assump-
tions (Zhang et al., 2009) to predict the likelihood of the KF
extract and its constituents to cause herb drug interactions (HDI)
in vivo.

MATERIALS AND METHODS
Madin-Darby canine kidney-II (parental) and hMDR1-MDCK-
II (transfected) cell lines were a gift from Dr. Gottesman
(NIH, Bethesda, USA). Dulbecco’s Modified Eagle Medium
(DMEM), Minimal Essential Medium (MEM), Hanks bal-
anced salt solution (HBSS), HEPES, Trypsin EDTA, Penicillin-
streptomycin, and Sodium Pyruvate were from GIBCO BRL

(Invitrogen Corp., Grand Island, NY, USA). Fetal bovine
serum (FBS) was from Hyclone Lab Inc. (Logan, UT, USA).
CYP1A2/CEC, CYP2C9/MFC, CYP3A4/BQ, CYP2C19/CEC, and
CYP2D6/AMMC high throughput inhibitor screening kits were
from BD Gentest (Woburn, MA, USA). Transwell plates (12 mm
diameter, 0.4 μM pore size) were from Costar Corp. (Cambridge,
MA, USA). All other chemicals were from Sigma Chem. Co.,
(St. Louis, MO, USA). Radio labeled digoxin [3H-digoxin,
0.25 mCi/0.25 ml] was from Perkin Elmer Life Sciences (Waltham,
MA, USA). Troleandomycin was from Santa Cruz Biotechnology,
Inc. (Dallas, TX, USA). Preparation of L. pumila methano-
lic extract and isolation of its constituents used in the current
study were described in our previous study (Ali and Khan,
2011).

CULTURE OF hMDR1-MDCK-II, MDCK-II AND HepG2 CELLS
Parental and transfected MDCK-II cells were grown in DMEM
supplemented with 10% FBS, 1% non-essential amino acids, 1%
L-glutamine, 100 U/ml penicillin-G, and 100 μg/ml streptomycin
at 37◦C, 95% relative humidity, and 5% CO2. Cells were seeded at a
density of 65,000 cells/well (0.5 mL) on the apical side of a 12-well
Transwell plate and 1.5 ml of medium was added to the basolateral
side. HepG2 cells were grown in DMEM/F12 medium supple-
mented with 10% FBS, 2.4 g/L sodium bicarbonate, 100 U/ml
penicillin-G, and 100 μg/ml streptomycin at 37◦C, 95% relative
humidity, and 5% CO2.

ASSAYS FOR REVERSIBLE INHIBITION (CO-INCUBATION ASSAY) AND
TIME DEPENDENT INHIBITION (PRE-INCUBATION ASSAY) OF CYPs
The assay for reversible inhibition was conducted in a total vol-
ume of 200 μL in 96-well microplates. The assay conditions,
enzyme and substrate concentrations were similar as reported
earlier (Crespi et al., 1997; Manda et al., 2013). Test samples or
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FIGURE 2 | Dose response profiles of reversible and time dependent inhibition (TDI) of CYP3A4 enzyme by Labisia pumila root extract (A) and its

alkyl phenolic constituents (B–E). The data are represented as mean ± SD of 3 independent experiments (n = 2 in each experiment).

positive controls were serially diluted in a solution (100 μL) of
cofactors mix, control protein (0.05 mg of protein/mL), and G-
6-PDH to achieve six concentrations (100−0.4 μM or μg/mL).
Initial readings were taken to record any inherent fluorescence
and the plates were incubated at 37◦C for 10 min. Reaction was
initiated by the addition of enzyme substrate mixture (100 μL)

followed by incubation for 15, 30, or 45 min. The reaction
was terminated by the addition of 75 μL of ice cold acetoni-
trile/0.5 M Tris base (80:20). Fluorescence was measured on
Spectramax M5 plate reader (Molecular Devices, Sunnyvale, CA,
USA) at specified excitation and emission wavelengths for each
substrate. IC50 values (co-incubation assay) were obtained from
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FIGURE 3 | Dose response profiles of reversible andTDI of CYP2C9 enzyme by Labisia pumila root extract (A) and its alkyl phenolic constituents

(B–E). The data are represented as mean ± SD of 3 independent experiments (n = 2 in each experiment).

concentration-response curves generated by plotting concentra-
tion versus % inhibition.

Time dependent inhibition (TDI) of CYPs was measured
as described earlier by Sekiguchi et al. (2009). The reaction
mixture (180–190 μL), consisting of test sample, recombinant

enzyme, control protein (0.05 mg of protein/mL), cofactor mix,
G-6-PDH, and 50 mM potassium phosphate buffer (pH 7.4)
was pre-incubated for 30 min followed by addition of respec-
tive fluorescent substrates (10–20 μL) and further incubation
for 15 (CYP1A2), 30 (CYP3A4), or 45 (CYP 2C9 and 2C19)
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FIGURE 4 | Dose response profiles of reversible andTDI of CYP2C19 enzyme by Labisia pumila root extract (A) and its alkyl phenolic constituents

(B–E). The data are represented as mean ± SD of 3 independent experiments (n = 2 in each experiment).

min. The reaction was terminated by addition of 75 μL of
ice cold acetonitrile/0.5 M Tris base (80:20) and fluorescence
was measured as above. IC50 values (pre-incubation assay) were
obtained as above. The shift in the concentration-response
curve was calculated as the ratio of IC50 (co-incubation)/IC50

(pre-incubation).

ASSAY FOR PXR MODULATION
The pSG5-hPXR expression vector was provided generously by
Dr. Steven Kliewer (University of Texas Southwestern Medical
Center, Dallas, TX, USA; Lehmann et al., 1998) and the reporter
plasmid CYP3A4-PXR response element (PXRE)-LUC (contain-
ing the proximal 0/–362 and distal 7208/7797 PXRE regions fused
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Table 1 | IC50 of CYP3A4 inhibition by Labisia pumila methanol extract and its isolated constituents.

CYP3A4

Extract/compound IC50 (μM) Co-incubation IC50 (μM) Pre-incubation IC50 Shift (fold)

Methanol extract (μg/mL) 5.2 ± 0.2 1.1 ± 0.1 4.7

5-[10(Z)-pentadecenyl]resorcinol 4.1 ± 0.2 0.3 ± 0.06 13.6

Belamcandol B 18 ± 2.1 10 ± 1.3 1.8

Demethylbelamcandaquinone B 69 ± 2.6 26 ± 1.5 2.6

Fatimahol 25 ± 1.1 4.4 ± 1.3 5.6

Primulanin NA NA –

Ardisimamilloside H NA NA –

Ketoconazole 0.04 0.05 0.8

Troleandomycin 1.5 ± 0.1 0.44 ± 0.06 3.4

The data are represented as mean ± SD of 3 independent experiments (n = 2 in each experiment). NT = Not Tested.

upstream of luciferase; Goodwin et al., 1999) was a kind gift from
Dr. Christopher Liddle (University of Sydney, Westmead, NSW,
Australia). The modulation of PXR activity by test samples was
determined in HepG2 cells transiently transfected with pSG5-PXR
(25 μg) and PCR5 plasmid DNA (25 μg) by electroporation at
180 V, 1 pulse for 70 msec. The cells were plated in 96-well plates
at a density of 50,000 cells per well. After 24 h, test samples and
drug controls were added at various concentrations. After addi-
tional 24 hour incubation, the media was aspirated and 40 μL of
luciferase reagent (Promega Corporation, Madison, WI, USA) was
added to each well and luminescence was measured on Spectra-
max M5 plate reader (Molecular Devices, Sunnyvale, CA, USA).
The fold induction in luciferase activity in the treated cells was cal-
culated in comparison to vehicle treated cells. The cytotoxicity of
test samples toward HepG2 cells was also determined by measur-
ing the cell viability using the CellTiter 96 AQueous One Solution
Cell Proliferation Assay (MTS) as described earlier (Manda et al.,
2013).

ASSAY FOR P-gp INHIBITION BY CALCEIN-AM UPTAKE IN PARENTAL
AND TRANSFECTED MDCK-II CELLS
The assay was performed as described previously (Rautio et al.,
2006). Cells were seeded in 96-well plates at 70,000 cells/well in
200 μL of culture medium. The medium was changed at 24 h after
seeding and the assay was performed 48 h later. Test samples at var-
ious concentrations and positive control (verapamil 100-0.4 μM)
were added to the cells in 50 μL of transport buffer and incu-
bated at 37◦C for 10 min. Calcein-AM (1 μM), a fluorescent P-gp
substrate) was added and the plates were immediately placed on
Spectramax and fluorescence was read up to 1 h at 15-min inter-
vals at excitation and emission wavelengths of 485 and 530 nm,
respectively. The % increase in calcein-AM uptake was calculated
as described earlier (Liu et al., 2008; Manda et al., 2014).

The EC50 value, defined as the concentration that caused an
increase of 50% in calcein-AM uptake, was obtained from dose
curves generated by plotting % increase in calcein-AM uptake
versus log concentration using GraphPad Prism.

ASSAY FOR P-gp INHIBITION BY 3H-DIGOXIN UPTAKE IN
hMDR1-MDCK-II CELLS
The assay conditions were similar as described earlier (Rautio
et al., 2006) with some modifications. The cells were seeded at
a density of 120,000 cells/well in 12-well Transwell plates and
cultured for 3 days. TEER values were in the range of 500–800
� cm2. Cells were washed with warm HBSS buffer supple-
mented with 10 mM HEPES (pH 7.4) and pre-incubated with
0.5 mL of buffer containing test samples (six concentrations)
on the apical side and 1.5 mL of buffer on the basolateral side
for 30 min (37oC, 5% CO2, and 95% relative humidity). After
incubation, buffer was removed from the basolateral side and
replaced with 1.5 mL of buffer containing 3H-digoxin (40 nM),
test compounds or standard drugs (25 μM), and incubated
further for 2 h. Aliquots of 25 μL were taken out from the api-
cal side, mixed with 100 μL of scintillant (Microscint TM-40,
PerkinElmer) and radioactive counts were measured on a Top-
Count microplate scintillation counter (PerkinElmer, Waltham,
MA, USA) in CPM mode. The monolayer integrity was moni-
tored by measuring the permeability of Ly (a fluorescent marker
of passive paracellular diffusion) as described earlier (Manda et al.,
2013).

The inhibition of the basolateral to apical (B−A) transport of
digoxin by test samples was calculated compared to the vehicle
control. The IC50 value, defined as the concentration that caused
an inhibition of 50% in digoxin transport, was obtained from dose
curves generated by plotting % inhibition versus log concentration
using GraphPad Prism.

PREDICTION OF IN VIVO HDI FROM IN VITRO RESULTS
All assumptions to predict the HDI potential of KF methanolic
extract and its constituents were according to previously published
report (Awortwe et al., 2014). The % yield was calculated from the
amounts extracted from the KF roots (Ali and Khan, 2011). The
human GIT volume is 250 mL and plasma volume is about 3 L. The
commonly used maximum dose of KF extract capsules is 560 mg
per day (Abdul Kadir et al., 2012) and accordingly we estimated
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FIGURE 5 | Dose-response curves of P-gp inhibition by methanol

extract of Labisia pumila roots (A), its two saponin constituents

(B–C) and positive control verapamil (D), determined by calculating

the percent uptake of calcein AM into hMDR1-MDCKII cells.

Equations used in evaluating EC50 and % increase in uptake of
calcein-AM were described in “Materials and Methods” section. The
data are represented as mean ± SD of 3 independent experiments
(n = 2 in each experiment).

the concentration per dose, GIT, and plasma concentrations of
extract and its constituents. We then compared the in vitro IC50

values obtained from recombinant CYPs with estimated GIT and
plasma concentrations. If the IC50 values were lower than the
GIT or plasma concentration, then the test compound or extract
is likely to cause HDI in vivo. The prediction was not done for
two saponins as they did not show any inhibition toward CYPs
tested.

STATISTICAL METHODS
All values are represented as mean ± SD (n = 3). The data were
analyzed by one way ANOVA, followed by Dunnett’s multiple com-
parison tests using GraphPad Prism Version 5, (San Diego, CA,
USA). P < 0.05 was considered to be statistically significant.

RESULTS
REVERSIBLE INHIBITION AND TDI OF CYPs
The two major classes of compounds isolated from the roots
of KF are alkyl phenols and triterpene glycosides (saponins)
as reported earlier (Ali and Khan, 2011). We have deter-
mined the effect of methanolic extract of KF and its six
constituents (4 alkyl phenols and 2 saponins, Figure 1 on
major CYPs using specific fluorescent substrates and recombinant
enzymes.

The methanolic extract and alkyl phenolic compounds
showed dose dependent inhibition of CYP3A4, 2C9, and 2C19
(Figures 2–4) while saponins did not affect the activity of
these enzymes. Out of the alky phenols, 5-[10(Z)-pentadecenyl]-
resorcinol was effective in inhibiting CYP3A4 and 2C9 with IC50
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FIGURE 6 | Dose-response curves of P-gp inhibition by methanol extract (A) of Labisia pumila roots, its two saponin constituents (B–C) and positive

control cyclosporin A (D), determined by calculating the basolateral to apical transport (%) of 3H-digoxin across hMDR1-MDCKII cell monolayers. The
data are represented as mean ± SD of 3 independent experiments (n = 1 in each experiment).

values of 4.1 ± 0.2 and 11 ± 0.8 μM, respectively, while belam-
candol B inhibited CYP2C19 with an IC50 value of 2.2 ± 0.6 μM.

Based on these results, we further tested the TDI poten-
tial of extract and selected constituents toward CYP3A4, 2C9,
and 2C19. The test samples were pre-incubated for 30 min
with the co-factors, control protein, and specific enzymes before
substrates were added. IC50 shift was determined as described
in the Materials and Methods. Compounds which showed
IC50 shift ratio of greater than 1.5 were considered to have
potential to exhibit TDI. Based on these criteria, no time-
dependent inhibition was observed with recombinant CYP2C9
and 2C19 enzymes by the test compounds or the methanol
extract. The dose curves were identical from co-incubation and
pre-incubation experiments (Figures 3 and 4. The IC50 shift
fold ratios of the control drugs (tranylcypromine, Table 1)
were similar to the published literature values (Naritomi et al.,
2004). In contrast, the methanol extract as well as the four

alkyl phenols showed a very potent TDI of CYP3A4 with
the dose curves shifted significantly to the left, as shown in
Figure 2. The IC50 shift fold ratio for 5-[10(Z)-pentadecenyl]-
resorcinol, fatimahol, and methanol extract was 13.6, 5.6, and
4.7, respectively, (Table 1 suggesting a very strong potential
for TDI of CYP3A4 by these agents. The positive control for
TDI, troleandomycin, showed an IC50 shift fold ratio of 3.4
Table 1 which is in accordance to the previous report (Sekiguchi
et al., 2009). Further, the dose response curves clearly indi-
cate a significant increase in % inhibition when the extract
or the compounds were preincubated with CYP3A4 enzyme
(Figure 2).

P-gp INHIBITION
Next, we determined the inhibition of P-gp by the extract of
L. pumila and the constituents by using the two widely used
probes calcein-AM and digoxin (Rautio et al., 2006). Calcein-AM
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FIGURE 7 | Induction of PXR by fatimahol and rifampicin (A) and

inhibition of rifampicin mediated induction of PXR by Labisia pumila

methanol extract and its constituents (B) at indicated concentrations.

Ketoconazole (KTZ) was used as a positive control in the inhibition

assay. *P < 0.05, **P < 0.01, and ***P < 0.001, determined by One way
ANOVA, followed by Dunnett’s multiple comparison tests. The data are
represented as mean ± SD of triplicate measurements in three
independent experiments.

uptake was quantified in MDCK and hMDR1-MDCKII cells. The
alkyl phenol compounds showed no increase in the uptake of
calcein-AM in hMDR1-MDCKII cells. The methanolic extract
and the two saponins, primulanin, and ardisimamilloside H,
increased the uptake of calcein-AM dose dependently with EC50

values of 28 ± 1.4 μg/mL and 34 ± 2.3 and 42 ± 3.5 μM,
respectively, as shown in Figure 5. The effect is comparable to
the effect of positive control, verapamil (EC50 32 ± 1.4 μM)
but significantly less potent than the effect of cyclosporin A
(EC50 8 ± 1.2 μM). The Papp value of LY was in the range of

1.1 ± 0.8 × 10−6 cm/s, which was similar to our previously
published values (Manda et al., 2013). Additionally, the TEER
measurements before and after experiments confirmed that the
test compounds did not alter the monolayer integrity during the
experiment.

The second probe used to determine the P-gp inhibition was
radiolabelled digoxin [3H-digoxin]. Similar to the calcein-AM
assay, the alkyl phenols had no effect on the basal to apical trans-
port of digoxin in hMDR1-MDCKII cell monolayers, while the
saponins and methanol extract showed strong inhibition. The
IC50 values for primulanin, ardisimamilloside H, and methanol
extract were 6.4 ± 2.3 μM, 4.2 ± 1.1 μM, and 8.5 ± 2.4 μg/mL,
respectively, as compared to 1.1 ± 0.8 μM for cyclosporin A and
12 ± 2.1 μM for verapamil as shown in Figure 6. These results
indicated that the extract of L. pumila and the two saponins inhibit
P-gp strongly in terms of digoxin transport as compared to calcein-
AM transport suggesting that these saponins may bind to the
similar binding site as for digoxin.

PXR MODULATION
Finally, we looked at the modulation of PXR activity by the
extract and the constituents using a reporter gene assay in
HepG2 cells. One of the alky phenols, fatimahol, significantly
induced PXR activity (1.8-fold) at the highest tested concen-
tration of 30 μM, while at lower concentration the effect was
not significant Figure 7A. These results suggest that there is no
effect on the PXR activation by KF extract or its constituents.
The positive control, rifampicin (10 μM) caused a fourfold
induction in PXR activity which is in agreement with previ-
ous reports (Li and Chiang, 2006; Figure 7A). On the other
hand, the methanolic extract (3–30 μg/mL) and the two saponins
(primulanin and ardisimamilloside H; 3–30 μM) dose depen-
dently decreased rifampicin-induced PXR activity (Figure 7B).
These results indicate that L. pumila and its constituents signif-
icantly modulate the activity of PXR and thereby could affect
the downstream genes involved in PXR signaling. Additionally,
no cytotoxicity was observed toward HepG2 cells with either KF
methanolic extract or its constituents up to the highest tested
concentration of 30 μg/mL or 30 μM (data not shown) confirm-
ing that the inhibition of PXR as seen with methanolic extract
and the two saponins is not due to the toxicity toward HepG2
cells.

PREDICTION OF IN VIVO HDI FROM IN VITRO RESULTS
The calculated % yield and concentration per dose (560 mg, single
dose) was more for alkyl phenols compared to saponins from KF
roots as shown in Table 2. Since the intestinal absorption or plasma
concentrations are not known for the test compounds, we made
an assumption that all of the compounds are completely absorbed
(100% bioavailable) from the GI tract. Based on this, the predicted
GI and plasma concentrations of the compounds were calculated
as shown in Tables 2 and 3. The IC50 values from in vitro CYP
inhibition assays suggest that the methanolic extract of KF is likely
to cause in vivo inhibition of all the CYPs tested and thereby poten-
tially causing HDI (Table 3). All alkyl phenols except fatimahol are
predicted to have a likely in vivo effect toward CYP2C9 and 2C19
(Table 3). As show in Table 3, the extract or the compounds did
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Table 2 | Calculation of estimated extract per dose, GIT and plasma concentrations of KF methanol extract and its constituents.

Yield (W/W %) Estimated concentration

per dose (mg/mL)

Estimated GIT

concentration (μg/mL)

Estimated Plasma

concentration (μg/mL)

Methanol Extract 9.52 53.3 213 17.7

Resorcinol 1.21 6.72 27.1 2.2

Belamcandol 0.61 3.41 13.64 1.13

Demethylbelamcandaquinone B 1.21 6.77 27.1 2.25

Fatimol 0.009 0.05 0.20 0.016

Primulanin 0.014 0.07 0.31 0.026

Ardisimamilloside H 0.002 0.011 0.047 0.003

All calculations were made based on the dose of 560 mg per day of KF extract and its constituents.

Table 3 | Prediction of KF methanol extract and its constituents to cause herb drug interaction in vivo based on in vitro data.

IC50 (μg/mL) GIT concentration (μg/mL) Plasma concentration (μg/mL) Likelihood of causing HDI

CYP2D6

Methanol extract 40 213 10.65 likely

Resorcinol 28 27.1 1.46 Remote

Belamcandol 35 13.64 0.65 unlikely

Demethylbelamcandaquinone B 22 27.1 1.64 unlikely

Fatimahol NA 0.20 0.016 unlikely

CYP1A2

Methanol extract 70 213 6.086 likely

Resorcinol 29 27.1 0.774 Remote

Belamcandol 73 13.64 0.310 unlikely

Demethylbelamcandaquinone B 50 27.1 0.722 unlikely

Fatimahol 31 0.20 0.016 unlikely

CYP3A4

Methanol extract 5.2 213 81.93 likely

Resorcinol 1.4 27.1 13.22 likely

Belamcandol 15 13.64 1.52 Remote

Demethylbelamcandaquinone B 45 27.1 0.79 unlikely

Fatimahol 16 0.20 0.016 unlikely

CYP2C9

Methanol extract 23 213 81.93 likely

Resorcinol 3.8 27.1 13.22 likely

Belamcandol 23 13.64 1.52 remote

Demethylbelamcandaquinone B 10 27.1 0.79 likely

Fatimahol 11 0.20 0.016 unlikely

CYP2C19

Methanol extract 8 213 81.93 likely

Resorcinol 1.2 27.1 13.22 likely

Belamcandol 2.2 13.64 1.52 likely

Demethylbelamcandaquinone B 5.3 27.1 0.79 likely

Fatimahol 11 0.20 0.016 unlikely
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not show any strong inhibition of CYP2D6 and CYP1A2. Accord-
ingly, we did not further determine the time-dependent inhibition
(TDI) of these two enzymes.

DISCUSSION
There is increasing evidence that the global use of herbal supple-
ments for the treatment of a wide spectrum of ailments has been
on the rise. Concurrently, there are more clinical cases of toxic-
ity caused by concomitant administration of herbal supplements
with conventional medicines (Colalto, 2010). This risk is mainly
attributed due to the lack of research on the drug interaction
potential of herbal medicines and their constituents. Such studies
are needed to identify the potential herbs which may cause drug
interactions and may help in reducing the risk of clinical toxicity
(Chen et al., 2012). Furthermore, it is also of significant value to
identify the constituents responsible for causing drug interactions.
This will also enable us to identify the potential herbs which have
similar chemical composition that may cause drug interactions.
Based on the FDA guidelines related to the drug interaction, identi-
fying compounds which interact with drug metabolizing enzymes
and efflux transporters are of paramount importance since they
play a major role in altering the pharmacokinetics and pharmaco-
dynamics of majority of conventional drugs (Huang et al., 2008).
Accordingly, the current study is focused on studying a widely used
herb KF and some of its chemical constituents for the possibility
of herb-drug interaction mediated by modulating the activities of
CYPs, P-gp, and PXR using in vitro methods.

In the present study, the methanolic extract of KF and its con-
stituents showed a moderate inhibition of CYP2D6 and 1A2 at
higher concentrations. It is unlikely that most of these compounds
will accumulate to such high physiological concentrations after
oral intake. However, saponins isolated from Panax notoginseng
were found to induce CYP1A2 with no inhibitory effect on the
activity of other CYPs (Liu et al., 2012). In contrast, we observed
a strong inhibition of CYP3A4, 2C19, and 2C9 by saponins and
methanol extract of KF. In a previous study, crude extracts of KF
have been reported to inhibit CYP2C isoforms; however, mini-
mal effect was seen on CYP3A4 enzyme (Pan et al., 2012). These
differences toward CYP3A4 activity may be attributed to the differ-
ences in the chemical composition of the extracts used in separate
studies.

Time dependent inhibitors are categorized as mechanism based
inhibitors. Such inhibitors are generally considered to have more
profound clinical effects compared to reversible inhibitors as they
form strong covalent bonds and thereby inactivate the CYPs (Riley
et al., 2007; Venkatakrishnan et al., 2007). In order to find out if
the methanolic extract or the constituents cause any TDI, the shift
in IC50 for CYP3A4, 2C9, and 2C19 was calculated as result of
preincubation of samples with recombinant enzymes, NADPH,
and co-factors. Neither the methanol extract nor the alkyl pheno-
lic compounds showed TDI of CYP2C9 and 2C19 suggesting that
they interact reversibly with these two enzymes. In contrast, the
pre-incubation of the methanol extract and all four alkyl phenols
caused a significant shift in the IC50 value for CYP3A4. Specifically,
the IC50 shift for 5-[10(Z)-pentadecenyl]resorcinol, fatimahol,
and the extract was greater than positive control troleandomycin,
which is considered to be a clinically relevant mechanism based

inhibitor. Previous structural studies have shown that the pheno-
lic moiety strongly binds to CYP3A4 enzyme causing a strong
inhibition (Stresser and Kupfer, 1997) which may explain the
prominent IC50 shift seen with the constituents of KF in our
study. Moreover, the presence of phenolic hydroxyl group has
been shown to lead to potent inhibition of CYP3A4 (Ho et al.,
2001). Such a phenomenon may explain the high IC50 shift
exhibited by 5-[10(Z)-pentadecenyl]resorcinol which contains
the phenolic hydroxyl group (Figure 1). The other alkyl phe-
nols which did not have hydroxyl group showed comparatively
weaker inhibition than 5-[10(Z)-pentadecenyl]resorcinol. This
TDI of CYP3A4 could be due to either mechanism based inhibi-
tion (irreversible), or due to the generation of metabolites which
may cause stronger inhibition of the enzyme. Further studies in
liver microsomes are needed to clarify the exact mechanism of
inhibition.

P-gp is known to contain multiple binding sites and conse-
quently multiple probe substrates are recommended to determine
if a compound is an inhibitor (Martin et al., 2000). We used
calcein-AM and digoxin as our probe substrates as they are known
to bind two different binding pockets of P-gp (Rautio et al.,
2006). In the calcein-AM assay, the two saponins and the extract
showed P-gp inhibition to a similar extent as verapamil but sig-
nificantly lower than cyclosporin A. However, using digoxin as
the substrate, much more potent inhibition of P-gp was seen.
A similar trend was seen with verapamil which showed more
potency in the digoxin assay, in accordance to previous report
(Rautio et al., 2006). Our results indicate that the components
of KF exhibit similar mechanism of P-gp inhibition as vera-
pamil. Compounds which show IC50 values below 10 μM in
the digoxin transport assay are recommended for further eval-
uation in the in vivo system (Giacomini et al., 2010). Hence the
extract and constituents of KF reported in this study would meet
this criterion. Various saponin-containing herbs have been shown
to be potent inhibitors of P-gp (Choi et al., 2003; Doligalska
et al., 2011). However, the in vivo efficacy depends on addi-
tional factors such as the dose and the absorption/distribution
profile of an inhibitor. KF extract and its constituents showed
no significant activation of PXR activity except a moderate acti-
vation by fatimahol. However, this activation was only seen
at higher concentrations, which would seem unlikely to cause
in vivo effects. Similar to P-gp inhibition, the two saponins
and methanol extract showed strong inhibition of rifampicin-
mediated induction of PXR activity. This may lead to a decrease
in the expression of CYPs or efflux transporters. These effects
were not due to the cytotoxicity of the KF methanol extract or
its constituents as confirmed by MTS proliferation assay. Fur-
ther studies are underway in our lab to determine the changes
in expression of specific CYPs and efflux transporters using RT-
PCR analysis. Based on the clinical dose of KF capsules used
by the general population, we predicted the ability of the con-
stituents and extract to cause in vivo interactions. Alkyl phenolic
compounds and methanolic extract are likely to cause HDI. How-
ever, it is highly unlikely that the whole amount of administered
herbal preparation is absorbed and is available for interaction
with the drug metabolizing CYPs. Further in vivo studies are
warranted.
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In conclusion, this study demonstrated that the methanolic
extract of KF and its constituents strongly inhibited (TDI) a major
drug metabolizing enzyme CYP3A4, while a moderate reversible
inhibition was seen with CYP2C9 and 2C19 with minimal effects
on CYP 2D6 and 1A2. Inhibition of P-gp and PXR by the methanol
extract could be attributed to the presence of saponins while inhi-
bition of CYPs could be due to alkyl phenols. Taken together,
concomitant use of L. pumila (KF) with conventional drugs could
cause a possibility of drug-herb interaction. Further studies are
warranted in this direction.
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