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Kidney damage is markedly accelerated by high-salt (HS) intake in stroke-prone
spontaneously hypertensive rats (SHRSP). Epoxyeicosatrienoic acids (EETs) are
epoxygenase products of arachidonic acid which possess vasodepressor, natriuretic, and
anti-inflammatory activities. We examined whether up-regulation (clofibrate) or inhibition
[N -methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH)] of epoxygenase
would alter systolic blood pressure (SBP) and/or renal pathology in SHRSP on HS intake
(1% NaCl drinking solution).Three weeks of treatment with clofibrate induced renal cortical
protein expression of CYP2C23 and increased urinary excretion of EETs compared with
vehicle-treated SHRSP. SBP and urinary protein excretion (UPE) were significantly lowered
with clofibrate treatment. Kidneys from vehicle-treated SHRSP, which were on HS intake
for 3 weeks, demonstrated focal lesions of vascular fibrinoid degeneration, which were
markedly attenuated with clofibrate treatment. In contrast, 2 weeks of treatment with the
selective epoxygenase inhibitor, MS-PPOH, increased UPE without significantly altering
neither urinary EET levels nor SBP. Kidneys from vehicle-treated SHRSP, which were on
HS intake for 11 days, demonstrated occasional mild damage whereas kidneys from
MS-PPOH-treated rats exhibited widespread malignant nephrosclerosis. These results
suggest that pharmacological manipulation of epoxygenase results in divergent effects
on renal damage and that interventions to increase EET levels may provide therapeutic
strategies for treating salt-sensitive hypertension and renal damage.

Keywords: epoxyeicosatrienoic acids, SHRSP, high-salt intake, renal damage, proteinuria, clofibrate, epoxygenase

inhibition

INTRODUCTION
Salt-sensitivity is an important characteristic of a subgroup of
humans with essential hypertension (Katori and Majima, 2008).
In particular, high dietary salt increases the susceptibility of hyper-
tensive patients to renal damage (Cowley and Roman, 1996). The
stroke-prone substrain (A3N) of the spontaneously hypertensive
rat (SHR), or stroke-prone SHR (SHRSP), is a well-established
model of genetic hypertension in which end-organ damage is
highly salt-sensitive. Excess dietary salt dramatically increases the
onset of stroke, myocardial infarction, and renal damage while
only moderately elevating blood pressure (BP) further in SHRSP
(Zuckerman et al., 1997). Previous studies in SHRSP using agents
that interfere with the renin–angiotensin–aldosterone system have
shown a dissociation between BP lowering and protection against

Abbreviations: AUDA, 2-(3-adamantan-1-yl-ureido)-dodecanoic acid; CYP,
cytochrome P450; DHETs, dihydroxyeicosatrienoic acids; EETs, epoxye-
icosatrienoic acids; ENaC, epithelial sodium channel; 20-HETE, 20-
hydroxyeicosatetraenoic acid; HS, high-salt; MS-PPOH, N-methylsulfonyl-6-
(2-propargyloxyphenyl)hexanamide; PAS, periodic acid-Schiff reagent; SBP, systolic
blood pressure; sEH, soluble epoxide hydrolase; SHRSP, stroke-prone spontaneously
hypertensive rat; SPRD, stroke-prone rodent diet; UPE, urinary protein excretion.

salt-sensitive end-organ damage (Stier et al., 1991; Rocha et al.,
1998) and have specifically implicated aldosterone as a major
factor in the etiology of salt-sensitive kidney damage (Chander
et al., 2003). Consistent with a pivotal pathophysiological role
of aldosterone in the saline-drinking SHRSP and the ability of
aldosterone to stimulate the epithelial sodium channel (ENaC),
Sepehrdad et al. (2003, 2004) found that amiloride and other
agents that inhibit ENaC function offer protective effects against
the development of proteinuria and renal microvascular dam-
age. Interestingly, epoxyeicosatrienoic acids (EETs), cytochrome
P450 (CYP) epoxygenase metabolites of arachidonic acid, have
been shown to directly inhibit ENaC activity (Wei et al., 2004).
EETs not only block the action of aldosterone at the level of the
distal nephron, but they are also involved in the long-term reg-
ulation of BP and in the functional response of the kidney to
high-salt (HS) diet (Liclican et al., 2008, 2009). Studies in experi-
mental animal models also provide substantial evidence for EETs
in the regulation in inflammation, fibrosis, and platelet aggrega-
tion (Node et al., 1999; Krotz et al., 2004). These properties of
EETs enable them to serve in a variety of settings to protect and
sustain both renal and systemic circulatory function. Therefore,
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we reasoned that interventions directed at induction or inhibition
of epoxygenases responsible for the production of EETs might
have a major impact on the pathologic renal changes that occur in
saline-drinking SHRSP.

There are two pharmacological approaches that have been
used to chronically elevate endogenous levels of EETs in order
to evaluate their renal and vascular protective actions in vivo.
One approach is to inhibit the conversion of EETs to their
less active metabolites, dihydroxyeicosatrienoic acids (DHETs),
by soluble epoxide hydrolase (sEH; Zeldin et al., 1995). We
have shown that in vivo treatment with a sEH inhibitor, 2-
(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), prevented
the early salt-sensitive components of hypertension and kid-
ney damage in saline-drinking SHRSP (Li et al., 2008). Another
approach is to increase levels of EETs by inducing epoxygenases
with fibric acid derivatives such as clofibrate, fenofibrate, and
bezafibrate (Muller et al., 2004; Zhao et al., 2006). Fenofibrate
has been shown to strongly induce renal protein expression of
CYP2C23, a major CYP epoxygenase in the rat kidney, and increase
renal epoxygenase activity (Muller et al., 2004). On the other
hand, epoxygenases can be inhibited with N-methylsulfonyl-6-
(2-propargyloxyphenyl)hexanamide (MS-PPOH), which has been
identified as a potent and selective inhibitor of CYP-catalyzed
arachidonate epoxidation both in vitro (Brand-Schieber et al.,
2000) and in vivo (Liclican et al., 2009). We have previously
reported that in vivo MS-PPOH treatment significantly reduced
renal levels of EETs and rendered Dahl salt-resistant rats hyperten-
sive (Liclican et al., 2009). In the present study, we hypothesized
that epoxygenase stimulation would reduce BP and protect against
renal damage in saline-drinking SHRSP, whereas inhibition of
epoxygenase activity would increase BP and exacerbate renal
damage in these animals.

MATERIALS AND METHODS
ANIMALS
Six-week-old male SHRSP, bred from NIH stock derived origi-
nally from the SHRSP/A3N substrain, were obtained from Charles
River Laboratories. Rats were given standard rodent diet (Purina
Lab Chow # 5001, 0.38% Na+ and 1.23% K+; Stier et al., 1989)
and allowed tap water ad libitum. Animals were housed in a
temperature-controlled room with a 12-h light/dark cycle and
were used in accordance with NIH guidelines. The New York
Medical College Institutional Animal Care and Use Committee
approved all experimental protocols.

CLOFIBRATE TREATMENT OF SHRSP
SHRSP were maintained on stroke-prone rodent diet (0.38% Na
and 0.71% K, Zeigler Brothers, Gardners, PA, USA; Stier et al.,
1989) and 1% NaCl drinking solution starting at approximately
7 weeks of age. Clofibrate (200 mg/kg/day, n = 7; Sigma–Aldrich,
St. Louis, MO, USA) or vehicle (0.5% methylcellulose, n = 5)
administered once daily by gavage, was started 3 days prior to
giving SHRSP 1% NaCl drinking solution. Systolic BP (SBP) was
measured weekly using tail-cuff plethysmography (CODA 2 non-
invasive BP apparatus, Kent Scientific, Torrington, CT, USA).
After 3 weeks of HS intake, animals were housed in metabolic
cages and urine was collected for measurement of eicosanoids by

Liquid Chromatography/Mass Spectrometry/Mass Spectrometry
(LC/MS/MS) analysis and urinary protein excretion (UPE) by the
sulfosalicylic acid turbidity method (Stier et al., 1989). Rats were
then anesthetized with sodium pentobarbital (65 mg/kg, i.p.) and
kidneys were excised and sections of cortex were snap frozen in
liquid N2 for Western immunoblot analysis and the remaining
kidney was placed in formalin for histological evaluation.

MS-PPOH TREATMENT OF SHRSP
The right jugular vein of 12 SHRSP was cannulated at 6 weeks of
age as previously described (Liclican et al., 2009) and the animals
were allowed 1 week for recovery. Animals were switched to stroke-
prone rodent diet and treated with MS-PPOH (20 mg/kg/day,
synthesized by Dr. John R. Falck, Texas Southwestern Medical
Center, TX, USA; n = 7) or vehicle (45% hydroxypropyl β-
cyclodextrin, 1.5 ml/kg/day; n = 5) as bolus injections into the
jugular vein catheter twice per day, starting at 7 weeks of age.
SHRSP were given 1% NaCl to drink 3 days after the treatment
with MS-PPOH was started. SBP was measured and urine was
collected weekly after MS-PPOH treatment. UPE was measured
weekly and the end point of the study was based on the occur-
rence of proteinuria, defined as a UPE of at least 20 mg/day. At
that time one animal from each group was anesthetized and tis-
sue samples were obtained as described in the above section for
clofibrate.

ANALYSIS OF URINARY EICOSANOIDS
An internal standard mixture containing 500 pg of d8-11, 12-EET
(Biomol, Plymouth Meeting, PA, USA), d11-11, 12-DHET, and
d6-20-hydroxyeicosatetraenoic acid (20-HETE; Cayman Chemi-
cal, Ann Arbor, MI, USA) was added to 2 ml of urine and lipids
were extracted with Bond Elut-Certify II columns (Varian, Lake
Forest, CA, USA). Briefly, each sample was diluted with 2 ml of
0.1 M sodium acetate solution (pH 7.0) containing 5% methanol,
and the pH was adjusted to 6.0 with acetic acid. Columns were
preconditioned with 2 ml of methanol, followed by 2 ml of 0.1 M
sodium acetate solution (pH 7.0) containing 5% methanol before
application of the urine samples. The columns were washed with
2 ml of methanol–water (1:1 by volume), and urinary eicosanoids
were eluted with 2 ml of hexane: ethyl acetate (75:25 by volume)
containing 1% acetic acid. The organic extracts were evaporated to
dryness under N2 and reconstituted in 100 μL of methanol (Rivera
et al., 2004). Extracted samples were analyzed by a quadruple linear
ion trap LC/MS/MS system (Q-Trap 3200) equipped with a Turbo
V ion source operated in negative electrospray mode as previously
described (Liclican et al., 2009). Data were analyzed with Analyst
4.02 software.

WESTERN IMMUNOBLOT ANALYSIS
Western immunoblotting was performed using an infrared fluo-
rescence system (Odyssey; LI-COR Biosciences, Lincoln, NE, USA)
as previously described (Liclican et al., 2008). Briefly, proteins were
separated on a 10% SDS-PAGE gel and transferred to a polyvinyli-
dene difluoride membrane. Membranes were blocked at room
temperature for 1 h and incubated overnight at 4◦C with the fol-
lowing primary antibodies: CYP2C23 (a generous gift from Dr. J.
Capdevila, Vanderbilt University, TN, USA), CYP2C11 (Oxford
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Biomedical Research, Oxford, MI, USA), and CYP4A (Daiichi
Chemical Co, Japan). The membranes were then incubated at
room temperature for 1 h with corresponding IRDye secondary
antibodies (LI-COR). Some membranes were stripped of bound
antibodies and reprobed with a β-actin antibody. The intensity
(densitometric units) ratio of target protein to β-actin on the same
membrane was calculated and used for quantitative comparisons.

HISTOLOGICAL EVALUATION
Sections of kidney were fixed in 10% neutral-buffered forma-
lin and embedded in paraffin blocks. The sections were cut
at a thickness of 2–4 μm and stained with hematoxylin and
eosin or periodic acid-Schiff reagent (PAS) for examination by
light microscopy as previously described (Zuckerman et al., 1997;
Chander et al., 2003; Li et al., 2008). Histologic sections were exam-
ined by a renal pathologist (Praveen N. Chander) without the
prior knowledge of the treatment. For renal vascular damage,
the prevalence of pathologic lesions was quantified by counting
the number of vascular profiles exhibiting fibrinoid degenera-
tion/necrosis and proliferative vasculopathic lesions. Fibrinoid
degeneration of vessels was defined as the absence of myocytic
nuclei in conjunction with hypereosinophilia in an area of the
vessel wall and/or accumulation of brightly, PAS positive glob-
ular material in the vessel wall. The data were expressed as
the total number of vessels affected per field of 200 glomeruli
(Li et al., 2008). For glomerular damage, glomerular necrotizing
and proliferative lesions were counted and expressed also as per
field of 200 glomeruli. Tubular protein casts were counted and
expressed as number of tubules presenting casts per field of 200
glomeruli.

STATISTICAL ANALYSES
BP data were analyzed using a two-way ANOVA followed by
Bonferroni post hoc test. Fisher’s exact test was used to deter-
mine treatment effects on renal pathology. A Student’s t-test was
used to evaluate the protein expression. All other data were log-
transformed to stabilize the variance before analyzing by Student’s
t-test. These data are displayed using the actual values. Differ-
ences were considered statistically significant at P < 0.05. Data are
expressed as means ± SEM.

RESULTS
EFFECT OF CLOFIBRATE TREATMENT ON SBP
Figure 1 shows results for SBP. In vehicle-treated SHRSP, SBP
progressively increased from 176 ± 4 mmHg at 1 week to
197 ± 5 mmHg at 3 weeks of the study (P < 0.01). SBP was signifi-
cantly lower in clofibrate-treated SHRSP at each week of the study
(149 ± 4 mmHg at 1 week, P < 0.01 vs. vehicle; 167 ± 8 mmHg
at 3 weeks, P < 0.05 vs. vehicle).

EFFECT OF CLOFIBRATE TREATMENT ON UPE AND RENAL DAMAGE
Pre-terminal UPE was significantly lower in SHRSP treated with
clofibrate compared with vehicle-treated SHRSP (P < 0.001,
Figure 2H). Representative PAS-stained photomicrographs of
renal cortical sections are provided in Figures 2A–F. In vehicle-
treated SHRSP, three weeks of HS intake produced moderate

FIGURE 1 | Systolic BP of saline-drinking SHRSP treated with vehicle

(0.5% methylcellulose, n = 5) or clofibrate (200 mg/kg/day, p.o., n = 7)

after 1, 2, and 3 weeks of the treatment. Data are expressed as
means ± SEM; *P < 0.05, **P < 0.01 vs. vehicle; ††P < 0.01.

renal pathologic lesions, consisting primarily of vascular fibri-
noid degeneration. The number of vessels exhibiting fibrinoid
degeneration was significantly lower in clofibrate-treated SHRSP
(P < 0.05, Figure 2G). Leukocyte infiltration was present in the
interstitium surrounding vessels that exhibited fibrinoid degener-
ation in vehicle-treated SHRSP and was abrogated in clofibrate-
treated SHRSP. Tubular protein casts were present in all (5/5)
kidneys from vehicle-treated SHRSP whereas only one out of seven
(1/7) kidneys from clofibrate-treated SHRSP presented focal casts
(P < 0.05). Consistent with reduced UPE and tubular protein casts,
kidney sections from clofibrate-treated SHRSP showed less vascu-
lar hypertrophy and hyaline droplets in podocytes (arrowhead,
Figure 2C) compared with vehicle-treated SHRSP.

EFFECT OF CLOFIBRATE TREATMENT ON RENAL PROTEIN EXPRESSION
OF EPOXYGENASE AND ω-HYDROXYLASE
Renal cortical protein expression of CYP2C23 was higher in
clofibrate- compared with vehicle-treated SHRSP (P < 0.05,
Figure 3A), Renal cortical protein expression of CYP2C11, another
epoxygenase expressed in rat kidney, did not differ between the
groups, but tended to be higher in clofibrate- compared with
vehicle-treated animals (Figure 3B). The renal cortical protein
expression of CYP4A, the w-hydroxylase that oxidizes arachidonic
acid to 20-HETE, was approximately twofold higher in clofibrate-
than vehicle-treated SHRSP (P < 0.01, Figure 3C).

EFFECT OF CLOFIBRATE TREATMENT ON URINARY EXCRETION OF EETs
AND DHETs
Urinary excretion of EETs was approximately twofold higher in
clofibrate- compared with vehicle-treated SHRSP (P < 0.005,
Figure 4), although the level of 14,15-EET was unaffected with
clofibrate treatment (Table 1). Urinary excretion of DHETs was
also significantly higher in clofibrate- compared with vehicle-
treated SHRSP (P < 0.01, Figure 4) as were the levels of
11, 12-DHET and 14, 15-DHET. Total urinary excretion of
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FIGURE 2 | (A–F) Representative PAS-stained photomicrographs of renal
cortical sections from three of the vehicle-treated (0.5% methylcellulose,
n = 5, A–C) and three of the clofibrate-treated (200 mg/kg/day, p.o., n = 7,
D–F) saline-drinking SHRSP at 3 weeks of the study. Renal sections from
vehicle-treated SHRSP demonstrated focally prominent fibrinoid degeneration
in vascular walls (arrows). The surrounding interstitium displays mononuclear
leukocyte infiltration. Arrow head indicates prominent intracytoplasmic

hyaline droplets in a glomerulus from a vehicle-treated SHRSP. Kidney
sections from clofibrate-treated animals exhibited very scattered and mild
vascular lesions. Magnification: ×20 (A,D), ×40 (B,E), or ×60 (C,F).
(G) Quantification of renal microvessels exhibiting fibrinoid degeneration per
field of 200 glomeruli. (H) Urinary protein excretion of SHRSP treated with
vehicle or clofibrate at 3 weeks of the study. Data are expressed as
means ± SEM; *P < 0.05, ***P < 0.001 vs. vehicle.

EETs + DHETs, an index of renal epoxygenase function, was
higher in the clofibrate-treated group (22.5 ± 3.2 ng/day) than
the vehicle-treated group (11.8 ± 0.3 ng/day, P < 0.02). Urinary
20-HETE excretion was under the detection limit (10 pg/ml) of our
LC/MS/MS.

EFFECT OF MS-PPOH TREATMENT ON SBP
The effects of in vivo MS-PPOH treatment on BP and kidney
damage were examined in saline-drinking SHRSP. Animals were
treated with MS-PPOH intravenously at a dosage of 20 mg/kg/day
(Huang et al., 2006; Liclican et al., 2009). MS-PPOH treatment
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FIGURE 3 | Western blots and semi-quantitative summary of renal

cortical protein expression of CYP2C23 (A, 48 kDa), CYP2C11

(B, 55 kDa) and CYP4A (C, 50 kDa) in saline-drinking SHRSP treated

with vehicle (0.05% methylcellulose) or clofibrate (200 mg/kg/day,

p.o.) for 3 weeks. Renal cortical protein expression of CYP2C23 and
CYP4A was significantly higher in clofibrate-treated SHRSP. Data are
expressed as means ± SEM; n = 4. *P < 0.05, **P < 0.01 vs. vehicle.

had negligible effects on SBP in saline-drinking SHRSP after
1 week, 160 ± 7 vs. 167 ± 6 mmHg, or 2 weeks of treat-
ment, 171 ± 7 vs. 175 ± 8 mmHg, for vehicle vs. MS-PPOH,
respectively.

EFFECT OF MS-PPOH TREATMENT ON UPE AND RENAL HISTOLOGY
SBP was not altered with MS-PPOH treatment; however, four out
of seven (4/7) MS-PPOH-treated SHRSP developed proteinuria
(defined as UPE ≥ 20 mg/day). As expected, due to the young

FIGURE 4 | Urinary excretion of EETs and DHETs in saline-drinking

SHRSP treated with vehicle- (0.5% methylcellulose, n = 5) or clofibrate

(200 mg/kg/day, p.o., n = 7) for 3 weeks. Urinary excretion of EETs
and/or DHETs was significantly higher in clofibrate-treated SHRSP. The sum
of EETs and DHETs, an index of epoxygenase function, was also
significantly increased with clofibrate treatment. Data were
log-transformed to stabilize the variance before analyzing by Student’s
t -test. The actual values are displayed and data are expressed as
means ± SEM; *P < 0.01, **P < 0.005 vs. vehicle.

age and short period of HS intake, none (0/5) of the vehicle-
treated SHRSP showed proteinuria. Overall UPE was higher in
MS-PPOH-treated SHRSP compared with vehicle-treated ani-
mals (P < 0.01, Figure 5F). Figures 5A,B shows representative
photomicrographs of PAS-stained kidney sections from vehicle-
treated SHRSP, which demonstrated only scattered and mild renal
vascular changes. In contrast, kidneys from MS-PPOH-treated
SHRSP exhibited widespread lesions of malignant nephrosclero-
sis characterized by segmental to circumferential mural fibrinoid
necrosis of microvessels with proliferative arteriopathy, which typ-
ically is seen in much older SHRSP with prolonged HS intake
(Figures 5C,D). Proliferative lesions, which signify more severe
microvascular damage, were present in five out of seven (5/7)
kidneys from MS-PPOH-treated SHRSP, whereas none (0/5) of
the vehicle-treated SHRSP developed such lesions (P < 0.05). The
number of vessels exhibiting fibrinoid necrosis and/or proliferative

Table 1 | Effect of clofibrate (200 mg/kg/day, p.o.) on urinary excretion

of EETs and DHETs (ng/day) in saline-drinking SHRSP.

14,15-EET 11,12-EET 8,9-EET 5,6-EET

Vehicle 1.64 ± 0.15 1.26 ± 0.05 0.90 ± 0.13 1.03 ± 0.20

Clofibrate 2.64 ± 0.46 2.31 ± 0.26** 1.47 ± 0.16* 2.26 ± 0.33*

14,15-DHET 11,12-DHET 8,9-DHET 5,6-DHET

Vehicle 3.34 ± 0.27 0.40 ± 0.04 0.62 ± 0.09 2.60 ± 0.41

Clofibrate 7.37 ± 1.52* 0.76 ± 0.12* 0.98 ± 0.48 4.68 ± 1.03

Data were log-transformed to stabilize the variance before analyzing by Student’s
t-test. The actual values are displayed and data are expressed as means ± SEM;
n = 5 in vehicle group and n = 7 in clofibrate group; *P < 0.05, **P < 0.002 vs.
vehicle.
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FIGURE 5 | (A–D) Representative PAS-stained photomicrographs of renal
cortex from two saline-drinking SHRSP treated with vehicle (45%
hydroxypropyl β-cyclodextrin, n = 5; A,B) and two saline-drinking SHRSP
treated with MS-PPOH (20 mg/kg/day, i.v., n = 7; C,D) for 2 weeks. Kidney
sections from vehicle-treated SHRSP demonstrated very scattered and mild
early microvascular lesions whereas kidney sections from MS-PPOH-treated
SHRSP exhibited widespread and well-established lesions of malignant
nephrosclerosis characterized by segmental to circumferential fibrinoid
necrosis of microvessels (arrows). Arrow head points to a proliferative

microvascular lesion; the adjacent glomerulus also shows segmental
necrotizing and proliferative lesions from a MS-PPOH-treated SHRSP. These
animals also exhibited focal but significant protein casts which were
commensurate with proteinuria. Protein casts were generally absent in
vehicle-treated animals. Magnification: ×20 (A,C) or ×40 (B,D).
(E) Quantification of renal microvessels exhibiting fibrinoid degeneration
and/or proliferative lesions per field of 200 glomeruli. (F) Urinary protein
excretion of SHRSP treated with vehicle or MS-PPOH for 2 weeks. Data are
expressed as means ± SEM; *P < 0.05 vs. vehicle.

lesions (Figure 5E) was markedly increased in kidneys from
MS-PPOH-treated SHRSP compared with vehicle-treated SHRSP
(P < 0.05). In addition to vascular damage, four out of seven
(4/7) kidneys from MS-PPOH-treated SHRSP exhibited glomeru-
lar necrotizing and proliferative lesions, whereas none (0/5) of
the vehicle-treated SHRSP developed glomerular lesions. Com-
mensurate with UPE, the number of tubules presenting protein
casts was markedly increased in kidneys from MS-PPOH-treated

SHRSP (11 ± 3 per field of 200 glomeruli) compared with vehicle
(2 ± 1 per field of 200 glomeruli, P < 0.05).

EFFECT OF MS-PPOH TREATMENT ON URINARY EXCRETION OF EETs
AND DHETs
Compared with vehicle-treated SHRSP, urinary excretion of EETs
and DHETS was not different in MS-PPOH-treated SHRSP
at 2 weeks of treatment (Figure 6). Total urinary excretion
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FIGURE 6 | Urinary excretion of EETs and DHETs in vehicle- (45%

hydroxypropyl β-cyclodextrin, n = 5) and MS-PPOH- (20 mg/kg/day,

i.v., n = 7) treated SHRSP at 2 weeks of treatment. Urinary EET
excretion and the sum of EETs + DHETs tended to be higher in MS-PPOH
treated SHRSP, but these did not reach statistical significance. Data were
log-transformed to stabilize the variance before analyzing by Student’s
t -test. The actual values are displayed and data are expressed as
means ± SEM.

of EETs + DHETs tended to be higher in the MS-PPOH-
(12.8 ± 2.1 ng/day) compared with vehicle-treated group
(20.1 ± 2.4 ng/day). However, this also did not reach statistical
significance (P = 0.052). None of the urinary levels of individ-
ual EET and DHET regioisomers were significantly altered with
MS-PPOH treatment (Table 2).

DISCUSSION
In the present study, we used clofibrate as a pharmacological
approach to elevate EET levels in SHRSP. In agreement with our
previous study using a sEH inhibitor in young saline-drinking
SHRSP (Li et al., 2008), treatment of clofibrate significantly
reduced SBP and produced a renal protective effect. Fibrates have
been reported to lower BP in several salt-loaded genetic models
of hypertension (Roman et al., 1993; Shatara et al., 2000; Zhou
et al., 2008), but have no effect on BP in normotensive Sprague–
Dawley rats (Shatara et al., 2000). More importantly, clofibrate
prevented DOCA-salt induced increases in BP in mice, indicat-
ing that the BP lowering effect of clofibrate is not necessarily

Table 2 | Effect of MS-PPOH (20 mg/kg/day, i.v.) on urinary excretion of

EETs and DHETs (ng/day) in saline-drinking SHRSP.

14,15-EET 11,12-EET 8,9-EET 5,6-EET

Control 2.50 ± 0.52 1.79 ± 0.26 1.42 ± 0.19 0.93 ± 0.25

MS-PPOH 4.71 ± 0.76 3.05 ± 0.51 2.78 ± 0.54 1.07 ± 0.24

14,15-DHET 11,12-DHET 8,9-DHET 5,6-DHET

Control 2.62 ± 0.66 0.55 ± 0.10 0.48 ± 0.07 2.47 ± 0.51

MS-PPOH 3.34 ± 0.51 1.10 ± 0.22 0.69 ± 0.11 3.34 ± 0.34

Data were log-transformed to stabilize the variance before analyzing by Student’s
t-test. The actual values are displayed and data are expressed as means ± SEM;
n = 5 in control group and n = 7 in MS-PPOH group.

secondary to a suppression of endogenous mineralocorticoid
levels (Zhou et al., 2008). One of the underling mechanisms
for the antihypertensive actions of fibrates has been suggested
to be due to increased synthesis of 20-HETE (Alonso-Galicia
et al., 1998; Zhou et al., 2008). However, fibric acid deriva-
tives have also been reported to increase epoxygenase activity
and EET production. Fenofibrate reduced BP and increased
epoxygenase expression in double transgenic rats overexpress-
ing both the human renin and angiotensinogen genes (Muller
et al., 2004), as well as in Sprague–Dawley rats fed a high-fat
diet (Huang et al., 2007) and Zucker diabetic fatty rats (Zhao
et al., 2006; Zhao and Li, 2008). Fenofibrate treatment pre-
vented brain and renal damage and reduced inflammation and
oxidative stress of SHRSP (Gelosa et al., 2010). In the present
study, renal cortical CYP2C23 protein expression and urinary
excretion of EETs and DHETs were significantly increased by
treatment with clofibrate. Clofibrate has also been reported to
upregulate expression of cerebral CYP2C11 of SHRSP; however,
CYP2C23 protein was not detected (Ying et al., 2008). These
observations, taken together with our previous finding that sEH
inhibition for two weeks prevented HS-induced increases in
SBP in young SHRSP, suggest that EETs may contribute impor-
tantly to the BP lowering effect of clofibrate in saline-drinking
SHRSP.

SHRSP develop proteinuria, glomerular damage, and renal
microvascular lesions characteristic of thrombotic microangiopa-
thy in malignant nephrosclerosis with age. These renal pathologic
changes are markedly accelerated by salt-loading and standard
rodent diet when started at approximately 7 weeks of age.
SHRSP manifest severe renal damage after 4 weeks on HS
intake and die of strokes, primarily hemorrhagic infarcts, by
13–15 weeks of age (6–8 weeks of HS intake; Stier et al., 1991,
1993). In the present study, 3 weeks of HS intake produced
mild to moderated vascular fibrinoid degeneration in vehicle-
treated SHRSP which was consistent with the progression to
severe renal damage (almost 15% of glomeruli and 20 vascu-
lar lesions per field of 100 glomeruli) after 4 weeks of HS
intake in SHRSP (Zuckerman et al., 1997). Clofibrate treatment
reduced UPE and markedly diminished renal glomerular and
vascular damage. These results are consistent with our find-
ing that sEH inhibition ameliorated early salt-sensitive renal
damage in saline-drinking SHRSP, which supports a protec-
tive role for EETs against salt-sensitive renal damage (Li et al.,
2008). Fibrates have been reported to ameliorate renal damage
in other animal models. In double transgenic rats overexpress-
ing both human renin and angiotensinogen genes, fenofibrate
reduced renal collagen IV expression and leukocyte infiltra-
tion (Muller et al., 2004). Fenofibrate also attenuated glomerular
hypertrophy and collagen accumulation in Zucker diabetic fatty
rats (Zhao and Li, 2008). Treatment with fenofibrate has been
reported to reduce the number of abnormal glomeruli and
to diminish the degree of mesangial expansion and glomeru-
losclerosis in Dahl salt-sensitive rats (Wilson et al., 1998). It
is well known that EETs possess anti-inflammatory and anti-
proliferative activity in vascular smooth muscle (McGiff and
Ferreri, 2007). Recently, 8,9-EET has been shown to pre-
vent the focal segmental glomerulosclerosis-induced increase in
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glomerular albumin permeability in vitro (Sharma et al., 2009).
Thus, we reasoned that the reduction of UPE and renal dam-
age by clofibrate may be related to the increase in levels of EETs.
To be noted, in the present study, since BP was appreciably
lowered by clofibrate treatment, we cannot separate direct vas-
culoprotective effects of increasing EET levels from BP lowering
effects on the development of renal damage in these rats. Clofi-
brate treatment was, however, reported to increase cerebral blood
flow, prevent stroke and prolong survival of SHRSP (Ying et al.,
2008).

Although we found an increase in CYP4A protein expression,
unlike urinary EETs, 20-HETE was undetectable in the urine
in either vehicle- or clofibrate-treated SHRSP as measured by
LC/MS/MS. Like 20-HETE, EETs possess diuretic and natriuretic
properties (Houillier et al., 1996; Wei et al., 2004). However, unlike
20-HETE which can cause vasoconstriction (McGiff and Ferreri,
2007), EETs produce vasodilatation of renal arterioles and may
serve as the endothelium-derived hyperpolarizing factor in the
vasculature (Eckman et al., 1998; Huang et al., 2005). 20-HETE
has also been reported to play a role in controlling the glomeru-
lar permeability barrier to albumin, which mimics the effect
of 8,9-EET at the glomerular permeability barrier (McCarthy
et al., 2005). A recent study demonstrated that introgression of
the CYP4A genes from Lewis rats into the Dahl salt-sensitive
rats increased renal formation of 20-HETE and attenuated the
development of hypertension and renal disease (Williams et al.,
2008). In the present study, although urinary 20-HETE was unde-
tectable, renal cortical CYP4A protein expression was induced by
clofibrate treatment in saline-drinking SHRSP. Thus, we cannot
rule out a possible contribution of CYP4A/20-HETE to the renal
protective effects of clofibrate. Indeed, it may be the combined
effects of EETs and 20-HETE which is responsible for the marked
renal protection in saline-drinking SHRSP as both EETs and 20-
HETE promote sodium excretion and act to limit glomerular
proteinuria.

We also examined inhibition of epoxygenase to determine
if loss of EETs would promote end-organ damage in saline-
drinking SHRSP. MS-PPOH has been identified as a potent and
selective inhibitor of epoxygenases in vitro and in vivo (Brand-
Schieber et al., 2000). Rat renal microsomal epoxygenase activity
was inhibited for up to 6 h after a single i.v. bolus injection of
MS-PPOH (5 mg; Brand-Schieber et al., 2000) and we have pre-
viously shown that treatment with MS-PPOH (20 mg/kg/day,
i.v.) for 6 days significantly reduced renal levels of EETs in
Dahl salt-resistant rats on 2% NaCl drinking solution (Licli-
can et al., 2009). Consistent with this hypothesis, we found that
in vivo epoxygenase inhibition with MS-PPOH in young SHRSP
increased UPE and accelerated the development of renal dam-
age consistent with malignant nephrosclerosis, as typically seen in
older SHRSP after at least 4 weeks of salt-loading (Rocha et al.,
1998). Vehicle treatment was associated with only mild renal
damage as we have seen previously with 2 weeks of HS intake
(Zuckerman et al., 1997; Li et al., 2008). Moreover, the microvas-
cular damage with MS-PPOH treatment was significantly greater
than that present in the vehicle-treated SHRSP in the clofibrate
study, despite the fact that these animals were younger (9 vs.
10 weeks of age) and received HS intake for a shorter period

of time than in the clofibrate study (11 days vs. 3 weeks). The
data therefore suggest that EETs play a protective role against
the development of salt-sensitive renal damage in saline-drinking
SHRSP.

It has been previously reported that in vivo MS-PPOH treat-
ment significantly increased BP, renal vascular resistance and
sodium balance in pregnant rats (Huang et al., 2006) and increased
BP in Dahl salt-resistant rats on HS intake (Liclican et al., 2009).
In the present study, however, SBP was not further elevated with
MS-PPOH treatment. This discrepancy may reflect a strain dif-
ference or a difference in pre-treatment BP, since the earlier two
animal models were normotensive whereas SHRSP were hyper-
tensive before the MS-PPOH treatment. Although SBP was not
increased with MS-PPOH treatment in the present study, our
findings are consistent with the notion that endogenous EETs may
serve a renal vascular protective role independent of an effect on
BP (Olearczyk et al., 2009).

Urinary excretion of EETs and DHETs was not reduced with
MS-PPOH treatment in the present study. However, the appear-
ance of heavy proteinuria in MS-PPOH-treated SHRSP may have
masked this affect. The majority of plasma EETs bind to plasma
albumin non-covalently in the form of fatty acid–albumin com-
plex (Saifer and Goldman, 1961). Therefore, the EETs that bind
to urinary albumin can be extracted by our method without
the requirement for alkaline hydrolysis. Since some MS-PPOH-
treated animals developed moderate to heavy proteinuria, EETs
that bind with urinary albumin may have masked the reduction
of EETs by epoxygenase inhibition with MS-PPOH. In addition
to inhibition of epoxygenases, MS-PPOH has been reported to
compete for the binding of a radiolabeled EET antagonist to cell
membranes and inhibit 14,15-EET-induced relaxation of bovine
coronary artery, suggesting a secondary mechanism by which MS-
PPOH has an inhibitory action on the epoxygenase-EET pathway
(Chen et al., 2009).

In conclusion, clofibrate treatment reduced SBP, UPE, and renal
damage in saline-drinking SHRSP, effects that may be related to
increased levels of EETs as reflected by up-regulation of renal cor-
tical epoxygenase expression and increased urinary excretion of
EETs. In contrast, the CYP450 epoxygenase inhibitor, MS-PPOH,
increased UPE and accelerated the development of renal dam-
age in saline-drinking SHRSP without altering urinary EET levels.
Together with our previous finding that sEH inhibition prevented
early microvascular damage in saline-drinking SHRSP (Li et al.,
2008), these results suggest that pharmacological manipulation of
epoxygenase results in divergent effects on renal damage such that
inhibition promotes injury and increasing EET synthesis reduces
injury. Interventions to increase renal EET levels may provide ther-
apeutic strategies for treating salt-sensitive hypertension and renal
damage.
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