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INTRODUCTION
Drug addiction is manifested by a compul-
sive drive to take licit or illicit substances
despite repeated severe adverse conse-
quences (Volkow et al., 2012). Addiction
is also accompanied by a vicious cycle of
binges, abstinence, and relapses. Almost
all drugs of abuse trigger euphoric feel-
ings consequent to a rapid increase of
dopamine levels in the mesolimbic sys-
tem. Even after long periods of abstinence,
addicts remain vulnerable to drug crav-
ing and/or relapses that can be triggered
by stimuli previously associated with drugs
(Koob and Volkow, 2010). These features
of addiction suggest that drugs might
cause a form of persistent neuroplasticity
that is acutely responsive to environmen-
tal stimuli, with consequent compulsive
drug-seeking and taking behaviors.

Neural functions require the coordi-
nated interactions of multiple neuronal
cell types and a diverse population of
glial cells. The three major glial cell
types in the brain, astrocytes, oligo-
dendrocytes, and microglia, communi-
cate with each other and with neurons
by using neurotransmitters, other small
molecules, and gap junctions (Araque
et al., 2014). Oligodendrocytes increase the
speed of electrical transmission through
nerve axons by forming the axonal myelin
sheath and clustering ion channels at
nodes of Ranvier (Nave, 2010). Microglia
prune synapses in part by monitoring
synaptic transmission (Schafer et al., 2013;
Wake et al., 2013). Astrocytes can regulate
synaptic transmission between neurons by
modifying the concentration of extracellu-
lar potassium, controlling local blood flow,

by releasing and/or taking up neurotrans-
mitters or neuromodulators, by delivering
nutrients to neurons, and by altering the
geometry and volume of the brain extra-
cellular space (Araque et al., 2014).

This brief summary of glial functions
suggests that these cells might play impor-
tant roles in the long-term manifestations
of substance use disorders, both in terms
of addiction to these agents and their long-
term neuropsychiatric consequences. In
what follows, we discuss some recent find-
ings that support the thesis that glial cells
are part and parcel of the plastic mecha-
nisms that are induced by drugs of abuse.

BRAIN INFLAMMATION TRIGGERED BY
DRUGS OF ABUSE
Gliosis and inflammatory responses are
significant pathological features of sub-
stance use disorders (Cadet et al., 2014a).
Inflammation is a natural response to
damage and/or infection that are mediated
by pro-inflammatory cytokines including
interleukin 1 beta (IL-1β), interleukin 6
(IL-6), and tumor necrosis factor alpha
(TNFα) (Glass et al., 2010). In the brain,
microglial cells are the main orchestra-
tors of these neuroinflammatory responses
(Jeong et al., 2013). However, other
cells including astrocytes, endothelial cells,
perivascular and meningeal macrophages,
and even neurons, can also produce pro-
inflammatory mediators (Van Wagoner
et al., 1999; Jeong et al., 2013). These fac-
tors appear to mediate some detrimental
effects of inflammation on neurogenesis
(Sierra et al., 2014).

Brain inflammation is also associated
with an increased production of reactive

oxygen species (ROS) and nitric oxide
(NO), followed by the propagation of
free radicals that damage cells (Cadet
and Brannock, 1998; Krasnova and Cadet,
2009). Indeed, various psychostimulants,
including amphetamine and metham-
phetamine, can produce ROS in dopamin-
ergic nerve terminal regions (Krasnova
and Cadet, 2009; Shiba et al., 2011). Acute
or repeated cocaine administration also
generates ROS in dopaminergic rat brain
structures (Dietrich et al., 2005). MDMA
also produces reactive nitrogen species in
the rat that contribute to its neurotoxicity
(O’Shea et al., 2014).

DRUGS ABUSE-INDUCED ALTERATIONS IN
GLIAL CELLS
Astroglia
Astrocytes play diverse roles in the reg-
ulation of synaptic transmission. They
clear synaptic transmitters from the cleft
through the activity of transporters and
can recycle glutamate through a glutamine
intermediate to the synaptic terminal
(Haydon et al., 2009). Astrocytes can also
release glutamate (D’Ascenzo et al., 2007;
Jourdain et al., 2007), the NMDA receptor
co-agonist D-serine (Mothet et al., 2005),
and ATP (Cotrina et al., 2000). Hydrolysis
of ATP to adenosine is responsible for
an adenosine 1 (A1) receptor-mediated
presynaptic inhibition of excitatory synap-
tic transmission (Volterra and Meldolesi,
2005).

GFAP-positive glial cells in the mPFC
contain cystine/glutamate antiporters
(Pow, 2001) that maintain extracellular
non-synaptic glutamate levels and pro-
vide functional support to neurons by
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regulating extracellular potassium and the
reuptake of glutamate at synapses (Wigley
et al., 2007). Interestingly, non-synaptic
glutamate derived from cystine/glutamate
antiporters has been reported to mod-
ulate synaptic glutamate release and to
regulate cocaine-induced drug seeking
in rats (Moran et al., 2005). Moreover,
down-regulation of the cystine/glutamate
exchanger was reported to account for
chronic cocaine-induced reduction in
basal glutamate levels (Baker et al., 2003).
Furthermore, the sodium-dependent glu-
tamate uptake and the membrane level
of the primary glial glutamate trans-
porter (GLT1) were recently reported to
be reduced in the nucleus accumbens
upon withdrawal from self-administered
cocaine (Scofield and Kalivas, 2014). It is
important to note that Narita et al. (2006)
have indicated that astrocyte-, but not
microglia-, related soluble factors were
able to amplify both methamphetamine-
and morphine-dependent rewarding
effects. Astrocytic control of glutamatergic
signaling during abstinent periods may
also critically impact reinstatement of
drug-seeking behaviors (Turner et al.,
2013). These conclusions stem from
studies in which a glia-selective dominant-
negative SNARE protein was expressed
in mice and subsequently used to assess
the contribution of glial transmission on
cocaine-induced behaviors. The authors
were able to demonstrate that glial trans-
mission is necessary for reinstatement
of drug-seeking behaviors triggered by
cocaine or associated cues (Turner et al.,
2013).

Although much remains to be done
to clarify the role of astrocytes in drug-
induced behaviors, some of their behav-
ioral effects might be consequences to
their production of trophic factors that can
impact adult neurogenesis (Barkho et al.,
2006). This idea is supported by the evi-
dence that exposure to drugs of abuse
can influence neurogenesis (Mandyam
and Koob, 2012). It is important to also
note that gliogenesis in the mPFC is
altered after self-administration of var-
ious drugs of abuse (Mandyam and
Koob, 2012). Taken together, the impact
of drugs of abuse on both neuroge-
nesis and gliogenesis might create an
environment that is permissive to the
generation and persistence of long-term

memories associated with the addictive
process.

It is also important to note that the
glial-derived neurotrophic factor (GDNF)
has also been studied in animal models of
addiction (Yan et al., 2007, 2013; Lu et al.,
2009). This factor provides trophic sup-
port to dopamine neurons and modulates
midbrain microglial activation (Rocha et
al., 2012). GDNF-dependent neuroadap-
tations in midbrain VTA neurons appear
to play an important role in the develop-
ment of incubation of cocaine craving (Lu
et al., 2009). GDNF expression may be also
associated with enduring vulnerability to
reinstatement of METH-seeking behavior
(Yan et al., 2007, 2013). More studies need
to be conducted to elucidate how GDNF
might influence dopaminergic functions
in other brain regions after chronic expo-
sure to psychostimulants and other drugs
of abuse.

Oligodendroglia
Oligodendrocytes are cell types respon-
sible for providing myelin for rapid
propagation of action potentials (Nave,
2010). The brain contains an abundant
class of progenitor cells that express the
chondroitin sulfate proteoglycan, NG2,
and the alpha receptor for platelet-derived
growth factor (PDGFαR) (Nishiyama,
2007). These NG2+glial cells are called
oligodendrocyte precursor cells (OPCs)
because they generate oligodendrocytes
during early postnatal development
(Nishiyama, 2007). OPCs remain abun-
dant in the adult CNS and retain the
ability to differentiate into oligoden-
drocytes (Kang et al., 2010). They
can regenerate oligodendrocytes after
their degeneration through chemical-
or autoimmune-mediated demyelina-
tion (Franklin and Ffrench-Constant,
2008). Oligodendrocytes can also regu-
late axonal function via their influence on
neuron-glial interactions (Fields, 2014)

At present, there is very little informa-
tion available on the potential effects of
drugs of abuse on oligodendrocytes. For
example, Lin et al. (2013) used a 3.0-
Tesla MR scanner to study the brains of
34 heavy smokers and compared them to
those of 34 age- and sex-matched con-
trols. They found that heavy smokers had
lower fractional anisotropy in the left
anterior corpus callosum, an area that

corresponded to the genu and rostral body
of the corpus callosumm. These smok-
ers did not show any area of increased
anisotropy. They reported further that
these smokers showed decreased axial dif-
fusivity and increased radial diffusivity,
but no changes in mean diffusivity. The
authors suggested that their observations
might the results of axonal loss and dis-
rupted myelin integrity (Fields, 2014).
Importantly, regression analysis revealed
that these changes were related to the dura-
tion of smoking, thus suggesting that long-
term exposure to nicotine and/or other
factors in smoke might damage or impair
the functions of oligodendrocytes. These
observations are consistent with previous
observations in chronic cigarette smokers
(Paul et al., 2008). It is also important to
mention that nicotine can cause significant
increases in myelin genes in the prefrontal
cortex, caudate putamen, and the nucleus
accumbens of rats exposed to the drug in
utero (Cao et al., 2013). The impact of
these changes on neuronal functions will
need to be investigated further.

Animal studies have also revealed cer-
tain white matter abnormalities after
extended cocaine use. For example, George
et al. (2008) investigated memory func-
tions in rats that had 6-h access pre-
day to cocaine. These rats escalated their
intake of cocaine and exhibited working
memory deficits. In addition, there was a
significant correlation between decreased
NG2-positive cells and cognitive impair-
ments in these rats. Other investigators
have also reported that chronic cocaine
can cause decreased level of white mat-
ter proteins in the mouse nucleus accum-
bens (Kovalevich et al., 2012). Opioids also
appear to affect the functions of oligoden-
drocytes. Specifically, perinatal exposure
to buprenorphine has been shown to influ-
ence brain myelination, in that some doses
of the buprenorphine were associated
with reduced nuber of myelinatied axons
(Sanchez et al., 2008). Buprenorphine
also caused an inverted U-type increases
in myelin basic proteins (MBPs), with
the highest doses causing normalization
of the levels of MBPs (Eschenroeder
et al., 2012). Low doses of bupenor-
phine also increeased morphological com-
plexity and increased the percentage of
pre-oligodendrocytes that reach matu-
rity. These differentiating effects appear
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to be mediated by stimulation of mu-
opioid receptors (Eschenroeder et al.,
2012). In contrast, higher does of the drug
might exert their influence through the
nociceptin/orphanin FQ (NOP) receptor
(Eschenroeder et al., 2012). These obser-
vations suggest that further evaluation of
oligodendryte functions in adults being
treated with opioid agents are necessary.

These animal studies are consistent
with the suggestion that myelin dysfunc-
tion might account for some of the deficits
in white matter integrity described in
studies of humans addicted to various
substances (Cadet et al., 2014a). More
studies are needed to elucidate if elec-
trophysiological abnormalities observed
in some models of addiction might be
secondary to drug-induced myelin dys-
function and associated abnormalities in
conduction of action potentials to synaptic
areas.

Microglia
Microglial cells are the immune cells that
reside in the brain parenchyma (Sierra
et al., 2014). They are exceptional sensors
of their microenvironment and respond by
undergoing remarkable changes in mor-
phology and gene expression (Aguzzi et al.,
2013). During pathological insults, acti-
vated microglial cells thicken and retract
their processes, extend filopodia, pro-
liferate and migrate. They also release
factors and compounds that can influence
neuronal survival. These factors include
proinflammatory cytokines, trophic fac-
tors, and ROS. They also phagocytose
pathogens, degenerating cells, and debris
(Schafer et al., 2013). Of relatedness to our
present discussion, reactive microgliosis
has been detected in several regions of
the brains of methamphetamine addicts
who had been abstinent for several years
(Sekine et al., 2008). These results had sug-
gested that methamphetamine exposure
had engendered a process that had endur-
ing effects on the proliferation of reactive
microglial cells. These studies in humans
found parallelism in preclinical studies
documenting that methamphetamine
induces microglial activation in the brain
(Thomas et al., 2004; Raineri et al.,
2012). Along with microglial activation,
methamphetamine can increase striatal
mRNA expression levels of IL-6 family
pro-inflammatory cytokines, leukemia

inhibitory factor, oncostatin m, and IL-6
(Robson et al., 2013). These observations
are consistent with the idea that the drug
might cause neuronal dysfunction via
microglia-secreted pro-inflammatory and
toxic factors.

In addition to their toxic effects,
microglia can alter neuronal excitability
by affecting both inhibitory and excita-
tory synaptic transmission (Sierra et al.,
2014). Tremblay et al. (2010) showed that
microglia normally contact spines, synap-
tic terminals, and synaptic clefts in the
cortex (Tremblay et al., 2010). Microglia
can also regulate basal glutamatergic and
GABAergic synaptic transmission in the
context of brain injury by a mechanism
that involves the increased production of
ATP that stimulates the release of brain-
derived neurotrophic factor (BDNF)
from microglial cells (Tsuda et al., 2003;
Davalos et al., 2005). BDNF is a neu-
rotrophin that regulates neuronal survival
and differentiation. BDNF also modulates
neuronal activity and synaptic plasticity
(Santos et al., 2010). Because neurons
and microglia express BDNF (Trang et al.,
2011), this protein may influence a vast
array of functions in the brain. Of spe-
cific relationship to our discussion, it
has been shown that infusion of BDNF
into subcortical structures such as the
nucleus accumbens and ventral tegmental
area enhances cocaine-induced behav-
ioral sensitization and cocaine seeking
(Lu et al., 2004; Graham et al., 2007). In
contrast, BDNF infusion into the dorso-
medial prefrontal cortex following cocaine
self-administration attenuates relapse to
cocaine seeking after abstinence; cue-
and cocaine prime-induced reinstate-
ment of cocaine-seeking were similarly
affected (Whitfield et al., 2011). Some of
the effects of cocaine on BDNF appear
to be mediated via induced expression of
microRNA 212 (Hollander et al., 2010),
with the magnitude of BDNF expres-
sion being dependent on a homeostatic
interaction of microRNA 212 and MeCP2
in the dorsal striatum (Im et al., 2010).
Methamphetamine self-administration
also causes increased BDNF expression
at both mRNA and protein levels (Cadet
et al., 2014b). However, since these stud-
ies did not clarify the principal sources of
BDNF expression, it remains to be deter-
mined the extent to which microglial cells

might be influencing these drug-induced
changes in BDNF expression.

CONCLUSIONS
Addiction of licit and illicit substances can
be viewed as maladaptive plastic responses
to exposure to agents that impact the
expression of various genes and proteins
in the brain. Some of these proteins are
known to be involved in developmental
processes that are dormant during adult-
hood (Cadet, 2009; Cadet et al., 2014b).
Drug-induced elevated expression of some
of these proteins could have induced glial
proliferation, neuronal dedifferentiation,
as well as structural and dysfunctional
interactions between glial and neuronal
cells (Cadet, 2009). Because glial cells are
such an integral part of global neuronal
function, it will be very important to
develop tool sets that can differentiate the
short-term impact of drug-induced dys-
functions of glial cells that might nega-
tively impact long-term brain functions.
This is important in view of the fact
that many neurodegenerative disorders
including Parkinson’s disease are thought
to be secondary to glia-dependent neu-
roinflammatory responses (Rogers et al.,
2007; Tansey and Goldberg, 2010). These
statements implicate a need for novel
approaches to the treatment of human
addicts that emphasize the development
of protective agents that could cause a
return of their brains toward baseline
homeostasis.
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