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Emerging role of selective autophagy in human diseases
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Autophagy was originally described as a highly conserved system for the degradation of
cytosol through a lysosome-dependent pathway. In response to starvation, autophagy
degrades organelles and proteins to provide metabolites and energy for its pro-survival
effects. Autophagy is recognized as playing a role in the pathogenesis of disease either
directly or indirectly, through the regulation of vital processes such as programmed
cell death, inflammation, and adaptive immune mechanisms. Recent studies have
demonstrated that autophagy is not only a simple metabolite recycling system, but also
has the ability to degrade specific cellular targets, such as mitochondria, cilia, and invading
bacteria. In addition, selective autophagy has also been implicated in vesicle trafficking
pathways, with potential roles in secretion and other intracellular transport processes.
Selective autophagy has drawn the attention of researchers because of its potential
importance in clinical diseases.Therapeutic strategies to target selective autophagy rather
than general autophagy may maximize clinical benefit by enhancing selectivity. In this
review, we outline the principle components of selective autophagy processes and their
emerging importance in human disease, with an emphasis on pulmonary diseases.
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INTRODUCTION
Autophagy is a lysosomal degradation system by which the cell can
recycle its cytoplasmic components (Mizushima and Komatsu,
2011). At present, three different types of autophagic pathways
have been reported, named as macroautophagy, microautophagy,
and chaperone-mediated autophagy (Mizushima and Komatsu,
2011). Of these, macroautophagy is the best-characterized
and most well-known form, often referred to simply as
“autophagy.”

Autophagy proceeds through sequential steps, beginning with
the generation of autophagosomes from an isolation membrane
and followed by elongation to form a mature autophagosome
which captures cytosolic cargo (Mizushima and Komatsu, 2011).
Genetic studies in yeast have identified a series of autophagy-
related genes (ATGs) shown to be essential for the autophagy
process (Tsukada and Ohsumi, 1993; Klionsky et al., 2003).
Among these, microtubule associated protein 1 light chain-3
(LC3), a homologue of yeast Atg8, is converted from a cytosolic
form (LC3-I) to its phosphatidylethanolamine-conjugated form
(LC3-II) which targets to autophagic membranes (Mizushima
et al., 2010). Autophagosome formation is also regulated by the
autophagy protein Beclin 1 (homolog of yeast Atg6; Liang et al.,
1999).

The membrane origin of autophagosomes remains unclear.
Although the endoplasmic reticulum (ER), mitochondria and
plasma membrane have been reported as the membrane source,
recent studies have also suggested that the ER-mitochondria
contact site is important in autophagosome formation (Hai-
ley et al., 2010; Ravikumar et al., 2010; Tooze and Yoshimori,
2010; Hamasaki et al., 2013). Subsequently, the autophagosome

containing the cytosolic components and organelles fuses with the
lysosome to form the autolysosome where the sequestered cargo is
degraded (Mizushima and Komatsu, 2011). Initial studies on the
molecular mechanisms of autophagy have largely focused on the
early stage, however, precise mechanisms of the late stage where the
autophagosome fuses with the lysosome have also been revealed
(Shen and Mizushima, 2014). Recent studies have demonstrated
that the transcription factor EB (TFEB), a master gene for lyso-
somal biogenesis, coordinates the autophagic process by driving
expression of autophagy and lysosomal related genes (Settembre
et al., 2011). An autophagosomal soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) has been
identified as the regulator of autophagosome–lysosome fusion
(Itakura et al., 2012).

Once, autophagy was simply regarded as a non-specific degra-
dation system, however, recent research shows that autophagy
can selectively degrade specific targets in processes referred to
as “selective autophagy” (Levine et al., 2011; Youle and Naren-
dra, 2011). Each selective autophagy subtype was named after
its specific targets, for example: aggregated proteins (aggrephagy;
Yamamoto and Simonsen, 2011), mitochondria (mitophagy; Youle
and Narendra, 2011), pathogens (xenophagy; Levine et al., 2011),
and cilia (ciliophagy; Cloonan et al., 2014). Selective autophagy
is also related to vesicle trafficking pathways, and its importance
in secretion and other intracellular transport processes is rapidly
increasing (Stolz et al., 2014).

Previous studies suggest that autophagy is relevant to human
diseases, including pulmonary diseases (Levine and Kroemer,
2008; Choi et al., 2013). Furthermore, convincing evidence
that selective autophagy may be implicated in human disease
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has been reported (Gomes and Dikic, 2014; Redmann et al.,
2014). This led us to the hypothesis that selective autophagy
would impact the pathogenesis of pulmonary diseases. In this
review, we will examine the considerable evidence emerging
for the role of selective autophagy in the pathogenesis of com-
plex pulmonary diseases. A better understanding of the role(s)
of selective autophagy in disease pathogenesis may help design
more specific therapies for the treatment of pulmonary dis-
eases, and other diseases where autophagy may contribute to
pathogenesis.

SELECTIVE AUTOPHAGY
Selective autophagy can deliver a wide range of cargo to the
lysosome, including protein aggregates, whole organelles (e.g.,
mitochondria), and intracellular pathogens (Stolz et al., 2014).
Although the mechanisms of selective degradation remain incom-
pletely understood, several reports suggest that ubiquitination
of substrates may serve as general tag for selective autophagy
in mammalian cells (Kirkin et al., 2009). Recent studies have
described important functions of Atg8 family proteins in selec-
tive autophagy, including interactions with cargo receptors and
components of the basal autophagy machinery, and in the reg-
ulation of autophagosome biogenesis (Kaufmann et al., 2014;
Nath et al., 2014; Sawa-Makarska et al., 2014). To evaluate the
inclusive list of selective autophagy processes currently in the
literature is beyond the scope of this review; we will there-
fore focus on the three types of selective autophagy most
related to pulmonary diseases; mitophagy, xenophagy, and
ciliophagy.

MITOPHAGY
Mitophagy is a selective mechanism for the elimination of mito-
chondria through the autophagic machinery (Youle and Narendra,
2011). Two major mitophagy-related proteins, Parkin and PTEN-
induced putative kinase protein 1 (PINK1), have been linked to the
pathogenesis of Parkinson’s disease (Youle and Narendra, 2011).
A proposal for the mechanism of mitophagy is that damaged
and depolarized mitochondria stabilize PINK1 which in turn
recruits the E3 ubiquitin ligase, Parkin. Parkin then ubiquitiny-
lates various mitochondrial outer membrane proteins including
mitofusins MFN1, MFN2 (Gegg et al., 2010), voltage dependent
anion channel (VDAC; Geisler et al., 2010) and mitochondrial
rho GTPase (MIRO; Wang et al., 2011); and induces mitophagy
by the recruitment of autophagy receptors such as p62 (Geisler
et al., 2010). However, several previous reports are suggestive of
PINK1-dependent, but Parkin-independent, mitophagy. Gp78 E3
ubiquitin ligase overexpression causes mitophagy that is inde-
pendent of Parkin (Fu et al., 2013). Mice genetically deficient
in Pink1 were resistant to Staphylococcus aureus-induced acute
lung injury (ALI). PINK1 was found to interact with an alter-
native ubiquitin E3 ligase component, F-box only protein 15
(Fbxo15), which promoted mitochondrial instability in this model
(Chen et al., 2014a). Furthermore, although mitophagy was gen-
erally considered to serve as an intrinsic mitochondrial quality
control system, it has been reported that mitophagy may trig-
ger cell death (Sentelle et al., 2012; Mizumura et al., 2014). Now,
mitophagy is generally recognized as a potential modulator of

the pathogenesis of disease with either protective or harmful
consequences.

XENOPHAGY
Autophagy can contribute to the immune response by providing a
mechanism for the selective intracellular degradation of invading
pathogens, a process termed “xenophagy.” Invading bacteria are
tagged for removal with ubiquitin. Autophagy receptors includ-
ing p62, nuclear domain 10 protein 52 (NDP52) and optineurin
recognize ubiquitinated pathogens and target them to autophago-
somes (Gomes and Dikic, 2014). Besides its direct role in pathogen
clearance, xenophagy may also serve host defenses by enhancing
immune recognition of infected cells via the generation of anti-
genic bacterial peptides (Yano and Kurata,2011). Meanwhile, some
bacteria, such as S. aureus and Anaplasma phagocytophilum, can
use the host autophagosomes for replication (Schnaith et al., 2007;
Niu et al., 2008). These bacteria can not only block autophago-
somal maturation and acidification, but also can proliferate in
LC3-positive compartments (Gomes and Dikic, 2014).

CILIOPHAGY
Recently, we have demonstrated that an autophagy-dependent
pathway regulates cilia length (Lam et al., 2013), a process named
“ciliophagy.” We have shown that the cytosolic deacetylase his-
tone deacetylase 6 (HDAC6) mediates ciliophagy. Pampliega et al.
(2013) also reported that autophagy negatively regulate ciliogen-
esis by degrading intraflagellar transport protein 20 homolog
(IFT20). On the other hand, it has reported that autophagy
removes oral-facial-digital syndrome 1 protein (OFD1) from
centriolar satellites to promote ciliogenesis (Tang et al., 2013).
However, the precise mechanisms by which autophagy can
regulate these conflicting processes remains to be elucidated
(Wrighton, 2013).

SELECTIVE AUTOPHAGY IN COPD
Chronic obstructive pulmonary disease (COPD) contributes sig-
nificantly to the global burden of disease as the fourth leading
cause of mortality worldwide, however, the pathogenesis of
this disease remains incompletely understood (Dal-Re, 2011;
Vestbo et al., 2013). We previously reported increased autophago-
some numbers and increased expression of LC3B-II, the active
form of LC3B, in human lung specimens from patients with
COPD (Chen et al., 2010). In an in vivo emphysema model,
genetic deletion of specific autophagy proteins reduced airspace
enlargement (Chen et al., 2010). More recently, we demonstrated
that mitophagy regulates necroptosis, a form of programmed
necrosis, which contributes to the pathogenesis of COPD
(Mizumura et al., 2014). Cigarette smoke (CS) exposure induced
mitophagy through the stabilization of the mitophagy regulator
PINK1 in pulmonary epithelial cells. Mice genetically deficient
in PINK1 were protected against mitochondrial dysfunction,
airspace enlargement, and mucociliary clearance (MCC) disrup-
tion during CS exposure. The mitochondrial division/mitophagy
inhibitor Mdivi-1 protected against CS-induced cell death and
mitochondrial dysfunction, and reduced the phosphorylation
of mixed lineage kinase domain-like protein (MLKL), a sub-
strate for receptor-interacting serine/threonine-protein kinase
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3 (RIP3) in the necroptosis pathway. In this study, we have
shown that significant mitochondrial depolarization occurred in
pulmonary epithelial cells in response to CS extract (CSE) expo-
sure. Moreover, our results suggest that active mitophagy may
alter mitochondrial membrane integrity, and lead to the induc-
tion of necroptosis. However, the precise mechanism by which
mitophagy can serve to aggravate mitochondrial injury in the
CS exposure model remains obscure. One possible hypothesis
is that CS-induced aberrant mitophagy may cause an increase
in the population of impaired mitochondria (Figure 1A). In
addition, as dose-response effects of autophagy/mitophagy have
been proposed, we cannot completely exclude the possibility
that mitophagy may also contribute to mitochondrial qual-
ity control for its pro-survival role during mild CS exposure
(Frank et al., 2012; Sureshbabu and Bhandari, 2013; Schiavi and
Ventura, 2014). Further studies are necessary to improve the
understanding of the role of mitophagy in the pathogenesis of
COPD.

We also reported that ciliophagy, the consumption of
cilia components by autophagy, regulates cilia length dur-
ing CS exposure (Figure 1B; Lam et al., 2013; Cloonan
et al., 2014). Impaired airway clearance caused by cilia short-
ening prevents the elimination of pathogens from the air-
ways and may cause recurrent respiratory infections that
exacerbate COPD. We demonstrated that autophagy-impaired
(Becn1+/− or Map1lc3B−/−) mice, as well as tracheal epithe-
lial cells isolated from these mice, resisted CS-induced cilia
shortening. We identified the cytosolic deacetylase HDAC6
as a critical regulator of autophagy-mediated cilia shorten-
ing during CS exposure (Lam et al., 2013; Cloonan et al.,
2014).

In contrast, previous studies have demonstrated defective
autophagy in CS-exposed macrophages (Monick et al., 2010). Such
a deficit in autophagy/xenophagy was observed in the alveolar
macrophages of smokers and was proposed to lead to recur-
rent infections in smokers, since CS exposure impairs delivery
of bacteria to the lysosomes.

SELECTIVE AUTOPHAGY IN RESPIRATORY INFECTION AND
SEPSIS
The mechanism of antibacterial autophagy in Mycobacterium
tuberculosis (Mtb) infection is well-characterized. The lungs are
the major site for Mtb infection. Mtb employs a unique strategy
for survival that interferes with the fusion between phagoso-
mal compartments containing Mtb and lysosomes (Vergne et al.,
2004). Despite the availability of anti-TB drugs, recent reports
have identified cases of totally drug-resistant TB (Loewenberg,
2012; Udwadia et al., 2012). Since new therapeutic agents that
have different mechanisms of action from conventional anti-TB
drugs are needed to prevent the development of drug resis-
tance, bacterial autophagy (xenophagy) has drawn attention as
a candidate therapeutic target. Previous studies have demon-
strated that polymorphisms in the immunity-related GTPase
family M protein (IRGM) gene are linked to increased suscep-
tibility to Mtb infection, and that IFN-γ induced IRGM regulates
autophagy to eliminate mycobacteria in human macrophages
(Figure 2A; Singh et al., 2006; Intemann et al., 2009). Recent

studies have revealed that Mtb extracellular DNA activates
ubiquitin-mediated selective autophagy through phagosomal per-
meabilization (Figure 2B; Watson et al., 2012). The bacterial
early secretory antigenic target 6 (ESAT-6) system 1 (ESX-1)
secretion system mediates phagosomal permeabilization to enable
the ubiquitin-mediated autophagy pathway access to phagoso-
mal Mtb. The stimulator of interferon genes (STING)-dependent
cytosolic pathway recognizes extracellular bacterial DNA and tags
bacteria with ubiquitin. Autophagy receptors, p62, and NDP52,
recognize ubiquitinated Mtb and target them to autophago-
somes. Several therapies that involve enhancing autophagy activity
also have been proposed to be effective against Mtb infection.
The antiprotozoal drug nitazoxanide and its active metabolite
tizoxanide strongly stimulate autophagy through inhibition of
mTORC1 signaling, which in turn prevents intracellular pro-
liferation of Mtb (Lam et al., 2012). Vitamin D has revealed
therapeutic benefits in persons with HIV and Mtb infection
through the activation of autophagy (Campbell and Spector,
2012).

Autophagy has been implicated in the regulation of inflamma-
tion, particularly the regulation of the inflammasome pathway.
Inflammasomes represent an inflammatory signaling platform
activated by infection or stress that regulate the maturation and
secretion of pro-inflammatory cytokines (e.g., IL-1β and IL-18;
Schroder and Tschopp, 2010). Along with Zhou et al, we have
demonstrated that suppression of autophagy causes the accu-
mulation of damaged ROS-producing mitochondria, whereas
activates the NLRP3 inflammasome (Figure 2C; Nakahira et al.,
2011; Zhou et al., 2011). In this study, we also found that the
NLRP3 inflammasome and mitochondrial ROS production reg-
ulate cytosolic translocation of mitochondrial DNA (mtDNA)
in macrophages, which in turn contributed to the secretion
of IL-1β and IL-18. Importantly, these findings are consis-
tent with the observation that IL-1β and IL-18 are increased
in patients with sepsis in the medical intensive care unit (ICU;
Nakahira et al., 2011; Dolinay et al., 2012). Moreover, we demon-
strated that increased mtDNA levels in plasma are associated
with ICU mortality, and inclusion of mtDNA level improves
risk prediction in medical ICU patients (Nakahira et al., 2013).
Recently, we have also demonstrated that carbon monoxide (CO)
confers protection in sepsis by enhancing Beclin 1-dependent
autophagy and phagocytosis (Lee et al., 2014). CO enhanced
bacterial phagocytosis in Becn1+/+ but not Becn1+/− mice
in vivo and in corresponding cultured macrophages, which indi-
cates that CO may induce xenophagy. These results suggest
that CO gas may represent a novel therapy for patients with
sepsis.

SELECTIVE AUTOPHAGY IN HYPEROXIA AND ACUTE LUNG
INJURY
We have demonstrated that autophagy is implicated in the
pathogenesis of ALI (Tanaka et al., 2012). Although mechani-
cal ventilation with high concentrations of oxygen is required
to manage patients with severe respiratory failure, prolonged
exposure to hyperoxia can result in lung injury. Hyperoxia can
induce autophagy activity. Depletion of LC3B by RNA interfer-
ence reduced cell viability under hyperoxic conditions (Tanaka
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FIGURE 1 | Selective autophagy in chronic obstructive pulmonary

disease (COPD). (A) The role of mitophagy in COPD. Cigarette smoke
(CS) induced mitochondrial fission and PINK1-dependent mitophagy in
epithelial cells independently from mitochondrial damage. This aberrant
mitophagy may cause the increase in the population of impaired
mitochondria, which leads to the initiation of necroptosis. (B) The role

of ciliophagy in COPD. CS induces oxidative stress, which causes cilia
protein damage. Damaged cilia proteins are ubiquitinated which
promotes aggregate formation. HDAC6 recognizes ubiquitinated protein
aggregates and delivers them to autophagosomes. This degradation of
cilia proteins, through an autophagy-dependent process termed
“ciliophagy,” was associated with cilia shortening.

et al., 2012). We also investigated the molecular mechanism by
which autophagy can confer cytoprotection in lung epithelial
cells after hyperoxia (Liang et al., 2013). Cellular homeosta-
sis requires the constant formation of the p62/LC3B/truncated
BH3-interacting domain death agonist (tBID) complex under
normal conditions, however, hyperoxia leads to dissociation

of the p62/LC3B/tBID complex, which stops the translocation
of tBID into lysosome for degradation. Increased tBID causes
cytochrome c release from the mitochondria and subsequent
caspase-dependent cell death. These results suggest that the
autophagy may have protective function during the pathogenesis
of ALI, especially under hyperoxia.
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FIGURE 2 | Selective autophagy in respiratory infection and sepsis.

(A) The role of autophagy in Mycobacterium tuberculosis (Mtb) infection.
IFN-γ induced IRGM activates autophagy and eliminates Mtb to outstrip
the interference of fusion between phagosomal compartments containing
Mtb and lysosomes. (B) The role of selective autophagy in Mtb infection.
The bacterial ESX-1 secretion system mediates phagosomal
permeabilization to enable the ubiquitin-mediated autophagy pathway to

access phagosomal Mtb. Ubiquitinated Mtb is recognized by p62 and
NDP52 as a target of selective autophagy. (C) The role of mitophagy in
sepsis. The release of mitochondrial DNA (mtDNA) into the cytosol
depends on the NLRP3 inflammasome and mitochondrial ROS. Cytosolic
mtDNA contributes to the secretion of IL-1β and IL-18 in response to LPS
and ATP. Mitophagy limits the secretion of IL-1β and IL-18 by targeting
impaired mitochondria.
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It has been reported that mechanical ventilation and hyper-
oxia cause pulmonary mitochondrial dysfunction (Ratner et al.,
2009, 2013; Waxman and Kolliputi, 2009). Given that mito-
chondrial damage can induce mitophagy, it is reasonable to
presume that mitophagy may play a role in the pathogen-
esis of ALI (Youle and Narendra, 2011). Indeed, the role
of mitophagy in hyperoxia has been reported. Genetic dele-
tion of PINK1 or PINK1 silencing in the lung endothe-
lium increased susceptibility to hyperoxia via alterations in
autophagy/mitophagy (Zhang et al., 2014). NLRP3 may regu-
late autophagy/mitophagy via PINK1 during hyperoxia. Con-
sistent with a role for autophagy, these results also suggest that
mitophagy may have protective function during the pathogenesis
of ALI.

SELECTIVE AUTOPHAGY IN THE HYPOXIA RESPONSE AND
PULMONARY HYPERTENSION
Hypoxia results in secondary pulmonary hypertension (PH).
Hypoxic PH is a progressive and often fatal complication of
chronic lung disease (Semenza, 2011). Chronic hypoxia induces
pulmonary arterial vascular smooth muscle (PAVSM) cell pro-
liferation, which is a major cause of PH (Stenmark et al.,
2006). We previously demonstrated that elevated occurrences of
autophagy have been observed in lung tissue from patients with
PH. Mice genetically deficient in LC3B demonstrated increased
indices of PH after chronic hypoxia (Lee et al., 2011). Chloro-
quine, the inhibitor of autophagy, has been reported to prevent
progression of experimental PH (Long et al., 2013). Further-
more, as the inhibition of mTOR complex 1 (mTORC1) has
been shown to induce autophagy, previous studies demonstrated
that blockade of mTORC1 has anti-proliferative effects on pul-
monary vascular cells (Krymskaya et al., 2011; Wang et al., 2014).
These results suggest that autophagy may have a protective
function during the pathogenesis of PH. LC3 and mTOR path-
way are attracting attention as potential therapeutic targets in
hypoxia-induced PH (Lahm and Petrache, 2012; Goncharova,
2013).

The mitochondrial outer-membrane protein FUN14 domain-
containing protein 1 (FUNDC1) mediates hypoxia-induced
mitophagy in mammalian cells (Liu et al., 2012). FUNDC1
interacted with LC3; and knockdown of endogenous FUNDC1
significantly prevented hypoxia-induced mitophagy, which could
be reversed by the expression of wild-type FUNDC1. Hypoxia can
dephosphorylate FUNDC1 at serine 13 through serine/threonine-
protein phosphatase PGAM5 for the induction of mitophagy
(Chen et al., 2014b; Wu et al., 2014). These results suggest that
mitophagy may contribute to mitochondrial quality control in
hypoxia. However, hypoxia-induced mitophagy has also been
reported to cause apoptosis in cardiomyocytes (Yan et al., 2014).
The role of mitophagy in the pathogenesis of PH remained
incompletely understood.

CONCLUSION
Although autophagy originally was considered as a simple bulk
degradation system for cellular components, accumulating evi-
dence demonstrates that autophagy can selectively degrade specific
targets. Selective autophagy plays a complex role in human diseases

where it can have both protective and injurious effects. However,
when viewed in the light of evidence that many cellular func-
tions can have both protective and injurious effects, it is likely that
selective autophagy may also act as a double-edged-sword in the
pathogenesis of human diseases. For future clinical applications,
rather than intervention strategies to target general autophagy, the
specific targeting of selective autophagy pathways may enhance
the efficacy of therapeutic strategies. Further research into selec-
tive autophagy in the lung and other organs will allow for the
development new therapeutic interventions.
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