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Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor
tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However,
long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-
containing regimens, and continuous use of tenofovir in HIV therapy is currently under
question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes), low body
weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4
count, and duration of therapy are all risk factors associated with tenofovir-associated
tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the
kidney, therefore drug transporters expressed in renal proximal tubule cells are believed
to influence tenofovir plasma concentration and toxicity in the kidney. We review here
the current evidence that the actions, pharmacogenetics, and drug interactions of drug
transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of
creatinine and novel biomarkers for kidney damage, and the role that drug transporters
play in biomarker disposition, are discussed. The lessons learnt from investigating the role
of transporters in tenofovir kidney elimination and toxicity can be utilized for future drug
development and clinical management programs.
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INTRODUCTION
Tenofovir, administered as the prodrug tenofovir disoproxil
fumarate, is a nucleotide reverse transcriptase inhibitor which is
recommended for use in first-line treatment of HIV infection.
The drug has many beneficial characteristics, including once-daily
dosing, high efficacy, and lack of interaction with cytochrome
P450 enzymes (Boffito et al., 2005). Tenofovir shows a favorable
safety profile compared to other nucleoside reverse transcriptase
inhibitors. However, long-term kidney toxicity is acknowledged
as a modest but significant risk for tenofovir-containing regimens
(Cooper et al., 2010). It has been observed in a particular clinic that
tenofovir-associated nephrotoxicity is the most common single
reason for HIV-related referral to specialist renal services, account-
ing for more than 20% of consultations (Hall et al., 2011). The
mechanisms involved in the observed kidney tubular dysfunc-
tion are not fully understood, but direct mitochondrial toxicity
by tenofovir, interference with normal tubular cell function, or
a combination of both have been suggested (Hall et al., 2011).
Co-morbidities (hepatitis C, diabetes), low body weight, older age,
concomitant administration of potentially nephrotoxic drugs, low
CD4 count, and duration of therapy are all risk factors associated
with tubular dysfunction (Rodriguez-Novoa et al., 2010). Risk fac-
tors may also involve drug transporters expressed in renal proximal
tubule cells. Indeed, evidence is emerging that high concentra-
tions of tenofovir in plasma are associated with development of
kidney damage, and it is likely that drug transporters play a role
in this association (Barditch-Crovo et al., 2001; Rodriguez-Novoa
et al., 2009a) as well as in perturbations of the commonly used
biomarker, creatinine (Fernandez-Fernandez et al., 2011).

Drug transporters can be divided into two superfamilies; the
solute carrier (SLC) superfamily and the ATP binding cassette
(ABC) superfamily. It is acknowledged that drug transporters
play a significant role in the absorption, distribution, metabolism,
elimination (ADME), efficacy, and toxicity of numerous drugs.
They are detectable in virtually all tissues, although the pre-
cise orientation and function of many transporters are not
fully understood (Bleasby et al., 2006). Drug transporters play
a key role in controlling the movement of drugs between the
blood and the liver (Faber et al., 2003), intestine (Estudante
et al., 2013), and kidney (Morrissey et al., 2013). Furthermore,
drug transporters are involved in the penetration of drugs into
target tissues such as the lymphatic system in antiretroviral
treatment (Ford et al., 2004), and also act to protect tissues
such as the central nervous system from potentially toxic drugs
and xenobiotics (Ballabh et al., 2004). Prior to the licensing
of a new drug, the Food and Drug Administration (FDA)
and European Medicines Agency (EMA) require that certain
tests are performed which determine if a drug is a substrate
or inhibitor of a selection of clinically relevant transporters
(Table 1).

Tenofovir is predominantly eliminated via the proximal tubules
of the kidney, and this review summarizes our current under-
standing of how kidney transporter polymorphisms and drug
interactions may influence tenofovir-associated nephrotoxicity.
The implications and knowledge gaps are also described, along
with suggestions for future transporter studies. The lessons learnt
from investigating the role of transporters in tenofovir kid-
ney elimination and toxicity can be utilized for future drug
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Table 1 | Recommendations for drug transporter testing as outlined in the EMA Guideline on Investigation of Drug Interactions, July 2012, and

the FDA Draft Guidance on Drug Interaction Studies, February 2012.

Inhibition studies Substrate studies

Transporter Other

name

EMA FDA EMA FDA

Efflux ABCB1 P-gp Yes Yes Consider Yes

ABCG2 BCRP Yes Yes Consider Yes

ABCB11 BSEP Preferred Consider Consider Consider

ABCCs MRPs No Consider Consider Consider

Uptake SLC22A6 OAT1 Yes Yes Consider If >25% active renal

secretion

SLC22A8 OAT3 Yes Yes Consider If >25% active renal

secretion

SLCO1B1 OATP1B1 Yes Yes If >25% clearance

is hepatic

If >25% clearance is

hepatic or biliary

SLCO1B3 OATP1B3 Yes Yes If > 25% clearance

is hepatic

If >25% clearance is

hepatic or biliary

SLC22A1 OCT1 Consider No Consider No

SLC22A2 OCT2 Yes Yes Consider If >25% active renal

secretion

SLC47A1 MATE1 Consider Consider Consider Consider

SLC47A2 MATE2K Consider Consider Consider Consider

development and clinical management, which is discussed in this
review.

KIDNEY TRANSPORTERS
The kidney, along with the liver, is a key organ involved in systemic
clearance of drugs, with around 32% of currently used drugs in
the USA exhibiting significant (>25%) renal elimination (Morris-
sey et al., 2013). Elimination can occur via glomerular filtration,
tubular secretion, or a combination of both pathways. The process
of tubular secretion is twofold: (1) the drug requires access to the
proximal tubule cells from the blood via the basolateral membrane,
and (2) the drug is removed into the luminal fluid via the apical
membrane. This process can occur passively, but in many cases
drug transporter proteins are involved in facilitating drug move-
ment across membranes and actively transporting drugs against
concentration gradients.

Transporters in the kidney are involved in drug–drug inter-
actions, particularly in cases where transport is the main or
rate-limiting transmembrane route for a drug. The kidney trans-
porters which are the focus of this review are those where a
functional role in drug disposition has been demonstrated or is
suspected (Table 2) and have been separated into cationic trans-
porters, anionic transporters, transporters with less or unknown
specificity in substrate charge, and ABC efflux transporters. It is
important to recognize that transporter expression is often not
exclusive to a single site in the body, and many have well-defined
involvement in tissues other than the kidney (Kis et al., 2010;
DeGorter et al., 2012). Several kidney transporters are capable

of influencing the elimination of antiretroviral drugs, including
tenofovir (Kis et al., 2010). The interactions between tenofovir and
kidney transporters are discussed in more detail in a later section.

CATIONIC TRANSPORTERS
SLC22A1, SLC22A2, and SLC22A3 are organic cation transporters
expressed on the basolateral membrane of proximal tubule cells.
They control the entry of cationic small molecules, including cre-
atinine and numerous drug substrates, into the epithelial cells
(Gorboulev et al., 1997; Grundemann et al., 1999; Dresser et al.,
2001; Kimura et al., 2002; Urakami et al., 2004; Zhu et al., 2010;
Ciarimboli et al., 2012; Tzvetkov et al., 2013). Transporters relevant
to this review along with representative drug and endogenous sub-
strates are shown in Table 2. Transport is driven by electrochemical
potential but is not altered by sodium or proton gradients (Nies
et al., 2011). SLC47A1 and SLC47A2, also known as multidrug
and toxin extrusion (MATE) transporters, are efflux transporters
of cationic substrates (Masuda et al., 2006; Ohta et al., 2006; Chen
et al., 2007; Tanihara et al., 2007; Martinez-Guerrero and Wright,
2013). SLC47A1 is highly expressed in the kidney and liver and
SLC47A2 is almost exclusively expressed in the kidney, with both
showing localization to the apical membrane of proximal tubule
cells (Tanihara et al., 2007). Many of the substrates and inhibitors
of SLC47 transporters overlap with those of SLC22A1, SLC22A2,
and SLC22A3 (Nies et al., 2011). For example, SLC47A1 and
SLC47A2 work in cooperation with SLC22A2 to control the con-
centration of several substrates within proximal tubule cells, such
as creatinine (Motohashi and Inui, 2013).
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Table 2 | Drug transporting proteins expressed in the proximal tubule cells of the kidney.

Transporter Other

names

Expression Substrates

Cationic

transporters

SLC22A1 OCT1 Basolateral (influx) Prostaglandin E2, choline, morphine, tetraethyl ammonium,

metformin, aciclovir, lamivudine

SLC22A2 OCT2 Basolateral (influx) Creatinine, dopamine, histamine, prostaglandin E2,

tetraethyl ammonium, pancuronium, MPP, lamivudine

SLC22A3 OCT3 Basolateral (influx) 5-HT, noradrenaline, dopamine, quinidine, tetraethyl

ammonium, MPP

SLC47A1 MATE1 Apical (efflux) Creatinine, thiamine, cimetidine, quinidine, paraquat, cephradine,

cephalexin

SLC47A2 MATE2K Apical (efflux) Creatinine, thiamine, cimetidine, MPP, metformin, aciclovir

Anionic

transporters

SLC22A6 OAT1 Basolateral (influx) Aminohippuric acid, estrone sulfate, raltegravir, tenofovir,

zidovudine

SLC22A7 OAT2 Basolateral (influx) Aminohippuric acid, prostaglandin E2, estrone sulfate,

paclitaxel, 5-fluorouracil, allopurinol, zidovudine

SLC22A8 OAT3 Basolateral (influx) Aminohippuric acid, estrone sulfate, raltegravir, tenofovir,

zidovudine

SLC22A11 OAT4 Apical (bidirectional) Dehydroepiandrosterone, estrone sulfate, uric acid, zidovudine

SLC22A12 URAT1 Apical (bidirectional) Uric acid, orotic acid

SLCO4C1 OATP4C1 Basolateral (influx) Steroid conjugates, thyroid hormones, digoxin, ouabain, penicillin

Other

transporters

SLC15A1 PEPT1 Apical (influx) Oligopeptides, cyclacillin, valacyclovir, cefadroxil

SLC15A2 PEPT2 Apical (influx) Oligopeptides, beta-lactam antibiotics, fosinopril

SLC28A1 CNT1 Apical (efflux) Nucleosides, ribavirin, gemcitabine, zidovudine, zalcitabine

SLC28A2 CNT2 Apical (efflux) Nucleosides, didanosine, cytidine

SLC28A3 CNT3 Apical (efflux) Nucleosides, zidovudine, zalcitabine, didanosine

SLC29A1 ENT1 Basolateral

(bidirectional)

Nucleosides, ribavirine, 2′,3′-Dideoxyinosine

SLC29A2 ENT2 Basolateral

(bidirectional)

Nucleosides, 2′,3′-Dideoxyinosine

ABC transporters ABCB1 P-gp Apical (efflux) Steroids, lipids, bilirubin, bile acids, digoxin, doxorubicin,

maraviroc, HIV protease inhibitors

ABCC1 MRP1 Basolateral (efflux) Prostaglandins, folic acid, bilirubin, anticancer drugs, HIV

protease inhibitors

ABCC2 MRP2 Apical (efflux) Bilirubin, estradiol glucuronide, estrone sulfate, methotrexate,

etoposide, valsartan, HIV protease inhibitors

ABCC3 MRP3 Basolateral (efflux) Bile salts, estradiol glucuronide, anticancer drugs

ABCC4 MRP4 Apical (efflux) Taurocholic acid, cAMP, cGMP, urate, prostaglandins,

methotrexate, furosemide

ABCC6 MRP6 Basolateral (efflux) Anticancer drugs?

ABCC10 MRP7 Unknown Estradiol glucuronide, aclitaxel, tariquidar, tenofovir, nevirapine

ABCG2 BCRP Apical (efflux) Estrone sulfate, porphyrins, anticancer drugs, conjugated organic

anions

Endogenous substrates are in bold. Substrates list is not comprehensive, and examples are given.
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ANIONIC TRANSPORTERS
SLC22A6, SLC22A7, and SLC222A8 are influx transporters
expressed on the basolateral membrane of proximal tubule cells,
where they transport small anionic molecules into the cell.
SLC22A11 is a related transporter located on the apical mem-
brane and contributes to renal excretion and reabsorption of
anionic substrates, as movement of substrates can occur in both
directions (Kusuhara et al., 1999; Cha et al., 2000; Kobayashi
et al., 2005; Hagos et al., 2007; Moss et al., 2011). Transporters
relevant to this review along with representative drug and endoge-
nous substrates are shown in Table 2. SLC22A12 is expressed
on the apical surface of proximal tubule cells and, in con-
junction with SLC22A11, mediates the reabsorption of uric
acid from the urine, thereby regulating blood uric acid lev-
els (Enomoto et al., 2002; Vitart et al., 2008). Disruption of
SLC22A12 activity through genetic predisposition or drug inter-
actions can cause toxicity, therefore the transporter is considered
pharmacologically relevant (Shafiu et al., 2012). The bidirec-
tional transporter SLCO4C1 is highly expressed in the kidney
and is located on the apical surface of proximal tubule cells
(Bleasby et al., 2006). Substrates of SLCO4C1 include steroid con-
jugates, thyroid hormones, anti-cancer drugs, and antibiotics
(Yamaguchi et al., 2010).

OTHER TRANSPORTERS
SLC15A1 and SLC15A2 are proton-coupled co-transporters of
many diverse peptide and peptidomimetic substrates, but not
amino acids (Ganapathy et al., 1995, 1998; Liang et al., 1995;
Shu et al., 2001; Daniel and Kottra, 2004; Tramonti et al., 2006).
SLC15A1 is expressed on the apical surface of intestinal entero-
cytes and, to a lesser degree, the apical surface of renal proximal
tubule cells, whereas SLC15A2 is expressed predominantly on the
apical surface of renal proximal tubule cells. SLC15A2 under-
takes the reabsorption of peptide-bound amino nitrogen from the
glomerular filtrate, which is important in nitrogen homeostasis
(Kamal et al., 2008). Nucleoside transporter proteins are divided
into two families; the sodium-dependent, solute carrier family 28
(SLC28), and the equilibrative, solute carrier family 29 (SLC29),
where the endogenous substrates are nucleosides or nucleoside-
like drugs (Nagai et al., 2006; Endres et al., 2009; Sato et al., 2009;
Bhutia et al., 2011; Choi et al., 2014). Again, representative drug
and endogenous substrates for these transporters are shown in
Table 2.

ABC TRANSPORTERS
Multidrug resistance related proteins (ABCCs) and multidrug
resistance protein ABCB1 are members of the ABC superfamily,
which can be identified by the presence of a highly conserved ATP
binding motif (DeGorter et al., 2012). ABCCs are found in mul-
tiple tissues throughout the body, including in relevant ADME
tissues such as the small intestine, lymphatic system, liver and
kidney, and function in an ATP-dependent process. In the kid-
ney, ABCC2 and ABCC4 are expressed on the apical membrane of
proximal tubule cells and efflux anionic substrates such as weakly
acidic drugs, glutathione, sulfates, and xenobiotics (DeGorter
et al., 2012). ABCC1, ABCC3, and ABCC6 are expressed on the
basolateral membrane of proximal tubule cells. ABCC1 does not

appear to play a significant role in the absorption or elimination
of drugs, but is involved in resistance development of anticancer
drugs and in the inflammatory response (Deeley et al., 2006; Bakos
and Homolya, 2007). ABCC3 is predominantly expressed in the
liver, where it is involved in the regulation of bile salt entero-
hepatic recirculation, but mRNA is also detectable in numerous
other tissues including the kidney (Kool et al., 1999b; Scheffer
et al., 2002; Zhou et al., 2008). High ABCC6 mRNA has been
detected in both the liver and kidney (Kool et al., 1999a). How-
ever, the exact range of substrates for ABCC6 has not yet been
determined, but preliminary investigations suggest that ABCC6
may be involved in the transport of anticancer drugs. ABCC10 is
a recent addition to the potentially clinically relevant ABC mul-
tidrug resistance proteins, with high mRNA expression found
in numerous tissues including the kidney, liver, and intestine
(Bleasby et al., 2006). Specificity of expression (i.e., apical or
basolateral) is unknown in the proximal tubules, and substrate
specificity is limited. However, increasing numbers of drugs,
including anticancer and antiretroviral drugs, have been shown
to be substrates (Chen et al., 2003; Pushpakom et al., 2011; Lip-
trott et al., 2012; Sun et al., 2013). ABCB1 is widely distributed
in the kidney, liver, small intestine, and brain and is integral for
limiting the absorption of potentially toxic xenobiotics into tis-
sues. In the kidney, ABCB1 is expressed on the apical membrane
and has broad substrate specificity, although substrates are usu-
ally hydrophobic and either neutral or cationic (DeGorter et al.,
2012). ABCG2 plays a similar role to ABCB1 in drug disposi-
tion, is generally expressed in the same tissues, and contributes
to renal excretion of some drugs (Kage et al., 2002; Jani et al.,
2009; Beery et al., 2011). Unlike, ABCB1, the substrate prefer-
ence for ABCG2 includes hydrophilic conjugated organic anions,
particularly the sulfate forms. Despite the recent progress made,
several drug transporters in the kidney have not been well char-
acterized, and expression levels, locations and substrate affinity
remain undetermined.

TENOFOVIR AND KIDNEY TRANSPORTERS
Tenofovir is predominantly eliminated via the kidney by a combi-
nation of glomerular filtration and active tubular secretion. Both
influx and efflux transporters are known to influence tenofovir
elimination rate, although a complete understanding of the pro-
cess has not yet been achieved. The efflux transporters ABCC2
(MRP2) and ABCC4 (MRP4) are expressed at the apical sur-
face of proximal tubule cells and actively remove substrates into
the renal lumen (Smeets et al., 2004). The level of transport of
tenofovir by ABCC2 was found not to be significant (Imaoka
et al., 2007; Neumanova et al., 2014). Conversely, ABCC4 has been
shown to transport tenofovir and is believed to be the main teno-
fovir transporter on the apical surface of proximal tubule cells
(Kohler et al., 2011). The efflux transporters ABCB1 and ABCG2
are expressed at many membrane barriers in the body, includ-
ing at the apical surface of proximal tubule cells (Tanigawara,
2000; Woodward et al., 2009). The extent of tenofovir transport
by ABCB1 and ABCG2 was assessed in vitro and in rodents and
found to be not significant (Ray et al., 2006; Neumanova et al.,
2014). The Neumanova study also found that the tenofovir pro-
drug, tenofovir disoproxil fumarate, was a substrate for both
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transporters. However, it is unlikely that orally administered teno-
fovir disoproxil fumarate is present at the blood-kidney barrier,
as esterase activity rapidly degrades the prodrug in intestinal tis-
sue and plasma following absorption (van Gelder et al., 2002).
Nonetheless, ABCB1 and ABCG2 are heavily expressed at the
apical surface of the intestinal wall, which is therefore likely to
be the major cite where orally administered tenofovir disoproxil
fumarate could encounter these transporters. Therefore, it may
well be that tenofovir plasma concentrations, and therefore the
extent of tenofovir-exposure-associated nephrotoxicity, are influ-
enced by the actions of these transporters on tenofovir disoproxil
fumarate absorption. The efflux transporter ABCC10 is known
to confer resistance to several anti-cancer drugs (Hopper-Borge
et al., 2009; Sun et al., 2013, 2014), and there is growing evidence
that it plays a role in tenofovir-associated kidney toxicity. ABCC10
RNA is detectable at high levels in several pharmacologically rel-
evant tissues, including the intestine, liver, brain, and kidney
(Bleasby et al., 2006), although protein expression levels, orien-
tation at blood-tissue membrane barriers and substrate specificity
are not fully understood. The transport of tenofovir by ABCC1
has been demonstrated in vitro (ABCB10-transfected HEK293
cells) and ex vivo (ABCC10 siRNA knockdown in CD4+ T cells;
Pushpakom et al., 2011). However, the potential impact of kidney
expression of this transporter in vivo has not otherwise been well
characterized.

Tenofovir contains a phosphate group with a negative charge
at physiological pH, and this gives the drug an affinity for
anion-specific influx transporters. Tenofovir is transported by
SLC22A6 and, to a lesser extent, SLC22A8 (Uwai et al., 2007).
Although affinity of tenofovir for SLC22A6 transporter is greater,
SLC22A8 shows higher expression levels in the kidney. As such,
this low-affinity high-capacity SLC22A8 transport route may also
be important in tenofovir elimination. There remain several
kidney-expressed transporters which may be involved in tenofovir-
associated nephrotoxicity but which have not been comprehen-
sively assessed for tenofovir transport. The influx transporter
SLC22A7 is expressed on the basolateral surface of proximal
tubule cells and may work in conjunction with the similar trans-
porters SLC22A6 and SLC22A8 in tenofovir excretion. SLC22A11
is expressed on the apical surface of proximal tubule cells and is
able to transport substrates in both directions. The concentrative
nucleoside transporters SLC28A1 and SLC28A2 are expressed on
the apical surface of proximal tubule cells. Concentrative nucleo-
side transporters are known to transport the anti-HIV nucleoside
analog zidovudine (Hagos and Wolff, 2010) but transport of
tenofovir has not been investigated. It is unknown if SLC28A1,
SLC28A2, SLC22A7, or SLC22A11 transport tenofovir, and this is
certainly worthy of clarification (Hagos and Wolff, 2010).

TENOFOVIR AND KIDNEY TRANSPORTER
PHARMACOGENETICS
It has been proposed that genetic polymorphisms in renal trans-
porters may predispose individuals to have high intracellular
tenofovir concentrations, thus increasing the chance of develop-
ing tubular toxicity. ABCC2 polymorphisms have been evaluated,
and the haplotype “CATC” [a combination of the polymorphisms
at positions –24 (rs717620), 1249 (rs2273697), 3563 (rs8187694),

and 3972 (rs3740066) within the ABCC1 gene] and the allele -
24C > T (rs717620) have both been associated with an increased
incidence of tenofovir-associated tubular toxicity (Izzedine et al.,
2006; Rodriguez-Novoa et al., 2009b). In a study in Japanese
HIV+ patients, the ABCC2 –24C > T and 1249G > A polymor-
phisms were found to be protective for tenofovir-induced kidney
toxicity (Nishijima et al., 2012). These observations are difficult
to rationalize because tenofovir is not a substrate for ABCC2,
which conversely would suggest that ABCC2 activity and expres-
sion would not be relevant to tenofovir-associated kidney toxicity
in vivo (Imaoka et al., 2007; Neumanova et al., 2014). It may be
the case that an endogenous substrate for ABCC2 exacerbates the
toxicity of tenofovir or competes with tenofovir for transport by
ABCC4. Also, the ABCC2 genotypes may be in linkage disequilib-
rium with other polymorphisms in genes coding for unidentified
factors which exacerbate tenofovir toxicity.

Currently, it is a matter of controversy whether ABCC4
polymorphisms alter the risk of tenofovir-induced kidney tox-
icity. A study in HIV+ patients found that a 669C > T
(rs899494) polymorphism in the ABCC4 gene was associated
with tenofovir-induced kidney toxicity, but this was not found
in a subsequent study (Izzedine et al., 2006; Rodriguez-Novoa
et al., 2009b). Several additional single nucleotide polymor-
phisms in ABCC4 were investigated [559G > T (rs11568658),
912G > T (rs2274407), 951G > T (rs2274406), 969G > A
(rs2274405), 1497C > T (rs1557070), 3310T > C (rs11568655),
and 3348A > G (rs1751034)] but no associations with tenofovir-
induced kidney toxicity were found. The ABCC4 polymorphism
4131T>C (rs3742106) has been associated with increased concen-
trations of tenofovir diphosphate (35% higher than homozygotes
for the common allele) in human peripheral blood mononu-
clear cells (PBMCs) 24 h post-dose (Kiser et al., 2008a). The
ABCC10 efflux transporter is capable of transporting teno-
fovir in vitro and subsequently polymorphisms of ABCC10 may
influence tenofovir disposition. In patients taking tenofovir ther-
apy, two ABCC10 polymorphisms [526G > A (rs9349256) and
2843T > C (rs2125739)] were associated with kidney toxicity
(Pushpakom et al., 2011) but no replication studies have been
conducted.

ABCB1 is unlikely to transport tenofovir at the kidney, but
the prodrug tenofovir disoproxil fumarate may be influenced
by ABCB1 activity at the intestine (as discussed above). Several
ABCB1 polymorphisms [1236C > T (rs1128503), 2677G > T/A
(rs2032582), and 3435C > T (rs1045642)] have been ana-
lyzed and were found not to be associated with tenofovir-
induced kidney toxicity or alteration in tenofovir renal clearance
(Izzedine et al., 2006; Rodriguez-Novoa et al., 2009b). Regard-
ing influx transporters, SLC22A6 polymorphisms 453G > A
(rs4149170) and 728G > A (rs11568626) have been analyzed
and were found not to be associated with kidney toxicity
or alteration in tenofovir renal clearance (Kiser et al., 2008b;
Rodriguez-Novoa et al., 2009b).

Pharmacogenetics of relevant drug transporters provides a tool
for identifying patients at risk when taking tenofovir. However,
pharmacogenetics studies in this context have met with mixed
success. Only ABCC2 has shown strong evidence of association
with kidney damage phenotypes in patients taking tenofovir.
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Other associations have been contradicted in further studies,
been performed in too few patients to make reliable conclu-
sions or else no replication studies have been attempted. Since
non-genetic factors, such as old age, low body weight, co-
administered medicines, and co-morbidities are important; it
seems likely that transporter genetics will not be fully predic-
tive of the toxicity. Further investigations into the actions of
drug transporters may improve our understanding of factors
controlling tenofovir disposition and elimination. The pharma-
cogenetics of the nuclear receptors which control expression
of certain transporters, such as the pregnane X receptor and
the constitutive androstane receptor, may also be relevant fac-
tors, as has been shown for other pharmacological phenotypes
involving transporters (Owen et al., 2004; Johnson et al., 2008;
Martin et al., 2008; Siccardi et al., 2008; Schipani et al., 2010;
Wyen et al., 2011).

TENOFOVIR AND KIDNEY TRANSPORTER DRUG
INTERACTIONS
When co-administered with tenofovir in highly active antiretrovi-
ral therapy (HAART), ritonavir-boosted protease inhibitors have
been shown to increase tenofovir plasma exposure. An increase
in tenofovir AUC of 37 and 32% was observed following co-
administration of atazanavir and lopinavir, respectively (Tong
et al., 2007). Less substantial increases have been observed for
co-administered darunavir (22%), and saquinavir (14%). Riton-
avir, and lopinavir inhibit relevant transporters SLC22A8 and
ABCC4 in vitro, and a transporter-mediated drug interaction
at the kidney may explain the elevated tenofovir concentrations
when using these drugs (Cihlar et al., 2007). Proteinuria, the
presence of an excess of serum protein in the urine, is indica-
tive of kidney functional impairment. The co-administration
of protease inhibitors with tenofovir increased the frequency
of proteinuria development by sevenfold, compared to teno-
fovir treatment not containing protease inhibitors (Kelly et al.,
2013). This is supported by a further publication that showed
use of protease inhibitors to be a predictor of tubular toxic-
ity in tenofovir-containing regiments (Calza et al., 2011). The
authors hypothesized that the causes of this association include
ritonavir-driven inhibition of enzymes involved in tenofovir elim-
ination from the kidney. However, ritonavir is not known to
be involved in affecting metabolism of tenofovir at the kid-
ney, and it seems more likely that ritonavir and other protease
inhibitors may inhibit the removal of tenofovir from the kidney
proximal tubule cells by inhibiting kidney-expressed transporters,
or by preventing tenofovir disoproxil fumarate degradation at
the intestine (Tong et al., 2007). Interestingly, a further study
by Calza et al. (2013) found that both the development of pro-
teinuria associated with tenofovir use was more pronounced
when co-administered with atazanavir, compared to tenofovir co-
administered with lopinavir. This data is supported by a further
study showing lopinavir to have less severe toxicity-associations
compared to other atazanavir, when co-administered with teno-
fovir (Young et al., 2012). These data suggest that, to reduce the
occurance of proteinuria in patients, certain protease inhibitors
may be a more suitable addition in a tenofovir-containing
regiment.

Other classes of antiretroviral have led to drug interactions
with tenofovir. The co-administration of the integrase inhibitor
raltegravir with tenofovir disoproxil fumarate resulted in a mod-
erate increase (49%) in tenofovir AUC (Wenning et al., 2008). This
interaction may in part be explained by an interaction involv-
ing SLC22A6, as raltegravir is capable of inhibiting SLC22A6 in
vitro (Moss et al., 2011). However, the clinical significance of this
interaction is unknown. The use of tenofovir disoproxil fumarate
with the nucleoside analog didanosine has been associated with
severe side effects, including a reduction in CD4+ cell count,
pancreatitis, and hyperglycemia. Tenofovir and didanosine are
both nephrotoxic and therefore the interaction may result from
the additive toxic effects of both drugs. Additionally, tenofovir is
capable of increasing didanosine AUC by 44%, which may involve
inhibition of SLC22A6-mediated excretion of didanosine via the
kidney (Ray et al., 2004). Due to the severity of the drug inter-
action, co-administration of tenofovir disoproxil fumarate and
didanosine is not recommended.

In addition to co-administered antiretrovirals, any other drug
which has the potential to compete with tenofovir for kidney
excretion via drug transporters may alter tenofovir exposure.
In a study using HIV patients, co-administration of the non-
steroidal anti-inflammatory drug diclofenac with tenofovir led to
a high (14.6%) occurrence of acute kidney injury, compared to
tenofovir treatment without diclofenac (0%; Bickel et al., 2013).
Diclofenac is an inhibitor of SLC22A6 and ABCC4 and the
increased frequency of acute kidney injury in the diclofenac-
administered group may be due to inhibition of transporter-
associated tenofovir renal excretion (El-Sheikh et al., 2007; Juhasz
et al., 2013). However, tenofovir plasma concentrations were
not measured in the study and other mechanisms may also be
responsible. Further information about drug interactions with
tenofovir can be found at the Liverpool drug interactions website
(www.HIV-druginteractions.org).

TENOFOVIR ALAFENAMIDE FUMARATE
A new prodrug of tenofovir, tenofovir alafenamide fumarate, has
been developed which is able to target HIV-susceptible CD4+ cells
by selective intracellular hydrolysis by enzymes expressed within
these cells. This has led to a greatly reduced dose of tenofovir
being required for effective treatment, as the prodrug is rela-
tively stable in plasma (Markowitz et al., 2014; Sax et al., 2014).
Tenofovir alafenamide fumarate is not transported by SLC22A6,
meaning that concentrations of drug in the kidney are unlikely
to be high (Bam et al., 2014). A lower dose and less propensity
for concentrating in the kidney suggest that tenofovir alafenamide
fumarate is a potential solution to the issues associated with teno-
fovir disoproxil fumarate. However, it should be noted that the
toxicities associated with tenofovir alafenamide fumarate have
not been fully investigates in long-term studies. Furthermore,
tenofovir disoproxil fumarate is about to enter the generic drugs
market, making it potentially more easily available for widespread
distribution in developing countries, and the use of the drug
in pre-exposure prophylaxis trials has shown continued success
(Bender, 2013). For this to occur successfully, it will still be benefi-
cial for any related renal toxicities to be predictable and preferably
avoidable.

Frontiers in Pharmacology | Experimental Pharmacology and Drug Discovery November 2014 | Volume 5 | Article 248 | 6

http://www.HIV-druginteractions.org
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Moss et al. Tenofovir and drug transporters

THE EMERGING ROLE OF KIDNEY TRANSPORTERS FOR
OTHER DRUGS
Clinically relevant renal drug interactions are rare, but drug trans-
porters are believed to be involved in the majority of reported cases.
A well-established inhibitor of anionic transporters is probenecid,
which has been used to enhance the activity of penicillin by
inhibiting anionic transporters (SLC22A6 and SLC22A8) in the
kidney (Robbins et al., 2012). Subsequently, clinical interactions
have been observed between probenecid and other drugs, where
reduced renal clearance has been observed for acyclovir (↓32%),
cefmetazole (↓40%), cidofovir (↓38%), fexofenadine (↓68%),
and oseltamivir (↓52%), following probenecid co-administration
(Laskin et al., 1982; Ko et al., 1989; Cundy et al., 1995; Hill
et al., 2002; Yasui-Furukori et al., 2005). Metformin is a sub-
strate for SLC22A2 and SLC47A1, and these transporters are
believed to be involved in the observed reduction in metformin
renal clearance when co-administered with cimetidine (↓27%;
Somogyi et al., 1987; Tsuda et al., 2009). Digoxin is a substrate
for ABCB1, and renal clearance of the drug is reduced when
co-administered with ABCB1 inhibitors ritonavir (↓35%) and
quinidine (↓34%; Fenster et al., 1980; De Lannoy et al., 1992;
Ding et al., 2004).

There are several nephrotoxic drugs, such as didanosine (Cote
et al., 2006), cidofovir (Ortiz et al., 2005), cisplatin (Goren et al.,
1986) and adefovir (Izzedine et al., 2009), which cause renal failure
by accumulating in proximal tubule cells. In these and other cases,
targeted inhibition of cellular uptake may reduce nephrotoxicity
risks. An example of this strategy is represented by probenecid (an
inhibitor of SLC22A6) being used to minimize concentrations of
cidofovir in proximal tubule cells (Ho et al., 2000). Prophylaxis
with probenecid can be considered in patients receiving cidofovir
who have a baseline creatinine serum level of more than 1.5 mg/dL
(Choudhury and Ahmed, 2006).

TRANSPORTERS AND THE COMMONLY USED RENAL
BIOMARKER CREATININE
Creatinine is an endogenous waste product of skeletal muscle
metabolism and is widely used as a biomarker for renal health.
Excretion of creatinine occurs predominantly through glomerular
filtration, with proximal tubular secretion accounting for around
15% of total renal clearance. Creatinine is transported into proxi-
mal tubule cells by SLC22A7 with a threefold higher affinity than
that seen for transport via SLC22A2 and SLC22A3, and efflux
into the proximal lumen occurs via SLC47A1 and SLC47A2 by
low-affinity high-capacity transport (Urakami et al., 2004; Lepist
et al., 2014). Baseline serum creatinine concentration in the blood
varies depending on multiple factors, as previously described by
Goicoechea et al. (2008). Increase in the serum concentration of
creatinine is commonly regarded as an indicator of declining renal
health, although serum creatinine concentration has been sug-
gested to poorly represent actual filtration rate (Urakami et al.,
2004).

When glomerular filtration rate is low, the serum creati-
nine concentration and creatinine clearance rate are higher than
the actual glomerular filtration rate (Urakami et al., 2004) and
this is due to proximal tubule cells secreting creatinine into
the tubular lumen. In this circumstance it may be necessary

to measure serum creatinine concentrations alongside creati-
nine clearance to estimate filtration rate in the glomerulus more
accurately. Estimated glomerular filtration rate can be calcu-
lated through several predictive equations, the most clinically
useful being the Cockcroft–Gault and the Modification of Diet
in Renal Disease (MDRD) equation (Robertshaw et al., 1989;
Estrella and Fine, 2010). Both of these equations are known
to have diminished precision at higher glomerular filtration
rates (Estrella and Fine, 2010). The site of tenofovir toxicity is
believed to be the mitochondria of proximal tubule cells and
is achieved by inhibition of mitochondrial DNA polymerase γ

(Pushpakom et al., 2011). This toxicity can produce both acute
and chronic kidney injury and, less commonly, Fanconi syndrome
defined as tubular proteinuria, aminoaciduria, phosphaturia, gly-
cosuria, and bicarbonate wasting (Fernandez-Fernandez et al.,
2011; Hall et al., 2011). The effect of tenofovir on creatinine
concentration is generally reversible once the tenofovir regi-
men has ended, but for actual tenofovir-induced kidney tubule
dysfunction this is not necessarily the case and therefore the dis-
tinction between these scenarios is essential in patients taking
tenofovir disoproxil fumarate as part of HAART (Gupta et al.,
2014; Solomon et al., 2014). Appropriate screening for abnor-
mal proximal tubule function is necessary throughout a tenofovir
regimen and this is achieved through calculating the retinol bind-
ing protein to creatinine ratio, a widely used reliable marker for
proximal tubule damage (Bernard et al., 1987; Hall et al., 2011;
Del Palacio et al., 2012).

Studies investigating the relationship between tenofovir expo-
sure and kidney function have produced mixed results (Hall et al.,
2011). Overall, tenofovir is not believed to produce glomerular
toxicity (Hall et al., 2011). As creatinine is only excreted by prox-
imal tubule cells to a small degree, a modest decline in estimated
glomerular filtration rate may be observed in tubule toxicity. In
the case of tenofovir, creatinine is unlikely to be an adequate indi-
cator of renal toxicity and may provide a false positive for reduced
glomerular filtration. Further investigation is required in order to
elucidate the mechanism of this tenofovir/creatinine interaction.

Multiple drugs have been reported to alter estimated glomeru-
lar filtration rate with minimal evidence of actual kidney damage
(Berglund et al., 1975; Van Acker et al., 1992; Lepist et al., 2014).
The second generation integrase inhibitor dolutegravir and the
pharmacological booster cobicistat are two examples with well-
characterized mechanisms of creatinine transporter inhibition in
the proximal tubule. Cobicistat inhibits SLC47A1 and dolute-
gravir inhibits SLC22A2, which both transport creatinine through
to the proximal lumen (German et al., 2012; Koteff et al., 2013;
Lepist et al., 2014).

EMERGING BIOMARKERS FOR KIDNEY FUNCTION
The contribution of transporter-interaction to the apparent
unreliability of creatinine as a biomarker for kidney damage
necessitates further research for more appropriate biomarkers.
Greater precedence has been given to the development of novel
biomarkers with the aim of identifying those that can detect
acute kidney injury and progression to chronic kidney damage.
To avoid similar issues to those previously discussed with cre-
atinine it is imperative that these biomarkers do not interact
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with kidney transporters, and this will aid successful interven-
tion before permanent damage to the kidneys occurs. Although
no consensus has yet been reached, promising novel biomarkers
include cystatin C, asymmetric dimethylarginine (ADMA), neu-
trophil gelatinase-associated lipocalin, and KIM-1 amongst others
(Table 3; Han et al., 2002; Herget-Rosenthal et al., 2004; Devara-
jan, 2008; Estrella and Fine, 2010; Fassett et al., 2011; Schwedhelm
and Böger, 2011; de Geus et al., 2012). ADMA has a relatively low
molecular weight compared to the other biomarker in Table 3,
and similarly to creatinine is showing affinity for transporters
involved in drug interactions. The biomarkers in Table 3 with large
molecular weights are unlikely to be a substrate for drug trans-
porters. However, transport of albumin via the megalin/cubilin
system is the topic of current research, as albumin elevation in
plasma has been associated with damage to proximal tubule cells
(Dickson et al., 2014).

DATA FOR OTHER TRANSPORTERS WITH PUTATIVE RENAL
IMPORTANCE
As our understanding of drug transporters improves, it is becom-
ing clear that transporters can play an important role in disease
development. Experiments with transgenic mice have shown that
genetic knockdown of transporters can cause numerous kidney-
related morbidities, developmental abnormalities, and even death
(Table 4). Genetic associations with disease traits (in the absence
of drugs) can also be useful for defining mechanisms. The genet-
ics of hyperuricemia and gout is known to involve transporters
expressed in the proximal tubule cells. In 2002, genetic variants
in SLC22A12 were found to predict occurrence of gout, and this
association was joined by further transporters in 2007 (SLC2A9),
2008 (ABCG2, SLC17A3, SLC17A1, SLC16A9, SLC22A11), and

2011 (SLC2A12; Reginato et al., 2012). Understanding that mul-
tiple transporters are usually involved in the movement of a drug
through the proximal tubule, it can be misleading or even counter-
productive to focus on individual transporters in order to discover
the “major” players in the elimination of the drug for future
pharmacogenetic and interaction studies. There is limited under-
standing of how kidney transporter expression and activity differ
between men and women (Morris et al., 2003), and in special pop-
ulations, such as in specific disease groups (Lalande et al., 2014),
pediatrics (Shen et al., 2001) and geriatrics, and this area requires
further investigation.

CONCLUSION: PERSPECTIVES ON TRANSPORTERS IN THE
KIDNEY
Despite showing a favorable toxicity profile in initial treatment,
the long-term use of tenofovir disoproxil fumarate in HIV ther-
apy is currently under question by practitioners and researchers
(Fernandez-Fernandez et al., 2011). Large-scale and long-term
studies are continuing to appear which suggest an association
between tenofovir use and kidney damage. Despite this, teno-
fovir is included in first-line therapy for both treatment naive and
experienced patients as it is very effective at reducing and con-
trolling HIV replication in patients. Because of this, and due to
the life-long nature of antiretroviral therapy, it is essential that
a reliable strategy be developed to detect and preferably avoid
tenofovir-associated kidney toxicity. It is clear from the summa-
rized evidence that tenofovir plasma concentrations are linked to
renal toxicity, and it is also clear that drug transporters, particularly
those expressed in the kidney, are able to influence the clearance
rate of tenofovir (Figure 1) and also interfere with the utility of
creatinine clearance as a biomarker.

Table 3 | Comparison of creatinine with novel biomarkers associated with nephrotoxicity.

Biomarker Molecular

weight (g/mol)

Nephron

segment

Kidney transporter

interaction

FDA

approved1

Creatinine 113 Glomerulus SLC22A2 SLC22A3

SLC47A1 SLC47A2

Yes

ADMA 202.5 Non-specific SLC22A2 SLC47A1 No

TFF3 6600 Glomerulus

Proximal tubule

No No

β2-Microglobulin 11,800 Glomerulus and

Proximal tubule

No No

Cystatin C 13,300 Glomerulus and

proximal tubule

No No

NGAL 25,000 Proximal tubule

and Distal tubule

No No

KIM-1 30,000 Proximal tubule No No

Clusterin 75–80,000 Proximal tubule

and distal tubule

No No

1 FDA approval defined as approved for use in clinical setting. ADMA, asymmetric dimethylarginine; KIM-1, kidney injury molecule 1; NGAL, neutrophil gelatinase
associated lipocalin; TFF3, trefoil factor 3.
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Table 4 |The effects of genetic knockdown of kidney transporters in transgenic mice.

Transporter Other names Effects of genetic knockdown of transporter Reference

Abca1 Abc1 Devoid of high-density lipoprotein cholesterol, reduction in serum cholesterol and

membranoproliferative glomerulonephritis.

Christiansen-Weber et al. (2000)

Slc13a1 NaSi-1 Serum sulfate concentration reduced by 75%. Growth retardation and reduced fertility

observed.

Dawson et al. (2003)

Slc14a2 UT-A Deletion of UT-A1/UT-A3 resulted in polyuria and a severe urine concentrating defect. Fenton et al. (2004)

Slc15a2 Pept2 Twofold increase in renal glycylsarcosine clearance resulting in lower systemic

concentrations.

Ocheltree et al. (2005)

Slc16a2 Mct8 General hyperthyroid state of the kidneys. Trajkovic-Arsic et al. (2010)

Slc22a12 URAT1 Decreased reabsorption of urate. Eraly et al. (2008)

Slc22a1 Oct1 Combined knockout of Slc22a1 and Slc22a2 abolished renal secretion of organic cation

tetraethyl ammonium.

Jonker et al. (2003)

Slc22a2 Oct2 Combined knockout of Slc22a1 and Slc22a2 abolished renal secretion of tetraethyl

ammonium.

Jonker et al. (2003)

Slc22a6 Oat1 Profound decrease in renal excretion of organic anions (e.g., para-aminohippurate). Eraly et al. (2006)

Slc22a8 Oat3 Decreased secretion of urate. Eraly et al. (2008)

SLC26A1 Sat1 Hyperoxaluria with hyperoxalemia, nephrocalcinosis, and calcium oxalate stones in

renal tubules and bladder.

Dawson et al. (2010)

Slc26a4 Pendrin Acidic urine and increased urine calcium excretion. Barone et al. (2012)

Slc26a6 Pat1 Increased renal succinate uptake, hyperoxaluria, and hypcitraturia. Ohana et al. (2013)

Slc26a7 SUT2 Distal renal tubular acidosis manifested by metabolic acidosis and alkaline urine pH. Xu et al. (2009)

Slc2a9 Glut9 Moderate hyperuricemia, severe hyperuricosuria, and an early onset nephropathy. Preitner et al. (2009)

Slc34a1 Npt2b Npt2b(–/–) lethal and Npt2b(+/–) showed hypophosphatemia and low urinary P (i)

excretion.

Ohi et al. (2011)

Slc42a3 Rhcg Urinary ammonia excretion lower and more susceptible to metabolic acidosis. Lee et al. (2009)

Slc4a8 ENaC Disrupted fluid homeostasis. Leviel et al. (2010)

Slc5a12 SMCT2 Combined knockout of SLC5A8 and SLC5A12 (c/ebpdelta–/–mice) results in marked

increase in urinary excretion of lactate and urate.

Thangaraju et al. (2006)

Slc5a2 Sglt2 Glucosuria, polyuria, and increased food and fluid intake. Vallon et al. (2011)

Slc5a8 SMCT Combined knockout of SLC5A8 and SLC5A12 (c/ebpdelta–/–mice) results in marked

increase in urinary excretion of lactate and urate.

Thangaraju et al. (2006)

Slc6a18 Xtrp2 Higher glycine excretion and higher systolic blood pressure. Quan et al. (2004)

Slc7a8 LAT2 Increased urinary loss of small neutral amino acids. Braun et al. (2011)

Slc7a9 BAT1 Develop a cystinuria-like phenotype with hyperexcretion of cystine and dibasic amino

acids.

Feliubadalo et al. (2003)

Slc9a3 NHE3 Diarrhea and blood acidosis. HCO3- and fluid absorption are reduced in proximal

convoluted tubules.

Schultheis et al. (1998)

When looked at more broadly, for the majority of drugs the
potential for clinically relevant renal transporter-mediated drug
interactions is low, and reported cases are limited. Renal excre-
tion of drugs may be achieved by glomerular filtration as well as
tubular secretion, and transporters are only likely to be influential
in drug elimination when tubular secretion is the major pathway.
Additionally, transporters in the kidney often show overlapping
substrate affinity (see Table 2) and therefore the inhibition of a
single transporter may not produce significant alterations in drug

elimination in vivo. However, in certain cases the actions of trans-
porters in the kidney can have clinical implications, as emphasized
with tenofovir.

Despite decades of research into drug transporters, the rec-
ommendations for drug interaction studies provided by the FDA
and EMA include testing strategies for only a small fraction of
the total expressed transporters in the human body (Table 1)
and it is unknown whether transporter-associated drug inter-
actions in the kidney will obtain the same relevance as seen
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FIGURE 1 | Confirmed and potential transporters involved in active

tubular secretion of tenofovir into urine. Tenofovir is removed from the
circulating blood and enters the proximal tubule cells by the actions of
basolaterally expressed SLC22A6 and, to a lesser extent, SLC22A8.
Tenofovir is then removed into the tubular lumen by apically expressed
ABCC4. ABCC2 does not transport tenofovir in vitro but pharacogenetics
suggests ABCC2 has a role in tenofovir-induced renal toxicity. The
orientation of ABCC10 in proximal tubule cells is unknown, but in vitro and
pharmacogenetic data suggest that expression may be localized to the
apical membrane, facilitating tenofovir secretion.

with drug metabolizing enzymes and transporters in the intes-
tine and liver. As the investigations into tenofovir elimination
have emphasized, determination of the actions of individual
transporters in drug elimination from the kidney, even when
found to be relevant in vitro, often may not be clinically
implementable, as drugs are often substrates for several trans-
porters. Indeed, multiple transporters and metabolism enzymes,
as well as other biological and drug-specific factors, work in
concert to determine the overall disposition of a drug. This
should be taken into consideration in future drug development
strategies with the use of improved in vitro methodologies and
the introduction of predictive physiologically based in silico
modeling.
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