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This review focuses on the existence and function of multiple endogenous agonists
of the somatostatin and opioid receptors with an emphasis on their expression in the
gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of
prepropeptides during peptide maturation or from degradation of peptides by extracellular
or intracellular endopeptidases. In other examples, endogenous peptide agonists for the
same G protein-coupled receptors can be products of distinct genes but contain high
sequence homology. This apparent biological redundancy has recently been challenged
by the realization that different ligands may engender distinct receptor conformations
linked to different intracellular signaling profiles and, as such the existence of distinct
ligands may underlie mechanisms to finely tune physiological responses. We propose that
further characterization of signaling pathways activated by these endogenous ligands will
provide invaluable insight into the mechanisms governing biased agonism. Moreover, these
ligands may prove useful in the design of novel therapeutic tools to target distinct signaling
pathways, thereby favoring desirable effects and limiting detrimental on-target effects.
Finally we will discuss the limitations of this area of research and we will highlight the
difficulties that need to be addressed when examining endogenous bias in tissues and in
animals.
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ENDOGENOUS BIASED AGONISM
The last decade has witnessed the experimental confirmation of
previous theoretical concepts demonstrating that GPCRs exist
in many temporally related micro-conformations (Deupi and
Kobilka, 2010). Mechanistically, this inherent plasticity is in line
with recent biophysical studies indicating that GPCRs can adopt
multiple active states that can be differentially stabilized by chem-
ically distinct classes of ligands (Hofmann et al., 2009; Bokoch
et al., 2010). Such plasticity allows GPCRs to mediate a spectrum
of acute signaling and longer-term regulatory behaviors that can be
activated in a ligand-specific manner. Indeed, it is now established
that different agonists do not uniformly activate all cellular signal-
ing pathways linked to a given receptor. Rather, different ligands
binding to the same receptor stabilize distinct receptor confor-
mations linked to different signaling pathways and physiological
outcomes. This paradigm whereby different ligands, binding to
the same GPCR in an identical cellular background, promote dis-
tinct receptor conformational states linked to a different functional
outcome has been termed biased agonism or functional selectiv-
ity. Therapeutically, biased agonism provides new avenues for the
development of drugs that are not only receptor-specific but also
‘pathway-specific.’ As such it has opened the field to the discovery
of ligands that selectively activate signaling pathways mediating
desired physiological effects whilst minimizing ‘on-target’ side-
effects that are elicited by activation of other signaling pathways
via the same receptor.

To date, most descriptions of biased agonism have focused
on the differential effects of synthetic drugs. However, there
are several functionally important GPCR families that bind to
multiple endogenous agonists [for example chemokine, somato-
statin (SST), and opioid receptors (ORs)]. Although this has been
traditionally attributed to the redundancy of some biological sys-
tems, biased agonism could represent an added layer of control
to engender finely tuned physiological responses. Indeed, recent
reports have already highlighted the potential for functional selec-
tivity across the chemokine receptor family (Rajagopal et al., 2013;
Zweemer et al., 2014).

In this focused review we provide an overview of the exist-
ing literature regarding two of these GPCR families with multiple
endogenous peptide ligands, opioids and SST, in the context of the
gastrointestinal tract (GIT). The opioid system is a prototypical
example of potential biological redundancy, and it also represents
one of the first examples where functional selectivity of synthetic
drugs has been reported in the context of gut physiology. On the
other hand, SST receptors are therapeutic targets in treating GI
disease (e.g., diarrhea, bleeding varices, neuroendocrine tumors)
and SSTs and related peptides also represent a well-characterized
system where multiple endogenous ligands of the same recep-
tor exist within the GIT (Zhao et al., 2013). Importantly, these
two receptor systems also reveal different mechanisms that can
explain distinct physiological outcomes derived from activation of
the same receptor by different ligands.
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THE SOMATOSTATIN SYSTEM OF THE GUT
There are five members of the SST receptor family (SSTR1−5) and
their distribution in the GIT has been recently reviewed (Van Op
den Bosch et al., 2009).

Somatostatin, originally known as somatotropin release-
inhibiting factor (SRIF), was first identified and characterized as a
cyclic tetradecapeptide (Brazeau et al., 1973). It was predicted that
SST-14 was a product of a larger peptide precursor and that other
forms with potential biological activity were likely to exist. Indeed,
it is now known that SST arises from maturation of preprosomato-
statin (PPSST), and that all PPSST derivatives originate from the
SST gene. The removal of a 24 amino acid signal sequence forms
prosomatostatin (PSST), which is further C-terminally cleaved to
form the biologically active peptides SST-14, SST-25, and SST-28
(Bohlen et al., 1980; Esch et al., 1980; Brazeau et al., 1981). SST-28,
the longest peptide, was identified and characterized as an N-
terminally extended variant of SST-14 (Pradayrol et al., 1978, 1980;
Bohlen et al., 1980) and biological conversion of SST-28 to SST-14
was later confirmed (Zingg and Patel, 1983). Other cleavage prod-
ucts arising from PSST processing include PSST(1–32; Schmidt
et al., 1985) and PSST(1–64; Bersani et al., 1989), for which little
information regarding function and expression is available.

N-terminal cleavage of PSST also occurs, but the resulting pep-
tides do not contain the SST-14 sequence and are therefore not
considered to be SSTs (Benoit et al., 1990). These include SST-
28(1–12) and antrin, which contains amino acids 1–10 of PSST
[PPSST(25–34)]. Antrin, first identified in the gastric antrum
(Benoit et al., 1987), is present in all SST-producing tissues. How-
ever, a functional role for this peptide has yet to be ascribed.
Most recently, a bioinformatics approach predicted the exis-
tence of a novel 13mer PPSST cleavage product [PPSST(31–43)],
which was subsequently confirmed by immunoaffinity purifica-
tion and called neuronostatin (Samson et al., 2008). Neuronostatin
is encoded by PSST and is highly conserved across vertebrates.
Unlike SST and cortistatin (CST, see below), neuronostatin is not
cyclic and is amidated at the C-terminus.

Biological activity of SST variants is conferred through a com-
mon Phe-Trp-Lys-Thr (FWKT) motif within the C-terminus
(amino acids 7–10; Patel and Srikant, 1997). This sequence is
also present in non-SST peptides that share a high-degree of
sequence homology with SST. These include CST and thrittene.
CST and SST are encoded by distinct genes, and genetic dele-
tion of SST has no effect on the expression of CST. CST is a
derivative of the 112 amino acid preproCST (PPCST) precur-
sor (de Lecea et al., 1996), which is converted to proCST by
signal peptide cleavage, resulting in the formation of hCST17
and hCST29 (Puebla et al., 1999). CST shares 11 amino acids
in common with SST-14 including residues required for inter-
action with SSTRs and two key cysteines that enable formation of
the cyclic peptide structure (Francis et al., 1990). Although they
share sequence homology, structure, and affinity for SSTRs, there
are clear differences in the ability of CST and SST-14 to stimu-
late SSTR2 endocytosis and signaling (Liu et al., 2005). Notably,
CST is significantly less effective at inhibiting cAMP production
and promoting SSTR2 endocytosis. Furthermore, CST does not
exclusively interact with SST receptors and can also activate the
MrgX2 and GHS-R1a receptors. Whether there are CST variants

or a CST-specific GPCR is unknown. Another endogenous pep-
tide that shares extensive sequence homology with SST is thrittene
[SST28(1–13)]. As with CST, thrittene is not derived from PSST
and is a product of a distinct gene, as supported by the presence of
thrittene-like immunoreactivity in PSST deficient mice (Ensinck
et al., 2003). Moreover, thrittene and SST are expressed by distinct
cell populations and their release is triggered in response to dif-
ferent stimuli (Ensinck et al., 2002). With the exception of these
initial studies nothing is known of the functional role of thrit-
tene, nor if thrittene plays an analogous or discrete role to that
of SST. A summary of SST and SST-like peptides is presented in
Table 1.

DISTRIBUTION OF ENDOGENOUS SSTR LIGANDS IN THE GI TRACT
The GIT is the major source of SST and SST is a regulator of many
digestive functions. SSTRs are an important therapeutic target in
the treatment of digestive disease. In addition to its established role
as a neurotransmitter, SST also acts in a hormonal and paracrine
manner to regulate gut function (Low, 2004; Van Op den Bosch
et al., 2009).

Somatostatin is expressed by D-cells of the stomach and plays
a well-defined role in the control of acid secretion. SST negatively
regulates gastrin release from antral G cells and histamine release
from enterochromaffin-like cells, and acts directly on parietal cells
leading to an SSTR2-dependent inhibition of acid release (Walsh,
1988; Lloyd et al., 1997; Low, 2004). SST-14 within the intesti-
nal wall is mainly expressed by enteric neurons and potentially
by extrinsic primary spinal afferents (Traub et al., 1999), although
this is still debated (Keast and De Groat, 1992). SST-14 is also
produced by macrophages during infection or inflammation as
part of an immunoregulatory circuit with SSTR2 (Weinstock and
Elliott, 2000). SST-28- distribution appears to be more restricted
and is primarily expressed by enteroendocrine D-cells (Ravazzola
et al., 1983; Baskin and Ensinck, 1984), consistent with the pre-
dominant release of SST-28 from the mucosa (Baldissera et al.,
1985).

Myenteric SST-immunoreactivity is localized to a subclass of
descending inhibitory interneuron, where it is co-expressed with
choline acetyltransferase (Portbury et al., 1995; Song et al., 1997).
Physiologically, SST is involved in the migrating myoelectric
complex in the jejunum (Abdu et al., 2002) and propagating con-
tractions of the colon (Grider, 2003). These actions are mediated
through the SSTR2 receptor, which is expressed by NOS-positive
inhibitory motor neurons or descending interneurons (Allen et al.,
2002). SST is also an inhibitor of gastric emptying and of gall
bladder contractility. SST is expressed by submucosal choliner-
gic secretomotor/ non-vasodilator neurons (Mongardi Fantaguzzi
et al., 2009) and hyperpolarizes submucosal neurons (Shen and
Surprenant, 1993) probably via SSTR1 and SSTR2 (Foong et al.,
2010). In the human intestine SST is expressed by putative intrinsic
primary afferent neurons of the submucosal plexus (Beyer et al.,
2013).

There is limited information regarding the distribution of ‘non-
SST’ peptides in the gut. Relatively high mRNA expression for
CST has been detected through the human GIT (Dalm et al.,
2004). However, it should be noted that with the exception of
pancreatic delta islet cells (Papotti et al., 2003) and potentially
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Table 1 | Endogenous somatostatin (SST) peptide sequences (*sequence not confirmed).

Precursor Peptide Sequence

Prosomatostatin (PSST) SST-28 Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-

Lys-Thr-Phe-Thr-Ser-Cys

SST-14 Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH

Neuronostatin (PPSST(31-43)) Leu-Arg-Gln-Phe-Leu-Gln-Lys-Ser-Leu-Ala-Ala-Ala-Ala-NH2

Antrin (SST-25-34) Ala-Pro-Ser-Asp-Pro-Arg-Leu-Arg-Gln-Phe-OH

SST-25 Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-

Thr-Ser-Cys

SST-28(1–14) Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys

SST-28(1–12) Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu

PPST 1–64 Ala-Pro-Ser-Asp-Pro-Arg-Leu-Arg-Gln-Phe-Leu-Gln-Lys-Ser-Leu-Ala-Ala-Ala-Ala-Gly-Lys-Gln-Glu-

Leu-Ala-Lys-Tyr-Phe-Leu-Ala-Glu-Leu-Leu-Ser-Glu-Pro-Asn-Gln-Thr-Glu-Asn-Asp-Ala-Leu-Glu-

Pro-Glu-Asp-Leu-Ser-Gln-Ala-Ala-Glu-Gln-Asp-Glu-Met-Arg-Leu-Glu-Leu-Gln-Arg

PSST 1–32 Ala-Pro-Ser-Asp-Pro-Arg-Leu-Arg-Gln-Phe-Leu-Gln-Lys-Ser-Leu-Ala-Ala-Ala-Ala-Gly-Lys-Gln-Glu-

Leu-Ala-Lys-Tyr-Phe-Leu-Ala-Glu-Leu

Preprocortistatin Cortistatin-14 (rat) Pro-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Ser-Ser-Cys-Lys

Cortistatin-17 (human) Asp-Arg-Met-Pro-Cys-Arg-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Ser-Ser-Cys-Lys

Cortistatin-29 H-Glu-Gly-Ala-Pro-Pro-Gln-Gln-Ser-Ala-Arg-Arg-Asp-Arg-Met-Pro-Cys-Arg-Asn-Phe-Phe-Trp-

Lys-Thr-Phe-Ser-Ser-Cys-Lys-OH

Unknown Thrittene (SST28(1–13)) Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg*

activated inflammatory cells (Gonzalez-Rey et al., 2006), the dis-
tribution of CST within the gut remains unknown. Thrittene-like
immunoreactivity has been detected in enteroendocrine cells and
enteric neurons and this distribution is distinct to that for SST-
14 and SST-28 (Ensinck et al., 2002). This is supported by the
differential release of thrittene and SST in response to feeding
(Ensinck et al., 2003). Antrin expression was originally believed
to be restricted to gastric D-cells, where it is localized to SST-
28(1–12) containing secretory granules (Ravazzola et al., 1989;
Benoit et al., 1990). However, this was contradicted by Rabbani
and Patel (1990), who demonstrated comparable expression of
antrin in the jejunal mucosa and pancreas by radioimmunoassay
and HPLC.

EVIDENCE FOR DIFFERENCES IN FUNCTION
At present there is little evidence for significant differences in
the effects of endogenous SSTs on GI function, although this
may reflect the limited endpoints that have been assayed. Expo-
sure of enteric neurons to SST results in activation of inwardly
rectifying K+ currents and to hyperpolarization, leading to inhi-
bition of contractile and secretory activity (Van Op den Bosch
et al., 2009). Direct electrophysiological recordings demonstrate
no apparent difference in the acute effects of SST-14 and SST-28
on submucosal neurons, with exposure to either agonist lead-
ing to hyperpolarization and to rapid desensitization of responses
(Shen and Surprenant, 1993). Similarly, there was no significant
difference in the SST-14, SST-25, and SST-28 mediated inhibition
of contractile activity. These agonists cross-desensitized responses
to each other, but not to acetylcholine, suggesting actions at the

same receptor (McIntosh et al., 1986). However, there is evidence
for differences in the in vivo effects of SST-14 and SST-28 on
both the stomach and intestine. For example, studies examin-
ing the direct effects of SSTR activation on gut function showed
that SST-14 is significantly more potent at inhibiting gastric acid
secretion than SST-28, despite the longer plasma half-life of SST-
28 (Hirst et al., 1982; Seal et al., 1982). Zhao et al. (2013) recently
demonstrated that although SST-14 and SST-28 both stimulated
endocytosis of SSTR2A in myenteric neurons, there were clear dif-
ferences in receptor recycling. The apparent retention of SSTR2A
following treatment of neurons with SST-28 was attributed to the
greater resistance of this peptide to degradation by the endoso-
mal endopeptidase endothelin-converting enzyme 1 (ECE-1). This
study did not determine the consequences of this retention or pro-
longed endosomal SSTR2A signaling on gut function. Moreover,
the possible biological activity of SST cleavage products result-
ing from ECE-1 activity was not examined. Intermediate products
of both SST-14 (SST-1–10) and SST-28 (SST-1–24) retained the
Phe-Trp-Lys-Thr motif at the extreme N-terminus and may rep-
resent novel SSTR agonists produced locally within endosomes.
However, absence of a key N-terminal Cys residue suggests that
these peptides lack the cyclopeptide structure characteristic of
SSTs.

The existence of endogenous ligand bias has been examined at
the SSTR2A. Comparison of the responses of SST-14, SST-28 and
cortistatin has not showed any evidence of functional selectivity
at this receptor. However, potential ligand bias has been suggested
for the small molecule ligands that bind SSTR2A, albeit the quan-
tification of this bias is lacking (Nunn et al., 2004; Liu et al., 2008;
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Cescato et al.,2010). More recently, we have shown that SST-14 and
SST-28 show distinct profiles of receptor trafficking upon internal-
ization (Zhao et al., 2013). After incubation with SST-14, SSTR2A
recycled to the plasma membrane, which required the activity of
the endosomal peptidase ECE-1, and an intact Golgi. In contrast,
SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide
was retained within the Golgi and did not recycle. Although ECE-1
rapidly degraded SST-14, SST-28 was resistant to degradation, and
ECE-1 did not degrade the synthetic SST analogs. Thus, although
no apparent bias was observed at the level of receptor signaling
events, SST-14 and SST-28 differ in the trafficking of the receptor
upon internalization. The differential regulation of SSTR2A may
explain the different physiological effects of endogenous agonists
and could account for the long-lasting therapeutic actions and side
effects of clinically used agonists.

THE OPIOID SYSTEM IN THE GUT
Opioids and opiates are agonists of the mu, delta and kappa ORs
(MOPr, DOPr, and KOPr). The nociceptin receptor (NOPr) was
the last ORs to be cloned and is grouped with the ORs based on
their high degree of sequence homology and its low level bind-
ing of opioids. The pharmacology and function of ORs has been
reviewed extensively and will not be covered in detail in this review
(Waldhoer et al., 2004). All receptors are expressed by enteric neu-
rons and other cell types in the GIT and are major regulators of
gut function (Wood and Galligan, 2004; Galligan and Akbarali,
2014)

The endogenous ligands for ORs are a large family of at least
20 different small peptides. The endogenous peptides have been
detected throughout the central and peripheral nervous system
as well as in other tissues, with similar distribution to the ORs.
They are involved in numerous physiological processes including
nociception, reward processing, and GIT motility and secretion.
The distribution and physiological effects of endogenous opioids
in the GIT have been the most extensively studied. However,
identifying regions where endogenous opioids are expressed and
released under normal physiological conditions has been challeng-
ing due to the high susceptibility of the peptides to degradation.
Additionally, most studies have used antibody-based methods
that may not reliably distinguish between different opioid pep-
tides due to their high structural similarity, or HPLC-based
methods which provide no detail of the specific cell types that
express these peptides. Further complications arise due to inter-
specific differences and region-dependent variations in expression
along the GIT. Nonetheless, most of the endogenous opioids
are present in the GIT, and in some cases the distribution and
release from discrete regions of the GIT has been thoroughly
characterized.

There are three major classes of endogenous opioids
(enkephalins, dynorphins, and endorphins), which are synthesized
by proteolytic cleavage of precursor proteins; pro-enkephalin, pro-
dynorphin, and pro-opiomelanocortin (POMC), respectively. The
peptides range from 5 to 30 amino acids in length, and share
a common N-terminal tetrapeptide sequence Tyr-Gly-Gly-Phe,
with either a Leu or Met in the fifth position. These peptides
have varying affinities for all three ORs, but none are highly
selective for one receptor subtype (Mansour et al., 1995; Janecka

et al., 2004). There are also two additional putative endogenous
peptides; endomorphin-1, and endomorphin-2, which are struc-
turally unrelated to the typical opioid peptides and are most
selective and potent for MOPr (Zadina et al., 1997). The gene
or genes encoding the precursor proteins of endomorphins are
unknown (Terskiy et al., 2007), although a de novo synthesis
mechanism has been proposed as an alternative source (Ronai
et al., 2009). The presence of endomorphins in the GIT has
not been reported and will not be discussed further in this
review.

DISTRIBUTION OF ENDOGENOUS OPIOID RECEPTOR LIGANDS IN THE
GI TRACT
Screening of the longitudinal muscle-myenteric plexus of the
guinea pig ileum by HPLC identified expression of enkephalins
(enk: Leu-enk, Met-enk, Met-enk-Arg-Gly-Leu, Met-enk-
Arg-Phe, Metorphamide, and BAM-18) and dynorphins [α-
neoendorphin, β-neoendorphin, dynorphin A(1–8), and dynor-
phin B]. No detectable beta endorphin was present in these
preparations (Corbett et al., 1988).

Enkephalins
The enkephalins have been the most widely studied opioid pep-
tides in the GIT. Pro-enkephalin contains four copies of Met-enk
and one each of Leu-enk, Met-enk-Arg-Phe, and Met-enk-Arg-
Gly-Leu, and several additional opioid peptides may be formed
by partial processing of the precursor protein (see Table 2; Noda
et al., 1982). Expression of at least four enkephalin peptides (Leu-
enk, Met-enk, Met-enk-Arg-Phe, and Met-enk-Arg-Gly-Leu) in
the GIT has been confirmed (Hughes et al., 1977; Linnoila et al.,
1978; Tang et al., 1982; Giraud et al., 1984). Immunohistochem-
ical studies demonstrate expression throughout the human GIT,
with highest levels detected in the muscularis externa (Polak et al.,
1977; Ferri et al., 1986, 1988). A similar expression pattern has
been observed in rodents (Keast et al., 1985). Enkephalin-derived
peptides are mainly found in the cell bodies of myenteric neurons
and in nerve fibers within the myenteric plexus and circular muscle
(Elde et al., 1976; Jessen et al., 1980; Schultzberg et al., 1980; Fur-
ness et al., 1983). There is evidence that immunoreactivities for
Leu-enk and Met-enk are expressed by distinct neuronal popu-
lations within the enteric nervous system (Linnoila et al., 1978;
Larsson et al., 1979; Larsson and Stengaard-Pendersen, 1982).
The morphology and distribution of Enk-containing myenteric
neurons has been examined in detail. Approximately 23% of
myenteric neurons express Enk-immunoreactivity (Furness et al.,
1983). These are morphologically Dogiel Type I inhibitory or exci-
tatory motor neurons and are also immunoreactive for ChAT and/
or substance P (Furness et al., 1983; Bornstein et al., 1984; Costa
et al., 1985; Pfannkuche et al., 1998). Leu-enk-positive myenteric
neurons of the human intestine have been described morpholog-
ically as ‘stubby neurons’ and are proposed to represent motor
neurons or ascending interneurons (Brehmer et al., 2005). Exam-
ples of OR and enkephalin labeling in the intestine are presented
in Figure 1.

There are a small number of neurons that express enkephalin-
immunoreactivity in the submucosal plexus and fibers in the
mucosa (Furness et al., 1985; Keast et al., 1985; Pfannkuche
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Table 2 | Endogenous opioid peptide sequences.

Precursor Peptide Sequence

Pro-Enkephalin Leu-enkephalin Tyr-Gly-Gly-Phe-Leu

Met-enkephalin Tyr-Gly-Gly-Phe-Met

Met-enkephalin-Arg-Phe Tyr-Gly-Gly-Phe-Met-Arg-Phe

Met-enkephalin-Arg-Gly-Leu Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu

Metorphamide Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val

BAM 12 Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-Gly-Arg-Pro-Glu

BAM 18 Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-Gly-Arg-Pro-Glu-Trp-Trp-Met-Asp-Tyr-Gln

BAM 22 Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-Gly-Arg-Pro-Glu-Trp-Trp-Met-Asp-Tyr-Gln-Lys-Arg-Tyr-Gly

Peptide E Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-Gly-Arg-Pro-Glu-Trp-Trp-Met-Asp-Tyr-Gln-Lys-Arg-Tyr-Gly-Gly-

Phe-Leu

Peptide F Tyr-Gly-Gly-Phe-Met-Lys-Lys-Met-Asp-Glu-Leu-Tyr-Pro-Leu-Glu-Val-Glu-Glu-Glu-Ala-Asn-Gly-Gly-

Glu-Val-Leu-Gly-Lys-Arg-Tyr-Gly-Gly-Phe-Met

Pro-Dynorphin Dynorphin A Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln

Dynorphin B Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr

Big Dynorphin (Dyn A/B 1-32) Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln-Lys-Arg-Tyr-Gly-Gly-Phe-

Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr

Dynorphin A 1–13 Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys

Dynorphin A (1–8) Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile

Dynorphin A (1–6) Tyr-Gly-Gly-Phe-Leu-Arg

Leumorphin Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Gln-Glu-Asp-Pro-Asn-Ala-Tyr-Tyr-

Glu-Glu-Leu-Phe-Asp-Val

α-neoendorphin Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys

β-neoendorphin Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro

Pro-Opiomelanocortin α-endorphin Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Val-Thr-Leu

β-endorphin Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Val-Thr-Leu-Phe-Lys-Asn-Ile-Ile-Lys-Asn-Ala-

Tyr-Lys-Lys-Gly-Glu

Unknown Endomorphin 1 Tyr-Pro-Trp-Phe

Endomorphin 2 Tyr-Pro-Phe-Phe

et al., 1998), and in enteroendocrine cells (Mimoda et al., 1998).
However, it is possible that the enkephalin detected in these
regions is due to detection of dynorphins or dynorphin derived
Leu-enk which is highly expressed in these regions as dis-
cussed later in this review. Expression of other enkephalin
derivatives including Met-enk-Arg-Phe (Bu’Lock et al., 1983) and
Met-enk-Arg-Gly-Leu (Wang and Lindberg, 1986) by enteric
neurons has also been demonstrated. Other sites where pre-
proenkephalin and its derivatives are expressed include enteroen-
docrine cells (Bu’Lock et al., 1983; Nihei and Iwanaga, 1985;
Kokrashvili et al., 2009), extrinsic afferents (Steele and Costa,
1990) and immune cells including CD4+ T cells (Boue et al.,
2014).

Dynorphins
There is good evidence that opioid peptides derived from
pro-dynorphin (dynorphins), are present in the GIT. Pre-pro-
dynorphin mRNA is expressed in the myenteric and mucosal layers

to varying levels throughout the GIT (Yuferov et al., 1998). Pro-
dynorphin contains three opioid peptides, dynorphin A, dynor-
phin B, and α-neoendorphin, which can all be further processed to
shorter opioid peptides including Leu-Enk (see Table 2; Horikawa
et al., 1983). Dynorphins have been detected in the GIT of various
species, including the full length Dyn A (1–17), Dyn A (1–13), Dyn
A (1–8), Dyn B, and α-neoendorphin (Vincent et al., 1984; Wolter,
1986; Steele et al., 1989; Murphy and Turner, 1990; Spampinato
et al., 1992). Dynorphins are present in all layers of the gut wall
throughout the entire human GIT, although information regard-
ing cellular sites of expression is lacking (Spampinato et al., 1988).
Immunohistochemistry studies performed mainly in guinea pigs
indicate that dynorphins are widely expressed by submucosal and
myenteric neurons (Vincent et al., 1984; Wolter, 1986; Steele and
Costa, 1990). Dynorphins are co-expressed with enkephalins in a
subpopulation of Dogiel type I myenteric neurons (Costa et al.,
1985; Furness et al., 1985; Steele and Costa, 1990). It is possible
that this may reflect conversion of dynorphin to Leu-enk in these
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FIGURE 1 | Expression of opioid receptors (ORs) and enkephalin in the

enteric nervous system. (A,B) Distribution of the delta opioid receptor
(DOPr, green), met-enkephalin (mENK, red), nitric oxide synthase (NOS,
blue), and the pan-neuronal marker HuC/D (Hu, magenta) in the myenteric
plexus (arrows) and circular muscle nerve fibers (arrowheads) of the mouse
distal colon. (C) Example of a DOPr-positive submucosal neuron (arrow) and
association with mENK-immunoreactive nerve varicosities (arrowheads) in
the mouse distal colon. (D) Overlap between immunoreactivities for the
Mu opioid receptor (MOPr, red) and proenkephalin (proENK, green) in
myenteric neurons of the guinea pig ileum. Images have been modified
using Imaris 7.4.2 software (Bitplane). Scale bars are as indicated.

neurons rather than co-expression of pro-enkephalin. There are
also reports of dynorphin expression by enterochromaffin cells
(Cetin, 1988).

Endorphins
The endorphins are formed from the precursor peptide POMC,
which also contains several other non-opioid peptide hormones
(Eipper and Mains, 1978). POMC contains only one opioid pep-
tide, β-endorphin, which can be cleaved to form α-endorphin.
Although β-endorphin has been detected in the GIT (Orwoll and
Kendall, 1980; DeBold et al., 1988), the localization of endorphin
expression still remains uncertain. There is some evidence of β-
endorphin expression, and of other POMC peptides, by myenteric
neurons, nerve fibers within the circular muscle and enteroen-
docrine cells (Schultzberg et al., 1980; Leander et al., 1984; Wolter,
1985b; Kokrashvili et al., 2009; Miller and Hirning, 2010). Another
major source of β-endorphin in the gut are immune cells, particu-
larly those associated with inflammatory bowel disease or irritable
bowel syndrome (Verma-Gandhu et al., 2006; Hughes et al., 2013).
It should be noted that the distribution of β-endorphin in the
GIT is controversial, as the specificity of the antisera used in
many of these studies has been questioned (Sundler et al., 1981).

Hence whilst there is certainly β-endorphin present in the GIT, the
question of its origin remains unresolved.

Other OR agonists are also produced endogenously in the GIT.
These include morphine and codeine-like compounds (Schulz
et al., 1977; Laux-Biehlmann et al., 2013) and the pre-dermorphin
derivatives dermorphin and dermenkephalin (Mor et al., 1989,
1990).

Even though the distribution of the different classes of endoge-
nous opioids in the GIT has been fairly well established, there is
very little known about individual levels of the different peptides
within each class. The expression of proteases that synthesize and
degrade endogenous opioids may have varying levels of expression
in different cell types, which would result in different production
and degradation rates. As such, the mixture of opioid peptides
derived from the same precursor will be variable in different cell
populations. Differential proteolytic processing of pro-enkephalin
and pro-dynorphin peptides occurs in various regions of the brain
and other tissues, leading to variations in the relative proportions
of peptides derived from the same precursors (Cone et al., 1983;
Zamir et al., 1984; Yakovleva et al., 2006). Differential processing of
precursors may also occur in the different cell populations within
the GIT. In rat duodenum, specific antisera against Dyn A (1–17)
and Dyn A (1–8) stain two distinct populations of neurons, one
which contains both peptides and one with only Dyn A (1–8),
indicating that Dyn A (1–8) may be synthesized via distinct pro-
teases or at varying rates in distinct neuronal populations (Wolter,
1985a).

FUNCTION OF ENDOGENOUS OPIOID RECEPTOR LIGANDS IN THE GI
TRACT
Endogenous opioids play an important regulatory role in normal
gut physiology, primarily through activation of ORs on enteric
neurons (Wood and Galligan, 2004). When applied exogenously,
the physiological effects of endogenous opioids are the same as
the effects of other opioids, they hyperpolarize enteric neurons
leading to inhibition of GIT motility and secretion and ulti-
mately cause constipation (Miller and Hirning, 2010). On the
other hand, the effects of endogenous peptides when released
intrinsically under normal physiological conditions are unclear.
Release of enkephalin- and dynorphin-derived peptides has been
detected in intestinal tissue preparations during peristalsis or
after electrical stimulation. These include Leu-enk, Met-enk,
Met-enk-Arg-Phe, Met-enk-Arg-Gly-Leu, metorphamide (Schulz
et al., 1977; Corbett et al., 1991), α-neoendorphin (Majeed et al.,
1987) and Dyn A (Kromer et al., 1981; Donnerer et al., 1984).
In addition, studies using opioid antagonists, mainly nalox-
one, have shown that inhibition of opioid activity increases
non-propagating intestinal motility (Sanger and Tuladhar, 2004).
Altogether, this shows that endogenous opioids play a subtle
but important role in control of GIT motility by suppressing
activity. There is also evidence that the endogenous peptides
either contribute to, or protect against, the development of
pathophysiological conditions. Levels of endogenous opioids in
the GIT have been shown to increase under pathological con-
ditions, including inflammatory bowel disease, and not only
inhibit gastrointestinal motility, but also provide visceral antinoci-
ception. β-endorphin levels have been shown to increase in a
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model of chronic inflammatory bowel disease in mice, suppress-
ing inflammation-associated hyperexcitability of colonic primary
spinal afferents (Hughes et al., 2013; Valdez-Morales et al., 2013).
In addition, T Lymphocytes can release β-endorphin and induce
expression of β-endorphin in the myenteric plexus in mice with
immunodeficiency-related visceral hyperalgesia (Verma-Gandhu
et al., 2006, 2007). Surgical intervention has also been shown
to increase dynorphin expression in the dorsal root ganglia of
mice (Romero et al., 2012), and stimulate release of opioid pep-
tides from enteric neurons after abdominal surgery in guinea
pigs (Patierno et al., 2005). This may contribute in part to
post-operative ileus, although sympathetic pathways are likely
to play a more significant role. A greater understanding of the
involvement of endogenous opioids in GIT pathophysiology is
important as the opioid system is not only a potential target for
treatment, but the enhanced production and release of endoge-
nous opioids may also alter the effectiveness of opioid-based
therapeutics.

Although the global physiological effects of endogenous opi-
oids in the GIT have been widely studied, the role of individual
peptides in the control of normal GIT functions or pathophys-
iological conditions in discrete regions is still not clear. There
are specific distributions of endogenous opioids throughout the
GIT. However, since all endogenous opioids can activate all ORs,
the specific ORs through which endogenous opioids exert their
actions or the specific signaling mechanisms behind these func-
tions is unknown. The physiological significance of such diversity
and structural organization of opioid peptides suggests that indi-
vidual endogenous peptides may serve distinct physiological roles.
The diversity in physiological effects can in part be achieved by
activation of the different ORs. However, as there are far more
endogenous opioids than there are receptors and little recep-
tor selectivity, it is probable that the diversity in endogenous
opioids exists to fine tune OR-mediated effects through biased
agonism.

BIASED AGONISM AT THE OPIOID RECEPTORS
Opioid receptors are prototypical GPCRs where biased agonism
displayed by synthetic and exogenous ligands has been widely
explored. Indeed, this reflects the extensive knowledge of opi-
oid physiology and the desire to generate opioid-based analgesics
devoid of limiting side effects such as respiratory depression or
constipation.

In addition to the ideal separation of therapeutic and clini-
cally limiting side effects, two key observations in the actions of
morphine at MOPr have sparked the search for biased agonists at
this receptor. First, morphine is relatively poor at inducing MOPr
internalization, in spite of its efficacy in mediating G-protein
activation, and second, morphine-induced respiratory depres-
sion and constipation were attenuated in a β-arrestin knock-out
mouse, while analgesia was enhanced. Altogether these reports
have sparked the search for potentially different signaling mech-
anisms that mediate the diverse physiological actions of ORs.
Similarly, reports of biased agonism by exogenous ligands have
also been described for the other OR subtypes, DOPr (Charfi
et al., 2014), and KOPr (Melief et al., 2010). However, the poten-
tial for endogenous bias at the OR family has not received much

attention. This is despite the fact that, as highlighted above, there
is significant biological redundancy in the opioid system. In a
systematic approach to evaluate biased agonism at the mu-OR,
McPherson et al. (2010; Rivero et al., 2012) examined the sig-
naling bias of a wide range of ligands including endogenous
opioid peptides and synthetic opioids. In these and subsequent
studies, endomorphin-2 as well as endomorphin-1 showed statis-
tically significant bias toward β-arrestin2 recruitment and away
from G protein activation. However, as neither the gene nor the
precursor protein of endomorphin1 and two has yet been identi-
fied, their classification as endogenous opioids is still a matter of
debate.

Opioid receptors have also been reported to form homo-
and hetero-dimers. Importantly, it has been suggested that these
dimers may indeed form a new signaling entity where the intra-
cellular signaling resulting from the activation of heterodimers
may be different from that elicited by the individual protomers
or homodimers (Waldhoer et al., 2005; Rozenfeld and Devi, 2007;
Gomes et al., 2013). Moreover, some of these dimers have been
demonstrated to exist in vivo (Massotte, 2014). Although such
mechanisms of engendering distinct intracellular signals would
not fall into the definition of biased agonism, it is another
paradigm to take into account in the context of the differential
actions of endogenous opioid peptides.

IDENTIFICATION AND QUANTIFICATION OF BIASED
AGONISM: CHALLENGES AND LIMITATIONS
Although biased agonism offers the potential of safer and more
effective therapeutics, there are still significant limitations for its
detection, quantification and, importantly, its translation into
differential physiological responses.

QUANTIFICATION OF BIASED AGONISM
Analytical tools for the detection and quantification of biased
agonism are necessary in order to effectively inform future drug
development efforts aimed in this direction. The majority of
studies to date on biased agonism have used largely qualitative
observations, such as reversals in agonist potency orders or max-
imal agonist effects between different pathways. However, such
approaches are not optimal. The potency of a ligand is deter-
mined by both its affinity for the receptor state coupled to that
particular pathway as well as its intrinsic efficacy for generating
a response in that pathway. In contrast, the maximal effect of a
ligand at saturating concentrations is only determined by intrinsic
efficacy. In addition, contributors to system bias, signal ampli-
fication, and receptor expression need to be taken into account
as they have markedly different effects on potencies and effica-
cies of differently efficacious ligands. Therefore, the observed
response of an agonist at a given pathway is not only the result
of unique ligand-induced receptor conformations, rather it is
affected by “system bias,” which reflects the differing coupling
efficiencies of the receptor to a given signaling pathway, and by
“observation bias,” which results from differing assay sensitivity
and conditions (Kenakin et al., 2012; Kenakin and Christopou-
los, 2013a). It is the bias imposed by the ligand on the receptor
that is the only source of bias that allows the signaling bias
profiles of ligands in different cell types to be compared. It is
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therefore important to quantify signaling bias in such a way
that it excludes system and observation bias, in order to reveal
the unique signaling profile that is induced by the different
ligands.

Several analytical approaches have been described to quantify
biased agonism (reviewed by Kenakin and Christopoulos, 2013b).
The relative transduction ratio (Kenakin et al., 2012) is one of the
most robust and widely applicable methods for bias quantifica-
tion. This method applies the operational model of agonism first
derived by Black and Leff (1983) to concentration-response curves
and estimates a “transduction coefficient” which is comprised of
the functional equilibrium dissociation constant (a measure of
the affinity for the receptor coupled to a particular effector pro-
tein or signaling pathway) and the intrinsic efficacy of the agonist
in activating a particular signaling response and receptor den-
sity. This coefficient is thus an overall measure of the relative
‘power’ of an agonist to induce a response. In order to elimi-
nate the effects of system and observation bias, normalization to a
reference agonist is required. Finally, these normalized transduc-
tion coefficients can be compared across two signaling pathways
for a given agonist to obtain the “relative transduction ratio” as
measures of agonist bias. It is, however, important to highlight
that key factors need to be considered [reference ligand, cellu-
lar content and pluridimensionality of efficacy, (Thompson et al.,
2014)] which influence the identification and quantification of
biased agonism and that need to be taken into account when
interpreting information obtained from studying biased signaling
in vitro.

EXAMINATION OF ENDOGENOUS BIAS IN A PHYSIOLOGICAL SETTING
Potentially insurmountable difficulties may prevent the exami-
nation of endogenous ligand bias in tissues and in vivo. First
and foremost, multiple agonists for the same receptor exist, and
these may be coexpressed (e.g., enkephalins), precluding differ-
ential release protocols. Selective stimulation of release may be
possible in cases where agonists are expressed by distinct cells
or neuronal subtypes (e.g., enteric neurons vs. enteroendocrine
cells). Peptides may differ with respect to their susceptibility to
degradation, complicating interpretation of studies of duration
or magnitude of effects. Furthermore, these peptides may vary
in their relative affinities to receptors of interest. The endpoints
that are measured are often indirect and result from activation
of complex reflex pathways involving a number of transmitters.
For example, suppression of electrically evoked intestinal con-
tractions, such as occurs in response to OR agonists (Wood and
Galligan, 2004) may not reveal subtle agonist-dependent differ-
ences. Most of the current descriptions of biased agonism rely
on direct measurements from cells (e.g., pERK1/2, cAMP accu-
mulation, β-arrestin-recruitment), which are difficult to assay in
enteric neurons. Moreover, the effects of exogenous agonist appli-
cation may not reflect what occurs physiologically, as location
of receptors and ligands may mean that such interactions never
occur.

Other factors to consider when translating data derived from
heterologous cell lines to enteric neurons, tissues, or in vivo stud-
ies include not only species, but also regional differences, and
the relative expression of key regulatory proteins in the cellular

environment examined. These factors are most apparent in the
case of the ORs. The distribution of ORs in the gut differs between
species. For example, there is limited evidence for functional DOPr
expression in the guinea pig ileum (Johnson et al., 1987), whereas
there is prominent DOPr expression in the mouse ileum (Poole
et al., 2011). There may also be differences in the regional distribu-
tion of ORs with respect to both the relative numbers of positive
neurons and in the neuronal types that express these receptors, as
we have previously demonstrated for the DOPr (Poole et al., 2011).
Interestingly, this does not appear to be the case for MOPr expres-
sion in the guinea pig ileum and colon where similar neuronal
populations express the receptor (Poole et al., unpublished). It is
worth noting that these differences in distribution are unlikely to
have an effect in the detection of bias, as measurements are likely
to be performed in the same tissue preparation. However, species
and regional differences in OR expression will affect the potential
for heterodimerization of ORs, which may influence the pharma-
cological profiles of any responses to agonists (Rozenfeld and Devi,
2007). Perhaps of greater importance is the relative expression of
key modulatory proteins including β-arrestins and GRKs, which
influence OR signaling in enteric neurons. This is highlighted
by a number of recent studies using knockout mice. β-arrestin
2 deficient mice exhibit reduced constipatory effects of mor-
phine and loperamide based on assays of fecal output and colonic
transit (Raehal et al., 2005). Similarly, GRK6−/− mice also dis-
play significantly diminished opiate-induced inhibition of colonic
transit relative to wildtype mice (Raehal et al., 2009). Deletion
of either β-arrestin 2 or GRK6 did not affect morphine-induced
inhibition of small intestinal transit, suggesting region-dependent
regulation of neuronal MOR. β-arrestins are also integral to the
development of opiate tolerance in the intestine, with deletion
of β-arrestin 2 promoting acute morphine tolerance in the colon
(Maguma et al., 2012; Akbarali et al., 2014). These studies high-
light that OR regulation and physiological function can differ
markedly between regions of the GIT and the difficulty in trans-
lating data obtained from model cell systems to the physiological
setting.

In summary, we have provided an overview of the expression
and distribution of endogenous ligands for two major therapeu-
tically relevant classes of GPCRs in the GIT. We have provided
evidence for functional selectivity of these ligands and have dis-
cussed potential issues related to translation of cell line-derived
data to the organ and whole animal levels. Therapeutically, the
targeting of selective release of endogenous peptides is probably
not a realistic goal. However, understanding the fundamental basis
for ligand bias and determining whether differences in the expres-
sion and release of endogenous ligands underlie the development
and maintenance of disease may be more promising avenues to
address and to provide mechanistic insight for the development
of safer therapies.
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