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The upstream stimulatory factors (USFs) are regulators of important cellular processes.
Both USF1 and USF2 are supposed to have major roles in metabolism, tissue protection
and tumor development. However, the knowledge about the mechanisms that control the
function of USFs, in particular in tissue protection and cancer, is limited. Phosphorylation
is a versatile tool to regulate protein functions. Thereby, phosphorylation can positively
or negatively affect different aspects of transcription factor function including protein
stability, protein–protein interaction, cellular localization, or DNA binding. The present
review aims to summarize the current knowledge about the regulation of USFs by direct
phosphorylation and the consequences for USF functions in tissue protection and cancer.
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INTRODUCTION
All cells of an organism carry the same genetic information in
their nucleic DNA. But the requirements of distinct cell types are
different and they also can change upon environmental stimuli.
Thus, the expression of genes into proteins has to be adjusted to
the particular needs of a cell. This mainly occurs by transcrip-
tional regulation of gene expression, and transcription factors
play a pivotal role in this regard. Deregulated transcription factors
are involved in the development of many severe diseases, and thus,
elucidation of transcription factor regulation can provide valuable
information regarding the development and treatment of these
diseases.

Transcription factors are proteins that regulate gene expression
by binding to the DNA sequences of their target genes and that
can be classified according to their DNA-binding domain (DBD).
Among the most important ones are homeodomain proteins,
zinc-finger proteins, basic helix-loop-helix (bHLH) and leucine
zipper (LZ) proteins. Often specific transcription factors contain
ligand binding domains as well as one or more transactivating
domains (TADs) permitting their ability to act as activators or
repressors of gene expression.

With respect to the substantial role of transcription factors
in gene expression regulation, it is not surprising that mutant
transcription factors as well as deregulated transcription factors
can cause tissue damage and thus severe diseases. In cancer,
the inappropriate growth of cells is often caused by mutated or
malregulated oncogenes or tumor suppressor genes, which, in
turn, often encode transcription factors. Prominent examples are

the oncogenic transcription factor c-Myc (Adhikary and Eilers,
2005) or the tumor suppressor p53, which is mutated in a variety
of human cancers (Lane, 1992; Latchman, 2008).

The eukaryotic cell features several different mechanisms for
the regulation of transcription factor function. One possibility is
to tightly control the rate of transcription factor synthesis and/or
degradation via the ubiquitin–proteasome system (Desterro et al.,
2000). Posttranslational modifications are also a valuable tool
in cellular transcription factor regulation. Beside SUMOylation
(Verger et al., 2003; Gill, 2005) or acetylation (Bannister and
Miska, 2000), protein phosphorylation plays a major role in this
respect. In response to diverse extracellular signals, transcription
factors can be phosphorylated by specific protein kinases or
dephosphorylated by protein phosphatases. Protein phosphory-
lation is a dynamic process and the phosphorylation state of the
transcription factor can affect its function in several ways: by
changing the cellular localization, by regulating DNA binding
and/or oligomerization of the transcription factor, by modulating
interactions with coregulators or by influencing protein stability
(Whitmarsh and Davis, 2007).

The upstream stimulatory factors (USF1 and USF2) are tran-
scription factors that participate in the regulation of a large
number of genes and especially USF2 appears to be crucial for the
control of embryonic development, brain function, metabolism,
iron homeostasis, fertility and growth whereas USF1 has roles
in metabolism, as well as in the tanning and immune response
(Sirito et al., 1998; Corre and Galibert, 2005). Furthermore,
USFs seems to exhibit a tissue protective and tumor suppressive
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function in several cancer types (Ismail et al., 1999; Chen et al.,
2006; Chang et al., 2005). Although the majority of mechanisms
regulating USFs are largely unknown, phosphorylation appears to
play an important role and the present review aims to summarize
the current knowledge about the regulation of USFs by direct
phosphorylation and the consequences for USF functions.

THE UPSTREAM STIMULATORY FACTORS
Upstream stimulatory factors were identified in 1985 by their
ability to regulate transcription of the adenovirus major late
promoter (Carthew et al., 1985; Miyamoto et al., 1985; Sawadogo
and Roeder, 1985). Sawadogo (1988) then succeeded in isolat-
ing two isoforms of the transcription factor, USF1 (43 kDa)
and USF2 (44 kDa), from HeLa cells. Later, the human USF1
gene was located on chromosome 1q22–q23 (Shieh et al., 1993),
whereas the human USF2 gene was found on chromosome 19q13
(Groenen et al., 1996). Both USF genes consist of 10 protein
coding exons (Lin et al., 1994). By alternative splicing, two USF2
isoforms, USF2a (44 kDa) and USF2b (38 kDa), can be generated
(Viollet et al., 1996) and have a gene regulatory function. The
USF2 splice variant USF2b lacking the information encoded by
exon 4 was shown to act as a dominant negative regulator of
USF-dependent gene expression. Similar events were described
for alternative splicing of exon 4 in USF1 mRNA (Gregor et al.,
1990; Gao et al., 1997; Saito et al., 2003); again a novel USF1
variant affecting USF-dependent gene regulation was generated
(Saito et al., 2003).

Although USF1 and USF2 are ubiquitously expressed, their
ratio varies in different cell types (Sirito et al., 1994). Additionally,
transcriptional regulation of USFs was discovered. For example,
a Helicobacter pylori infection caused hypermethylation of the
USF2 promoter in mice (Bussiere et al., 2001) and high glucose
levels upregulated USF2 gene transcription via a cAMP-response
element-binding protein (CREB) response element in the USF2
promoter (Shi et al., 2008).

In vivo the proteins appear mainly as USF1/USF2 het-
erodimers; homodimers are quite rare (Viollet et al., 1996). Exper-
iments with USF knockout-mice revealed that there seems to
be an asymmetrical cross-regulation between the two isotypes:
USF1−/− mice displayed enhanced USF2 expression, whereas
USF2−/− mice had less USF1 protein compared to wt mice (Sirito
et al., 1998).

Upstream stimulatory factors are part of the basic helix-
loop-helix leucine zipper (b-HLH-LZ) transcription factor family
(Gregor et al., 1990) which also includes the oncoprotein c-Myc.
The characteristic and highly conserved C-terminal b-HLH-LZ
domain constitutes the conserved DBD, composed of a basic (b)
region, followed by a HLH and a LZ motif. Both, USF1 and
USF2, share about 70% identity within the b-HLH-LZ regions
whereas the overall identity of the full length proteins is only
about 44% (Sirito et al., 1994). Although the N-terminal regions
share only a limited sequence homology, they contain a highly
conserved USF-specific region (USR) which is located N-terminal
from the basic region. The USR is supposed to play an important
role in transcriptional activation (Groenen et al., 1996; Luo and
Sawadogo, 1996b; Qyang et al., 1999). Furthermore, the USR
as well as the basic region are important for mediating the
nuclear localization of the transcription factor. Dimerization of
the transcription factor is dependent on the HLH-LZ motif in the
C-terminus of the protein (Luo and Sawadogo, 1996b; Figure 1).

Like the other members of the b-HLH transcription factor
family, USFs bind in principle to E-boxes with a CANNTG core
sequence in the promoters of their target genes (Baxevanis and
Vinson, 1993). Whole genome ChIP-chip analyses in human
HepG2 hepatoma cells showed that USF1/USF2 bind predomi-
nantly to CACGTGAC elements (Rada-Iglesias et al., 2008). In
addition, USF2 but not USF1 was shown to bind also pyrimidine
rich Inr elements in the core promoter of target genes (Roy et al.,
1997). Due to the differences in the USF1 and USF2 N-termini it
was suggested that the two isoforms have the ability to regulate

FIGURE 1 | Domain organization and phosphorylation sites within the
transcription factors, upstream stimulating factor (USF). USF1 and
USF2 are b-HLH-LZ transcription factors with similar domain organization.
The amino acid residues targeted by various kinases are indicated (see
text for details). The conserved C-terminus of the USFs consists of a

USF-specific region (USR, aa 158–183 in USF1; aa 194–219 in USF2),
a basic region, a helix-loop-helix domain (BR-HLH, aa 199–254 in USF1,
aa 235–290 in USF2), and a leucine zipper domain (LZ, 271–292 in USF1,
307–328 in USF2); the domain organization is given according to Sirito
et al. (1992).
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different sets of genes and that they can be regulated in a different
manner themselves (Luo and Sawadogo, 1996b).

USF1 AND USF2 IN TISSUE PROTECTION AND CANCER
Given that USFs were identified as transcriptional regulators of
the adenovirus major late promoter, it is not surprising that
other viruses like HIV (Maekawa et al., 1991; Giacca et al., 1992;
Sieweke et al., 1998), Varicella-zoster virus (Meier and Straus,
1995) and Epstein–Barr virus (Liu et al., 1996) use USFs during
their replication cycle. Although these findings may suggest that
USFs promote host invasion and tissue damage, it is also well
accepted that USFs have rather a tissue protective role.

The role of USFs in tissue protection evolved first from their
participation in the transcriptional regulation of the inflam-
matory genes and genes necessary for the immune response.
Recent findings show that USF1 can inhibit inflammatory NF-
κB signaling by inducing expression of the gene tumor necrosis
factor alpha (TNFα)-induced protein-3 (TNFAPI3, also known
as TNFA1P2, OTUD7C, or A20; Tiruppathi et al., 2014). USF1
also promotes the immune response by stimulating expression
of immunoglobulin light chain genes (Chang et al., 1992; Carter
et al., 1997), the complement factor C4 gene (Galibert et al.,
1997), and the major histocompatibility class I complex com-
ponent β2-microglobulin (Gobin et al., 1999; Howcroft et al.,
1999). Further, USF1 protects the skin from ultraviolet (UV)
irradiation by inducing expression of pigmentation genes, and
genes encoding factors necessary for nucleotide excision repair
(NER; Baron et al., 2012). In addition to its proper function as
a transcriptional regulator, recent findings unraveled a USF1/p53
crosstalk where in the presence of DNA damage, USF1 stabilizes
p53 and induces cell cycle arrest (Bouafia et al., 2014). Moreover,
USF2 was supposed to suppress cyclin-dependent kinase 4 (Cdk4)
expression. Thus, the finding that USFs contribute to cell cycle
regulation indicates their importance for cell protection, growth,
and developmental processes.

Examination of USF-deficient mice illustrated that a mini-
mum level of USF activity is required for embryonic development
since USF1−/−/USF2−/− mice die during embryogenesis. Both
USFs seem to play a role in brain development because USF1−/−

as well as USF2−/− mice were prone to spontaneous epileptic
seizures. While USF1−/− mice had no other obvious problems,
more than half of the USF2−/− pups died within two days after
birth. USF2−/− mice were about 20–40% smaller than their
heterozygous siblings, male USF2−/− had a drastically reduced
lifespan and both male and female USF2−/− mice had reduced
fertility (Vallet et al., 1997, 1998; Sirito et al., 1998; Hadsell et al.,
2003).

A recent study with USF2−/−mice revealed that male USF2−/−

mice display dysregulated prostate growth and marked prostate
hyperplasia already at a young age (Chen et al., 2006). This
might be one of the reasons for the early death of male USF2−/−

mice. In line with this hypothesis, the authors have shown that
the USF2 protein level of several prostate cancer cell lines is
markedly decreased and that ectopic expression of USF2 in PC-
3 prostate cancer cells inhibits their tumorigenicity. These data
suggest that USF2 might have a tumor-suppressive function in
prostate carcinogenesis (Chen et al., 2006).

That the action of USF2 as suppressor may be of special
importance for prostate cancer was first highlighted by a study
investigating hormone refractory prostate cancer samples. Half
of the hormone refractory prostate cancer samples displayed a
loss of chromosome 19q ter-q13.1 (Nupponen et al., 1998) which
includes the region with the Usf2 gene (Steingrimsson et al.,
1995). A reintroduction of an intact human chromosome 19
into a tumorigenic prostate cell line reduced tumorigenicity in
athymic nude mice (Astbury et al., 2001). In addition, USF2 has
recently been found to be part of the prostatic factor complex
as an androgen receptor cofactor (Kivinen et al., 2004) and it
was found to be downregulated in human prostate cancer spec-
imens (Chen et al., 2006). Recent investigations with a mouse
in vivo xenograft model further substantiated the inhibitory
role of USF2 since overexpression of USF2 in prostate cancer
cells inhibited the tumorigenicity of these cells (Chen et al.,
2006).

There are also other studies suggesting a role of USF2 in the
development of cancer. In breast cancer cell lines, USF1 and USF2
were expressed, but a significant loss of transcriptional activity
of both proteins was observed in approximately 50% of the
transformed breast cell lines indicating that loss of USF function
favors proliferation (Ismail et al., 1999). Furthermore, it was
observed that USFs may have a potent growth-inhibitory effect
and can antagonize the transforming function of the oncoproteins
c-Myc and Ras in rat embryonic fibroblasts (Luo and Sawadogo,
1996a; Choe et al., 2005). Indeed, transfection of either USF1
or USF2 inhibited cellular transformation induced by c-Myc or
activated Ras. In addition, USF2 also inhibited transformation in
rat embryonic fibroblasts (REFs) induced by the adenovirus onco-
protein E1A, while USF1 did not, which highlights the broader
inhibitory function of USF2 (Luo and Sawadogo, 1996a).

In line, many cancer cells including the prostate cancer cell
line PC-3 (Ismail et al., 1999; Qyang et al., 1999) displayed a
loss of USF2 transcriptional activity while it was active in non-
tumorigenic cells.

Further, not only the oncogenes c-Myc and Ras, whose func-
tion could be counteracted by USF2 have been implicated in
prostate cancer, but also tumor suppressor genes. Among the
about 2500 genes which are supposed to be regulated by USFs
(Rada-Iglesias et al., 2008) are those encoding the tumor suppres-
sors adenomatous polyposis coli (APC), breast cancer 2 (BRAC2)
or p53 (Reisman and Rotter, 1993; Davis et al., 1999; Jaiswal
and Narayan, 2001; Wu et al., 2003). In addition, a number of
genes important for cellular growth and metabolism like fatty
acid synthetase (FAS), pyruvate carboxylase, pyruvate kinase,
heme oxygenase (HO-1), plasminogen activator inhibitor-1 (PAI-
1) or Cdk4 contain E-boxes that bind USF in their promot-
ers (Reisman and Rotter, 1993; Jaiswal and Narayan, 2001; Wu
et al., 2003; Wutthisathapornchai et al., 2014). Furthermore, the
tumor-suppressor function of USFs was linked with their ability
to repress the human telomerase reverse transcriptase (hTERT)
expression in oral cancer cells; hTERT promotes immortalization
and malignant transformation of cancer cells by stabilizing telom-
eric ends of chromosomes (Chang et al., 2005).

Contrary to the studies suggesting a tumor suppressor role for
USF2 in carcinogenesis, there is one study indicating that USF2
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has a pro-proliferative function in lung cancer cells (Ocejo-Garcia
et al., 2005).

INVOLVEMENT OF CO-FACTORS IN THE REGULATION OF USF
ACTIVITY
There are some studies suggesting that the presence or availability
of coactivators seems to play an important role in USFs activity.
Indeed, both USF1 and USF2 were reported to associate with Fra1,
a member of the b-Zip protein family, to promote transcription,
demonstrating that cross-talk occurs between distant members
of the protein family (Pognonec et al., 1997; Samoylenko et al.,
2008). In addition, the bHLH transcription factor Cha could
also constitute an important interactor, at least for USF1 where
formation of the USF1/Cha heterodimer negatively affects USF-
dependent transcription (Rodriguez et al., 2003). Although no
proof has been obtained so far whether posttranslational mod-
ification events or just specific occurrence of these interactors
regulate USF function, they may contribute to different cellular
localization of USFs, in particular USF2. Since nuclear transloca-
tion of USF2 seems to be a tool for its regulation (Frenkel et al.,
1998; Huang et al., 2008), the involvement of interacting factors
in this process was proposed in experiments showing that USF2
was expressed and properly localized in the nucleus of Saos-2
cells, although USF2 was completely inactive in these cells (Qyang
et al., 1999). Another study suggested the involvement of cofactors
in the regulation of USF2 since it was polyubiquitinated and
subsequently degraded by the proteasome in response to hypoxia
(Jiang and Mendelson, 2005). In line with this, recent studies
indicated that USF2 but not USF1 was required for hypoxia-
dependent expression of genes regulated by the hypoxia-inducible
transcription factor HIF2α. Thereby, USF2 binds to HIF2 target
gene promoters, interacts with HIF2α, and recruits coactivators
like CREB-binding protein (CBP) and p300 (Pawlus et al., 2012).

Moreover, USF2 in conjunction with the transcription factors
YY1 and CCAAT/enhancer binding protein-β (C/EBPβ) affect
expression of the cystic fibrosis transmembrane conductance reg-
ulator gene (CFTR) with YY1 being a repressor and USF2 being an
activator. C/EBPβ appears to act as a switch; its phosphorylation
favors the interaction between USF2 and YY1 thus blocking the
inhibitory activity of the latter, in favor of C/EBPβ transactivation
(Viart et al., 2013). Overall, this indicates that phosphorylation
evokes an additional layer of complexity to the mechanisms
influencing gene expression.

PHOSPHORYLATION-DEPENDENT REGULATION OF USFs
So far, not much is known about the mechanisms contributing
to the regulation of USFs in cancer and in general. Although
phosphorylation appears to be a powerful and fast acting mecha-
nism by which USFs function can be modulated, phosphorylation
of USF proteins has not yet been investigated intensively and
the number of studies showing direct phosphorylation of USF
proteins by a kinase at certain residues is limited.

INDIRECT EVIDENCE OF PHOSPHORYLATION-DEPENDENT REGULATION
OF USFs
The first indirect evidence suggesting that USF1 might be
a phosphoprotein came from the finding where phosphatase

treatment of a purified USF1-like factor significantly reduced
its DNA binding activity (Maekawa et al., 1991). Addition-
ally, sphingosylphosphocholine (SPC) treatment of Swiss 3T3
fibroblasts resulted in enhanced USF1 DNA binding (Berger
et al., 1998). Due to the fact that SPC can activate host
kinases (Seufferlein and Rozengurt, 1995) it was suggested that
SPC induced phosphorylation of USF1 (Berger et al., 1998)
although this has not yet been shown. In addition, it has been
reported that non-phosphorylated USF1 binds to the apolipopro-
tein A5 E-box and stimulates its transcription in HepG2 cells;
insulin treatment reduced this, most likely via phosphoryla-
tion through the phosphatidylinositol-3-kinase (PI3K) pathway
(Nowak et al., 2005). However, the localization and the relevance
of the amino acid residues responsible for that effect were not
shown, yet.

DIRECT EVIDENCE OF PHOSPHORYLATION-DEPENDENT REGULATION
OF USFs
More direct evidence for USF1 phosphorylation came from a
study showing that USF1 is a phosphoprotein in vivo, and that the
phosphorylated form of USF1 bound preferentially to an E-Box
in the C4 complement gene promoter (Galibert et al., 1997).

Involvement of MAPK signaling in USF regulation
Mitogen-activated protein kinases (MAPKs) are a large family
of serine/threonine kinases converting various extracellular sig-
nals, among them growth factors, mitogens or inflammatory
cytokines, into intracellular responses through serial phospho-
rylation cascades, thus regulating cellular processes like prolifer-
ation, differentiation, development, stress responses, and apop-
tosis. Conventional MAPKs include extracellular signal-regulated
kinase (ERK), ERK1 and ERK2 (p44/p42), c-Jun NH2-terminal
kinase (JNK1/2/3), p38 MAPK (p38α/β/γ/δ) and ERK5. In addi-
tion, some atypical MAPKs such as ERK3/ERK4, NLK (nemo-
like kinase), and ERK7/ERK8 have been identified but less is
known about their regulation, substrate specificity and physio-
logical functions (for review, see Coulombe and Meloche, 2007).
From the kinases mentioned, only ERK1/2 and p38α have been
described to phosphorylate USFs.

ERK1/2 and USFs. Several studies suggested a role for ERK1/2
in the phosphorylation of USFs. In HepG2 cells ERK-mediated
phosphorylation of USF1 could be detected following hepatocyte
growth factor (HGF) treatment of the cells (Imagawa et al.,
2006). Furthermore, ERK1/2-dependent activation of USFs was
shown following Helicobacter pylori infection, though no direct
phosphorylation was shown in these studies (Juttner et al., 2003).
Further, it was found that USFs are downstream targets of the
MAPK kinase (MEK)/ERK pathway in trigeminal ganglion neu-
rons (Park et al., 2000). In all cases of the above mentioned
studies, the authors claim that ERK1/2-dependent USF phospho-
rylation induces the transcriptional activity of USF (Park et al.,
2000; Juttner et al., 2003; Imagawa et al., 2006).

More clear evidence for the importance of USF regulation by
phosphorylation and their implication in cancer came from vari-
ous studies investigating the expression of PAI-1. In many cancer
types elevated PAI-1 levels can be detected and nowadays PAI-1

Frontiers in Pharmacology | Inflammation Pharmacology February 2015 | Volume 6 | Article 3 | 4

http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology/archive


Horbach et al. USFs and kinases

became a high evidence marker of a poor prognosis in breast
cancer. Although the exact mechanisms by which PAI-1 influences
tumor growth and dissemination remain partially controversial, it
is evident that PAI-1 exerts its effects not only on fibrinolysis but
also on cell attachment, migration and angiogenesis (Andreasen
et al., 1997; Dimova et al., 2004; Dellas and Loskutoff, 2005;
Dimova and Kietzmann, 2008).

Plasminogen activator inhibitor-1 gene expression is tightly
regulated and can be induced by a variety of hormones (insulin,
glucagon, glucocorticoids, angiotensin II), growth factors
(insulin-like growth factor, IGF-I; transforming growth factor-β,
TGF-β), cytokines (interleukin-1, IL-1), TNFα, metabolic signals
(glucose) and environmental signals (hypoxia; Dimova and
Kietzmann, 2008).

In this context USFs seem to be quite important in mediating
the response of several signals to the PAI-1 promoter. USF1 was
shown to stimulate PAI-1 expression when being induced by
serum (White et al., 2000) and by wounding (Providence et al.,
2002). Thereby, phosphorylation of USF1 seemed to be required
for DNA binding (Cheung et al., 1999; Providence et al., 2002).
USF2 repressed PAI-1 expression in primary rat hepatocytes
(Samoylenko et al., 2001); likewise USF2 mediated suppression
of PAI-1 expression in response to the polyphenol quercetin in
human endothelial cells (Olave et al., 2010); however, it induced
PAI-1 expression in human and in rat hepatoma cell lines, indicat-
ing that the effect of USF2 on PAI-1 expression is cell-type specific
(Dimova and Kietzmann, 2006). In this context it was shown that
binding of USFs is important for HGF-mediated induction of
PAI-1 gene expression (Imagawa et al., 2006). Thereby, USF1 was
phosphorylated through the MAPK pathway which appears to be
also important in mediating PAI-1 transcription in response to
TGF-β (Riccio et al., 1992; Allen et al., 2005). In human epidermal
keratinocytes USF1 and USF2 occupy the human PAI promoter
in a dynamical manner as a function of growth state. While
USF1 binds in quiescent cells and represses PAI-1 expression,
USF2 stimulates expression after serum-stimulated binding to the
human PAI promoter (Qi et al., 2006). In this context MAPK-
mediated phosphorylation of USF1 at Thr153 is required for
suppression of PAI-1 expression (Qi et al., 2006). Recent studies
suggested that TGF-β-induced PAI-1 expression is dependent on
epidermal growth factor receptor (EGFR)-mediated stimulation
of the MEK/ERK pathway and that USF1 is phosphorylated by
this signaling cascade (Kutz et al., 2006; Samarakoon et al., 2009).

Overall, these studies indicate that USF1 can be phosphory-
lated via the ERK1/2 pathway while less is known about the role
of ERK1/2 on USF2. In addition, cell-type specific components
need to be considered and to be discovered to fully understand
the role of phosphoUSF1 in PAI-1 expression and cancer.

P38 and USFs. The p38 MAPKs were identified as modulators
of TNF signaling (Sabio and Davis, 2014) but meanwhile p38
MAPKs were found to be activated by many other stimuli includ-
ing oxidative and chemical stress, osmotic and heat shock as well
as hormones. There are at least four p38 kinases named α, β,
γ, and δ, from which the p38α enzyme is the best characterized
(Sabio and Davis, 2014). A study describing that USF1 is involved
in the UV stress response in COS7 and B16 melanoma cells was

the first showing that not JNK but the stress-responsive p38α

acts as an USF1-phosphorylating kinase. The p38α-mediated
phosphorylation occurred in the N-terminal part of USF1 at
Thr153 and induced transcription of the tyrosinase gene (Galibert
et al., 2001). The tyrosinase is the rate-controlling enzyme for the
production of melanin and thus is necessary for pigmentation
and the tanning response. Moreover, USF1 seems to be also
critical for the transcriptional induction of other genes like pro-
opiomelanocortin, and melanocortin 1 receptor which failed to
be activated following UV stimulation in USF1−/− melanocytes
(Corre et al., 2004).

Since UV light is not only known to induce a tanning but also
a DNA damage response (Wu et al., 2003; Ditch and Paull, 2012),
it is possible that UV irradiation promotes the interaction of USF
transcription factors with genes involved in NER of DNA. Indeed,
recent findings indicate that the proximal promoters of HR23A
(homologues of the yeast RAD23) and CSA (excision repair
cross-complementation group 8) contained E-boxes and were
regulated by USFs (Baron et al., 2012). Overall, these findings
support the view that phosphorylation of USF-1 by p38 can con-
tribute to the protection of skin against UV light-induced DNA
damage.

In this regard the phosphorylation of USF1 by p38α may be
important in tissue protection against skin cancer. Together, these
findings again underline the potential tumor suppressive aspects
of USFs.

Involvement of other kinases
Cdk2 and USFs. The cell cycle is regulated by the interplay
of a catalytic Cdk and its regulatory cyclin. The Cdk2 is an
important regulator within this process. It is critical for G1-S
transition within the cell cycle, the initiation of DNA synthesis,
but also for modulating G2 progression. It appears to be crucial
for cancerogenesis since it is orchestrating a fine balance between
cellular proliferation, cell death, and DNA repair (Satyanarayana
and Kaldis, 2009). In this respect one study indicated that USF1
can be phosphorylated by Cdk2 within a region encompassing
the amino acids from 143 to 197; this phosphorylation event
increased the DNA-binding activity of the transcription factor
(Cheung et al., 1999). These data may be of importance in the
context of cancer cell proliferation where this type of regulation
may counterbalance the effects of c-Myc. Interestingly, c-Myc
can also be phosphorylated by Cdk2 (Hydbring and Larsson,
2010a,b); in contrast to USF1, Cdk2 phosphorylated c-Myc dis-
plays reduced DNA-binding activity. In this respect phospho-
USF1 may outcompete c-Myc and coordinate a cellular response
where USF1 would be anti-proliferative.

Protein kinase C (PKC) and USFs. PKC is a superfamily of
serine/threonine kinases consisting of about 10 to 12 isoforms
divided in three subfamilies based on their second messenger
requirements (for review, see Altman and Kong, 2014; Gomez-
Cambronero, 2014). With respect to USFs, it was reported that
PKC can phosphorylate rat USF1 in vitro and in vivo in neonatal
rat ventricular myocytes (Xiao et al., 2002). In that setting PKC-
mediated phosphorylation of USF1 increased the binding activity
to the cardiac α-myosin heavy chain promoter (Xiao et al., 2002).
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In the study of Xiao et al. (2002) a rat brain extract containing a
mixture of PKC isoforms α, β, and γ was used. Since distinct PKC
isoforms differ in their substrate specificity (Casabona, 1997) it
is possible that the various PKC isoforms may confer different
effects. Although no data for USF2 are available, these data
imply that USFs respond to PKC signaling. However, it remains
open to what extend the different isoforms and cell-type specific
factors contribute to their function. Hence, further studies would
be necessary to better understand the role of PKCs and USF
phosphorylation in the context of cancer.

DNA-dependent protein kinase (DNA-PK) and USFs. The
DNA-PK is a heterotrimer consisting of the DNA-dependent
protein kinase catalytic subunit (PRKDC) and a dimer composed
of the Ku p70 and Ku p86 (XRCC6-XRCC5) proteins. It acts
as a serine/threonine-protein kinase that usually responds as a
molecular sensor for DNA damage. It is involved in the non-
homologous end joining (NHEJ) double-strand break (DSB)
DNA repair. There, it usually associates with the DNA-bound
Ku heterodimer, but it can also bind to and be activated by free
DNA. Apart from phosphorylating histone H2A it was found
to modulate transcription factors like c-Jun, p53, or c-Myc and
contributes to the determination of the circadian period length by
affecting Cry1 phosphorylation (Deriano and Roth, 2013; Davis
et al., 2014).

Moreover, a recent study implicated a function of DNA-PK
in insulin signaling. This study proposed a model where feeding
or insulin activates DNA-PK by dephosphorylation caused by the
action of protein phosphatase 1 (PP1). As a consequence DNA-PK
phosphorylates USF1 at Ser262 in the b-HLH-LZ domain. Phos-
phorylation of USF1 allows p300 associated factor (P/CAF)
recruitment and subsequent acetylation of USF1 at Lys237. This
acetylation event then enhanced the transcriptional activity of
USF1 with respect to the FAS promoter (Wong and Sul, 2009).

Recently it has become obvious that beside its metabolic func-
tions in lipogenesis, FAS also seems to play an important role in
carcinogenesis. It was observed that FAS expression was elevated
in breast, prostate, colon, ovary, endometrium, and thyroid tumor
tissues compared to normal tissue. FAS expression thereby seems
to confer a growth and/or survival advantage and is associated
with a poor prognosis (Kuhajda, 2000, 2006). The findings that
insulin via DNA-PK can contribute to enhanced FAS expression
would argue against a tumor suppressive role of USF1; however,
in contrast to normal tissue where FAS is mainly regulated by diet,
in cancer cells FAS seems to be regulated also through the MAPK
and the PI3K pathways with additional intracellular players (Van
de Sande et al., 2002; Yang et al., 2002). Thus, other factors than
USFs may have a more dominant role for the regulation of FAS
expression in cancer cells.

Protein kinase A (PKA) and USFs. PKA, a cAMP-dependent
protein kinase, is an ubiquitous serine/threonine kinase involved
in a wide range of cellular processes such as transcription,
metabolism, cell cycle, and apoptosis (Arencibia et al., 2013;
Stratakis, 2013). The intracellular cAMP level regulates cellu-
lar responses by altering the activity of PKA. PKA was found
to be involved in USF regulation in the bovine system. In

a study investigating the effect of forskolin and PKA on the
bovine prostaglandin G/H-2 synthase promoter, it was found that
overexpression of PKA enhanced USF DNA binding in bovine
granulosa cells. While bovine USF1 contains two putative PKA
sites, bovine USF2 contains three PKA phosphorylation sites.
Interestingly, only mutation of S275 in bovine USF1 reduced but
did not abolish its transactivation capacity whereas mutation of
the second putative PKA site S262 had no effect in the context
of the prostaglandin G/H-2 promoter (Sayasith et al., 2005). By
contrast, when single mutations were introduced at the putative
PKA phosphorylation sites S259, S269, and S275 in USF2, this
reduced but did not abolish its transactivation capacity (Sayasith
et al., 2005).

The cAMP-mediated pathway and a correct functioning PKA
cascade was found to be involved in the regulation of the cell cycle
via cyclin D. A defect in this cascade would again link cAMP,
PKA, and USFs with the development of cancer. However, the
link appears to be controversial. Although a reduction in cAMP
has an anti-proliferative effect on colorectal cancer cells (Löffler
et al., 2008), an increase in the PKA type I isozyme induces a non-
tumorigenic phenotype in lung cancer cells (Porter et al., 2001).
To what extend USFs are involved in this response has not yet
been unraveled and further studies would be needed to gain more
insight into the connection of PKA and USF regulation during
cancerogenesis.

Glycogen synthase kinase-3 (GSK-3) and USFs. GSK3 is a serine/
threonine kinase that was first identified as a negative regulator
of glycogen synthesis; inhibition is achieved through phosphory-
lation of glycogen synthase (Embi et al., 1980; Woodgett, 1990).
Since its initial discovery, GSK3 was found to be a key player
in several signal transduction pathways, such as the PI3K/Akt
pathway, the Wnt/β-catenin pathway or the Hedgehog signaling
pathway. Due to these multiple involvements, dysregulation of
GSK3 has been implicated in the pathogenesis of human dis-
eases, including type-2 diabetes, bipolar disorders, inflammation,
Alzheimer’s disease, and cancer (reviewed by Frame and Cohen,
2001; Grimes and Jope, 2001). Two isoforms, GSK3α (51 kDa)
and GSK3β (47 kDa), have been identified in mammals. Despite
their homology in the catalytic domain (98%), they significantly
differ in their N- and C-terminal parts and do not have entirely
overlapping roles in metabolism (reviewed in Doble and Wood-
gett, 2003; Force and Woodgett, 2009).

While GSK3β promoted cancer development and growth in
some types of cancer, it had a tumor suppressor function in
other types since a decrease in GSK3β function or expression
was observed in these tumors (Luo, 2009). In line with the
latter findings and in the context of phosphorylation-dependent
regulation of USFs, a recently published article reports GSK3β-
induced phosphorylation of USF1 following inhibition of the
PI3K pathway (Terragni et al., 2011). By means of mass spec-
trometry analysis of GSK3β-phosphorylated human recombinant
USF1 protein, the authors identified Thr153 and Ser186 as the
phosphorylated amino acids. While phosphorylation of Thr153
was important for the transcriptional activation of genes promot-
ing apoptosis and cell cycle arrest, phosphorylation of Ser186 had
no effect (Terragni et al., 2011).
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In addition, GSK3β acts also as an USF2-phosphorylating
kinase. The phosphorylation sites within USF2 could be mapped
to serine 155 and threonine 230. In silico analyses of the 3-
dimensional structure revealed that phosphorylation of USF2 by
GSK3β converts it to a more open conformation which may
influence transactivity, DNA binding and target gene expres-
sion. Indeed, experiments with GSK3β-deficient cells revealed
that USF2 transactivity, DNA binding and target gene expres-
sion were reduced upon lack of GSK3β. Further, experiments
with USF2 variants mimicking GSK3β phosphorylated USF2 in
GSK3β-deficient cells showed that phosphorylation of USF2 by
GSK3β did not affect cell proliferation but increased cell migra-
tion (Horbach et al., 2014). Together, these studies indicate that
GSK3β is an important modulator of USF function; however,
the exact function of both, GSK3β and USF2 in cancerogenesis
appears to be variable and may depend on the cellular context.
Some studies support the idea of GSK3β and USF2 being tumor
suppressive (Luo and Sawadogo, 1996a; Aberle et al., 1997), other
studies show a cancer promoting effect (Ocejo-Garcia et al., 2005;
Landa et al., 2009). Although no study has yet correlated the
activity of GSK3β with the activity of USF2 in a certain tumor
setting, the findings of the latter study would favor the tumor
promoting aspects of GSK3β and USF2 since GSK3β activated
USF2 enhanced cell migration which may be important in terms
of tumor cell metastasis. However, different growth conditions,
the cellular or tissue-specific context may influence the activity of
USF2.

In summary, more studies on the regulation of the transcrip-
tion factor USF2 are necessary to understand the mechanisms by
which it affects the development of different types of cancer.

CK2 and USFs. Protein kinase CK2 (formerly known as casein
kinase II) is considered to act as messenger-independent protein
serine/threonine kinase. CK2 is a tetrameric enzyme consisting of
two catalytic α and α′ subunits and two non-catalytic β-subunits.
Interestingly, the majority of CK2 targets are proteins involved in
signaling, protein synthesis and transcriptional regulation (Mon-
tenarh, 2010). Over the last 10 years a number of transcription
factors have been detected which are phosphorylated by CK2;
phosphorylation enhances transcriptional activity of activating
transcription factor 4 (ATF4; Ampofo et al., 2013), HIF1α (Mottet
et al., 2005), upstream binding factor (UBF; Lin et al., 2006) and
FoxM1c (Wierstra, 2011) and reduces transcriptional activity of
PDX-1 (Welker et al., 2013) and Chop (Schneider et al., 2012)
just to mention a few. A recent report combining in silico, in
vitro and in vivo assays added USF1 but not USF2 to that list.
Further, by using USF1 deletion mutants and point mutants that
study identified threonine 100 as the major phosphorylation site
for CK2. In addition, inhibition of CK2 with a specific inhibitor
enhanced binding of USF1 to USF2, i.e., heterodimerization.
Furthermore, transactivation studies showed that inhibition of
CK2-dependent phosphorylation of USF1 stimulated transcrip-
tion from the pancreatic glucokinase promoter as well as the
FAS promoter but not from the HO-1 promoter (Lupp et al.,
2014). Thus, this study shows that phosphorylation of USF1 by
CK2 modulates two functionally important properties of USF1,
namely heterodimerization and transactivation.

CONCLUSION
Transcription factors are critical components within signal trans-
duction pathways and via regulating the expression of various
genes they are involved in various aspects of cellular functions
including regulation of cell growth and cell death. Therefore,
disturbances within the proper function of transcription factors
may be related to tumorigenesis and cancer. Phosphorylation
events are fundamental processes achieved through the activity of
various protein kinases which allow immediate control of protein
activity including transcription factor function. Thus, the knowl-
edge of the signaling pathways and the involved kinases are of
immediate importance to understand the regulation and proper
function of transcription factors. The transcription factors USF1
and USF2 have been shown to be subject of phosphorylation by
different kinases; though most of the studies refer to USF1. In
addition to their involvement in embryonic development, brain
function, metabolism, iron homeostasis, fertility, pigmentation,
and the immune response it became also evident that USFs affect
tumorigenesis. Since kinase inhibitors became a feasible therapeu-
tic approach in anti-tumor therapy within the last decade, they
may be considered also to be of use in terms of the role of USFs
in tumorigenesis and cancer. However, a concise view about the
impact of USF’s phosphorylation during tumorigenesis has not
been reached. The different phosphorylation events need to be
considered in a more specific cellular context and in conjunction
with USF interacting proteins. This may be of special importance
since the phosphorylation events together with cell-specific USF
interacting partner molecules may then render USFs either into
a tumor suppressor or tumor promoter. Thus, more studies in
particular considering interacting partners and cell-type specific
effectors are necessary to further define the mode by which USFs
affect tissue injury, inflammation, and tumorigenesis.
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