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Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney
disease (CKD). Currently, inhibitors of the renin–angiotensin system (RAS) remain the
sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are
needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor
(B1R) reduced the development of fibrosis in two animal models of renal fibrosis. The
usefulness of new drugs also resides in outperforming the gold standards and eventually
being additive or complementary to existing therapies.

Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra) with that
of an angiotensin type 1 receptor antagonist (AT1a) in the unilateral ureteral obstruction
(UUO) model of renal fibrosis and determined whether bi-therapy presented higher
efficacy than any of the drugs alone.

Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However,
bitherapy did not improve the antifibrotic effects at the protein level. We sought for the
reason of the absence of this additive effect by studying the expression of a panel of
genes involved in the fibrotic process. Interestingly, at the molecular level the different
drugs targeted different players of fibrosis that, however, in this severe model did not
result in improved reduction of fibrosis at the protein level.

Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially
displays low side effects it might be an interesting alternative in cases of poor tolerability
to RAS inhibitors.

Keywords: angiotensin receptor inhibition, bradykinin B1 receptor, combined therapy, low density array, renal

fibrosis

INTRODUCTION
The incidence and prevalence of chronic kidney disease (CKD) is
increasing worldwide, largely due to the increasing incidence of
type 2 diabetes and obesity (El Nahas, 2005; Vilayur and Harris,
2009; Levey and Coresh, 2012). Most patients with CKD progress
toward end-stage renal disease (ESRD) within 10–30 years requir-
ing renal replacement therapies. In addition to evolution toward
ESRD, CKD is now recognized as a major risk factor for cardio-
vascular disease since patients with CKD are far more likely to
die from cardiovascular pathologies than to develop ESRD (Keith
et al., 2004). Delaying the progression of CKD will therefore not
only reduce the number of patients ending up with ESRD, but also
the number of patients with severe cardiovascular complications.

Renal tubulointerstitial fibrosis is the pathological hallmark of
CKD. Although the initial renal disease leading to CKD can be

different, the mechanisms leading to renal fibrosis are thought
to be similar. Briefly, renal cell injury leads to the synthesis
and secretion of cytokines and chemokines. In response to these
inflammatory mediators, mononuclear cells progressively infil-
trate the interstitial space and differentiate into macrophages.
Macrophages perpetuate inflammation, leading to the prolif-
eration of myofibroblasts, the cells responsible for the secre-
tion of soluble pro-fibrotic molecules including growth factors,
cytokines, chemokines, and extracellular matrix (ECM) proteins
that contribute to progression of renal fibrosis. For in-depth
reviews please refer to the following articles (Harris and Neilson,
2006; Duffield, 2014).

A multitude of events and factors were identified to be involved
in the development of renal fibrosis, potentially leading to new
antifibrotic strategies and compounds (Strutz, 2001; Iwano and
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Neilson, 2004; Vilayur and Harris, 2009). However, in humans,
blockade of the renin–angiotensin system (RAS) remains the
only effective therapy (Vilayur and Harris, 2009). Thus, any new
potential anti-fibrotic therapy should be compared to angiotensin
converting enzyme inhibition (ACEi) or AT1 receptor antagonists
(AT1a). In addition, each new drug should be tested in combina-
tion with RAS inhibitors to determine the efficacy as an “add-on”
drug.

We have reported (Klein et al., 2009) that the blockade of the
bradykinin B1 receptor (B1R) was associated to a curative antifi-
brotic effect in the unilateral ureteral obstruction (UUO) model
as well as in a model of glomerulonephritis (Klein et al., 2010).

The aim of the present study was to compare the antifibrotic
potential of a B1R antagonist (B1Ra) to an AT1a in the UUO
model and to investigate whether association of both compounds
results in additive antifibrotic effects compared to each drug indi-
vidually. Drugs were administrated at day 3 post-UUO to evaluate
a curative effect.

We found that B1R antagonism was as efficient as the gold-
standard AT1 antagonism. Bitherapy did not improve the antifi-
brotic effects histologically. However, we observed that, at the
gene expression level, whereas each drug alone down-regulated
significantly 29 and 17 genes (for AT1a and B1Ra, respec-
tively), bitherapy largely increased this number of down regulated
genes.

SUBJECTS AND METHODS
DRUGS
B1Ra SSR240612 was synthesized at Sanofi-Aventis R&D
Montpellier-France (Gougat et al., 2004). The SSR240612 solu-
tion was administered by gavage at a dose of 10 mg/kg/d as
described previously (Klein et al., 2010). AT1a (Valsartan was pur-
chased from Novartis) was administrated by gavage at a dose of
30 mg/kg/d.

ANIMALS
We used C57Bl/6J mice (Harlan). The mice were housed in a
pathogen-free environment. All experiments reported were con-
ducted in accordance with the NIH guide for the care and use of
laboratory animals and were approved by a local animal care and
use committee (CEEA-122 2014-06).

Treatments with the AT1a and B1Ra were started 3 days after
ureteral obstruction surgery and continued throughout the time
(8 days) of obstruction. The control group received one hundred
microliter of water by gavage. At the end of the different protocols,
mice were sacrificed, and the kidneys were removed and divided
in different parts according to the different protocols employed.

UNILATERAL URETERAL OBSTRUCTION (UUO)
Male mice of 8 weeks of age were used for these experiments. The
unilateral ureteral ligation was performed as previously described
(Schanstra et al., 2002; Klein et al., 2009). Briefly, under oxygen-
isoflurane anesthesia and through a longitudinal, left abdominal
incision, the ureter was exposed and ligated with a 6/0 nylon
thread at the uretero-pelvic junction. In sham operations, the
ureter was exposed but not ligated and repositioned. Mice were
maintained on a standard mouse chow and tap water.

IMMUNOHISTOCHEMISTRY AND HISTOLOGICAL ANALYSIS
From paraffin-embedded kidney sections routine histology and
immunohistological staining and analysis were performed as pre-
viously described (Schanstra et al., 2002; Pradere et al., 2007;
Klein et al., 2009, 2010). Three- to four-micrometer sections
were cut and used for routine staining (hematoxylin–eosin and
Sirius red staining) and immunohistochemistry. For immunohis-
tochemistry, mouse renal tissue were first de-waxed in toluene
and rehydrated through a series of graded ethanol washes
before endogenous peroxidase blockage. Specific primary anti-
bodies were incubated (1 h at room temperature) on mouse
kidney sections for the detection of collagen type III (1/500)
(Interchim), an extracellular matrix protein, or F4/80 (1/250)
(RM2900; Caltag laboratories Inc., Burlingame, California, USA),
as a marker of macrophages. For visualization we used the
Dako Envision system. Sections were finally counterstained with
hematoxylin. Negative controls for the immunohistochemical
procedures included substitution of the primary antibody with
non-immune sera.

Histomorphometric analyses were performed as recently
described (Klein et al., 2009) using commercially available image-
analysis software that allows rebuilding of a kidney section from
adjacent individual captures (Explora Nova Mosaïc software, La
Rochelle, France). The number of colored pixel (red or brown)
was determined, by blinded analysis. Results are expressed as per-
centage of specific colored pixel/total number of pixel analyzed.

RNA EXTRACTION AND REVERSE TRANSCRIPTION
Total RNA was purified from frozen renal tissues using the Qiagen
RNeasy® Mini Kit following the manufacturer’s protocol and
digested with TURBO DNase™ (Ambion).

Total RNA was quantified by Nanodrop ND-1000 and
the quality was checked using an Experion Automated
Electrophoresis Station with a RNA StdSens Analysis Kit
and Experion version 2.0 software (Bio-Rad). Ten micrograms
of total RNA were transcribed into cDNA in a total volume of
100 μl using the High Capacity cDNA Archive Kit and performed
according the manufacturer’s instructions (Applied Biosystems).

TaqMan LOW DENSITY ARRAY (TLDA)
The LDA contains eight samples-loading lines, each connected
by microchannel to 48 miniature reaction chambers for a total
of 384 wells per card. We created a � fibrosis� taqMan Low-
density array based on Applied biosystems 7900HT Microfluidic
card. Gene-specific primers and FAM-labeled probes (Assays-
on-Demand, Applied Biosystems) were lyophilized in each well.
We choose 96 genes (Supplementary Table 1): 92 fibrosis-related
genes plus four housekeeping genes (Gapdh, Hmbs, Hprt, 18S)
and configured our LDA cards with four identical 96 genes sets
(two samples in duplicate). The four reference genes were chosen
among 16 that we have tested for their relative stability expression.
Indeed, it has been clearly shown that that normalization against
a single reference gene is not any more acceptable (Murphy and
Bustin, 2009). To reduce the risk of false interpretation of the
gene expression variation, it is necessary to have a optimize nor-
malization with several stable reference genes. To this end we
have evaluated by qPCR the expression of 16 reference genes in
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our different experimental conditions. We used the free geNorm
software to test the stability of 16 reference genes in normal and
fibrotic conditions in presence or not of the different drugs. As
shown in Supplementary Figure 1, the most stable genes in our
different experimental conditions were Gapdh and Hmbs.

One Hundred nanograms of cDNA dissolved in 1X TaqMan
Universal PCR MasterMix (Applied Biosystems) were added to
each line of the array and the reaction was performed on ABI
7900 HT Fast Real-Time PCR System (Applied Biosystems).
The PCR conditions were as follows: 2 min at 50◦C, 10 min at
94.5◦C, 40 cycles of denaturation at 97◦C for 30 s, and anneal-
ing and extension at 59.7◦C for 1 min. The quantitative cycle Cq
was automatically given by SDS 2.2 software package (Applied
Biosystems). The relative amount of each gene mRNA to the mean
of the two housekeeping genes (Gapdh and Hmbs) was calculated
as 2−�Cq where �Cq = Cqgene − Cqmean of housekeeping genes. The
fold-change of each gene mRNA to the normal condition was cal-
culated as 2−��Cq where ��Cq = �Cqgene in fibrotic condition −
�Cqgene in normal condition.

SEMIQUANTITATIVE RT-PCR
Low density array data validation was performed for ten selected
genes as described previously using the Gapdh as housekeeping
gene (Bascands et al., 2009).

STATISTICAL ANALYSIS
Data are expressed as mean plus or minus SD. ANOVA with
post-hoc Tuckey α-test was performed for comparison between

the different groups. p-values less than 0.05 were considered
statistically significant.

RESULTS
EFFECT OF DELAYED ADMINISTRATION OF AT1 AND B1R
ANTAGONISTS ALONE OR IN COMBINATION ON RENAL TISSUE
HISTOLOGY
As expected, from the third day to the eight day after UUO we
observed a progressive increase in macrophage infiltration and
interstitial fibrosis (Figure 1). Both AT1a and B1Ra prevented sig-
nificantly and at the same level the accumulation of macrophages
and ECM. Co-administration of the two antagonists did not show
an additional protective effect on the measured parameters.

PROFILING OF GENES INVOLVED IN FIBROSIS
To better understand the molecular mechanisms involved in the
development of UUO-induced fibrosis and in the response to AT1
and B1R antagonists we performed expression profiling of genes
involved in the development of fibrosis. Figure 2 represents the
expression variations of 87 genes out of the 93 studied since five
genes (Ren2, Agtr2, Klklb1, Igf1, and Il6 which are highlighted in
blue in Supplementary Table 1) were not detected in our condi-
tions, due to either a very low expression level or a poor primer
efficacy.

Among these 87 genes nine genes (Plau, Agtr1, Lnpep (IRAP),
Tgfbr3, Smad7, Cdh2, Bad, Nfkbib, and Pax2) did not show
significant variation after UUO, 13 genes were significantly down-
regulated and 65 genes were significantly up-regulated after 8
days UUO. Interestingly 17 out of the 65 up-regulated genes,

FIGURE 1 | Accumulation of macrophages, extracellular matrix (Sirius

red) and collagen type III in obstructed kidneys 3 and 8 days after UUO

and protective effect induced by administration of the AT1a, B1Ra or

both starting at day 3 following ureteral obstruction surgery. Histograms
represent the semi quantification of the immunohistological staining.
N = 8/group. #P < 0.05 vs. control and ∗P < 0.05 vs. UUO-8 days.
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FIGURE 2 | Gene expression levels after 8 days of UUO compared to

control. Down-regulated genes are displayed by the bars on the left while
up-regulated genes are displayed on the right (fold expression compared to

control). Black bars represent genes that already displayed up- or
down-regulation 3 days after UUO. Each bar represents the mean from eight
animals. Fold expression between −1 and +1 was considered not significant.
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Table 1 | RT-PCR validation of TaqMan Low Density Array (TLDA).

Gene name Fold expression-TLDA Control RT-PCR

Col3a1 +6.27 +3.97

Timp1 +12.34 +22.75

Plaur +3.16 +5.16

Bdkrb1 +2.97 +3.24

Tgfb1 +2.95 +6.13

Bmp7 −1.33 −1.67

Ccl7 +10.89 +36.21

Nos2 +3.22 +7.07

Mt-Co2 +4.96 +12.55

Egf −5.02 −3.76

RT-PCR values represent medium value of eight RT-PCR experiments.

and seven of the 13 down-regulated genes were already mod-
ified 3 days after UUO (Figure 2, black bars on the right and
left-hand side, respectively). These variations were validated
by semi-quantitative RT-PCR on 10 arbitrarily selected genes
(Table 1).

GENE EXPRESSION VARIATIONS INDUCED BY DELAYED
ADMINISTRATION OF AT1 AND B1R ANTAGONISTS ALONE OR IN
COMBINATION
Table 2 shows p-values for genes expression differences in ani-
mals treated by AT1a or B1Ra or both antagonists after 8 days
of UUO. In total, 29 genes were down-regulated by AT1a, 17 by
B1Ra and 54 by the combined treatment. Interestingly, 25 genes
(highlighted in yellow) were not significantly down-regulated by
the antagonists separately, however, the co-administration of both
antagonists led to the significant down regulation of these genes.
Moreover, whereas 15 genes (highlighted in green) and three
genes (highlighted in orange) were specifically down-regulated
by only one treatment (AT1a and B1Ra, respectively), combined
treatment amplified down-regulation of 14 of these 18 genes as
shown by the increased p-value (last column, Table 2). This effect
was particularly marked for Ctgf (highlighted in blue). Conversely
although the B1Ra significantly down regulated Snai1, the addi-
tion of the AT1a led to a non-significant p-value. Similarly Wnt
4 and Nos2 were significantly down regulated by the AT1a and
became non-significant by the co-administration of the B1Ra.

DISCUSSION
The data presented in this study are the first evidence that delayed
treatment with a B1R antagonist is as efficient as AT1 recep-
tor antagonism to slow down renal tubulointerstitial fibrosis.
The results also demonstrate that in our experimental condi-
tions, the effects of both compounds are not additive. Indeed
we do not observe a significant improvement of renal tubu-
lointerstitial fibrosis, assessed by (immuno)histochemistry in the
animal group treated with both antagonists compared to the renal
protective effect observed with each agent individually. To under-
stand the underlying mechanisms of these observations we have
studied the expression level of a number of genes known to be
involved in the renal fibrosis process.

Table 2 | Down regulated genes 8 days after UUO by either

angiotensin type 1 receptor antagonist (AT1a), bradykinin type 1

receptor antagonist (B1Ra) or both AT1a/B1Ra treatments.

AT1a B1Ra AT1a/

B1Ra

MATRIX SYNTHESIS

Col1a1 Collagen, type I, alpha 1 0.03 NS 0.004

Col3a1 Collagen, type III, alpha 1 0.01 0.01 0.01

Col4a1 Collagen, type IV, alpha 1 0.04 NS 0.02

Fn1 Fibronectin 1 0.03 NS 0.005

Tnc Tenascin C 0.004 NS 0.007

MATRIX DEGRADATION

Mmp2 Matrix metallopeptidase 2
(gelatinase A, 72 kDa gelatinase,
72 kDa type IV collagenase)

NS NS 0.003

Mmp9 Matrix metallopeptidase 9
(gelatinase B, 92 kDa gelatinase,
92 kDa type IV collagenase)

0.015 NS 0.02

Timp1 TIMP metallopeptidase inhibitor 1 NS NS 0.001

Timp2 TIMP metallopeptidase inhibitor 2 0.015 NS 0.03

Fbln1 Fibulin 1 0.015 0.045 0.004

Serpine1
(PAI1)

Serpin peptidase inhibitor, clade E
(nexin, plasminogen activator
inhibitor type 1), member 1

0.015 NS 0.001

Plat Plasminogen activator, tissue NS NS 0.01

Plaur Plasminogen activator, urokinase
receptor

NS NS 0.001

RENIN–ANGIOTENSIN SYSTEM

Mas1 MAS1 proto-oncogene, G
protein-coupled receptor

NS NS 0.03

BRADYKININ SYSTEM

Bdkrb2 Bradykinin receptor B2 0.007 0.01 0.004

TGFβ‘S FAMILY

Tgfb1 Transforming growth factor, beta 1 NS NS 0.004

Tgfbr1 Transforming growth factor, beta
receptor 1

NS NS 0.015

Sma2 SMAD family member 2 NS 0.04 0.024

Smad3 SMAD family member 3 NS NS 0.04

Ctgf Connective tissue growth factor NS 0.01 0.00003

Snai1 Snail family zinc finger 1 NS 0.009 NS

Klf10 Kruppel-like factor 10 NS NS 0.01

SIGNALING OF BMP7

Smad7 SMAD family member 7 NS NS 0.046

Skil SKI-like proto-oncogene 0.04 NS 0.01

Dcn Decorin NS NS 0.02

Eng Endoglin NS NS 0.049

TUBULAR FUNCTION

Cldn1 Claudin 1 NS NS 0.03

Itga3 Integrin, alpha 3 (antigen CD49C,
alpha 3 subunit of VLA-3 receptor)

NS NS 0.01

MYOFIBROBLAST MARKERS

Serpinh1 Serpin peptidase inhibitor, clade H
(heat shock protein 47), member 1,
(collagen binding protein 1)

0.0036 0.0085 0.0009

Acta2 Actin, alpha 2, smooth muscle,
aorta

NS NS 0.01

(Continued)
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Table 2 | Continued

AT1a B1Ra AT1a/

B1Ra

TRANSCRIPTION FACTORS

Myc v-Myc avian myelocytomatosis viral
oncogene homolog

0.0045 0.006 0.001

Jun Jun proto-oncogene 0.03 0.03 0.001
Fos FBJ murine osteosarcoma viral

oncogene homolog
0.002 0.0045 0.0017

Nfkb1 Nuclear factor of kappa light
polypeptide gene enhancer in
B-cells 1

NS NS 0.036

DEVELOPMENT

Pax2 paired box 2 0.04 0.02 0.0037
Wnt4 Wingless-type MMTV integration

site family, member 4
0.0045 NS NS

Osmr Oncostatin M receptor 0.015 NS 0.001
INFLAMMATION

Il1b Interleukin 1, beta 0.003 0.009 0.001
Il6 Interleukin 6 0.01 NS 0.001
Pparg Peroxisome proliferator-activated

receptor gamma
NS NS 0.004

Tnf Tumor necrosis factor 0.005 NS 0.03
Tnfrsf11b Tumor necrosis factor receptor

superfamily, member 11b
0.03 NS 0.001

Ccl2 Chemokine (C-C motif) ligand 2 0.002 0.002 0.001
Ccl5 Chemokine (C-C motif) ligand 5 0.015 0.006 0.049
Ccl7 Chemokine (C-C motif) ligand 7 0.002 0.002 0.001
Cd68 CD68 molecule 0.04 0.03 0.005
Spp1 Secreted phosphoprotein 1 NS NS 0.015
Icam1 Intercellular adhesion molecule 1 NS NS 0.015
Sele Selectin E NS NS 0.02
VASCULAR SYSTEM

Nos2 Nitric oxide synthase 2, inducible 0.015 NS NS
Thbs1 Thrombospondin 1 0.0045 0.035 0.004
APOPTOSIS

Bad BCL2-associated agonist of cell
death

NS NS 0.049

Bax BCL2-associated X protein NS NS 0.02
Casp3 Caspase 3, apoptosis-related

cysteine peptidase
NS NS 0.02

Casp8 Caspase 8, apoptosis-related
cysteine peptidase

NS NS 0.02

OXYDATIVE STRESS

HMOX1 Heme oxygenase (decycling) 1 NS NS 0.03
Mt-Co2 Mitochondrially encoded

cytochrome c oxidase II
0.007 NS 0.001

Each value represents the p-value, NS, Non-Significant. Green boxes repre-

sent genes exclusively down regulated by AT1a. Orange boxes represent genes

exclusively down regulated by the B1Ra. Yellow boxes represent genes exclu-

sively down regulated by co-administration of AT1a and B1Ra. The additive effect

of co-treatment for CTGF gene expression is highlighted in blue.

As already reported (Morrissey et al., 1996; Klahr, 2000;
Chevalier et al., 2009; Duffield, 2014), we confirmed the up- or
down-regulation of several genes involved in the renal fibrotic
process following ureteral obstruction such as Tgfb1, Ctgf,

collagens types (I, III, IV), fibronectin, Nfkb, growth factors,
chemokines, etc... We also confirmed at the tissue level the antifi-
brotic effect of AT1a (Ishidoya et al., 1995) and B1Ra (Klein et al.,
2009). At the gene level, 29 genes were modified by AT1a and 17
by B1Ra. Surprisingly, most of the genes down-regulated by the
B1Ra were common to those modified by the AT1a treatment, as
only three out of 17 were specifically down-regulated by the B1Ra.
However, it is very interesting to point out that the B1Ra specif-
ically down-regulated Snai1 and Ctgf. Indeed, these two genes
are crucial in the renal fibrotic mechanism since they are key
downstream effectors of the TGFβ pathway and consequently sig-
nificantly involved in the appearance of myofibroblasts and the
production of ECM (Qi et al., 2005; Yoshino et al., 2007).

Interestingly, although each antagonist individually was able
to induce down-regulation of fibrotic genes, a clear synergistic
effect of the combination of both antagonists was observed on
the expression of a number of genes. This point is illustrated by
the significant further down-regulation of Tnfrsf11b in presence
of both antagonists. This effect on Tnfrsf11b is quite relevant
since the HSP47 is clearly involved in renal fibrogenesis through
its role in collagen biosynthesis (Razzaque et al., 2005). In addi-
tion, in vivo, the use of small interfering RNA against Tnfrsf11b
mRNA significantly decreases interstitial collagen accumulation
(Xia et al., 2008).

Similarly, co-administration of both antagonists significantly
down-regulated 25 genes that were not modified by the drugs
alone including the profibrotic gene Tgfb1 (Garcia-Sanchez et al.,
2010) as well as nuclear factor Nfkb (Guijarro and Egido, 2001).
The observed down-regulation of those two genes could in part
explain the down-regulation of the other genes which are either
under the direct control of NF-κB or stimulated by TGFβ1.

In addition we observed for around ten genes, mainly involved
in extra-cellular matrix accumulation, an incremental nephro-
protective effect by the addition of the B1Ra to the already
well-known AT1a therapeutic effect. This effect was demonstrated
by the increased p-values observed in the presence of both antag-
onists while for single administration, only the AT1a induced a
significant down-regulation. Conversely whereas Smad2 and Ctgf
were only down regulated by the B1Ra, the association of the
AT1a led to a significant decrease in the p-value. This drop in the
p-value was particularly impressive for Ctgf. The down-regulation
of Ctgf by the B1Ra was not unexpected since we have previ-
ously reported this effect (Klein et al., 2009) in the UUO model
and an in-vitro study has demonstrated that the B1R stimula-
tion induced collagen type I synthesis via stabilization of Ctgf
mRNA (Ricupero et al., 2000). However, we did not expect exac-
erbation of the effect by the combination with an AT1a. This
strongly suggests that both inhibitors stimulate different path-
ways leading to the inhibition of Ctgf expression. Indeed it is
well-known that Angiotensin II induces TGFβ1 expression (Wolf,
2006) and the induction of CTGF by TGFβ1 has been shown to be
Smad3 and Smad4 dependent and Smad2 independent (Phanish
et al., 2006). On the other hand we observed in the present study
that the B1Ra induced an inhibition of Smad2 expression, which
might represent an additional pathway in the regulation of Ctgf
expression. On the contrary, as shown in Table 2, Snail1, Wnt4,
and Nos2, which were significantly down-regulated either by the
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B1Ra or the AT1a became non-significantly down-regulated with
the co-administration of both antagonists. Keeping in mind the
role of Snail1 and Wnt4 in the fibrotic process (Surendran et al.,
2002), one could expect an impact on the loss of the epithelial
phenotype leading to an increased appearance of myofibroblasts,
however the significant decrease in the expression of Tnfrsf11b
and Acta2, two myofibroblast-markers, do not comfort this
hypothesis. Regarding Nos2 mRNA expression, a non-significant
down-regulation might be beneficial since it suggests increased
NO production, which is well-known to be nephroprotective
(Morrissey et al., 1996).

Finally despite these positive effects observed at the level of
gene expression we observed the absence of a visible protective
effect at the tissue level at least in our experimental conditions.
We hypothesize that the absence of effect at the tissue level has
to be related to both the UUO model and the curative protocol
used. The UUO model has the drawback of its advantages, it is an
accelerated and reproducible in vivo model of renal fibrosis and
therefore easy to use in the laboratory, but is far from mimick-
ing the timescale of progression of fibrotic CKD which in human
evolves over years. Thus, although the UUO model is widely
used to identify early profibrotic events, potential profibrotic pro-
tein/pathways as well as antifibrotic molecules (Bascands and
Schanstra, 2005), this model is most likely too drastic and not
enough progressive to appreciate histologically any significant
additive therapeutic effect. Indeed, although recent studies using
this UUO model have reported additive antifibrotic effect of var-
ious drugs such as paricalcitol (Tan et al., 2009), pioglitazone
(Higashi et al., 2010), and Rho-kinase inhibitor (Takeda et al.,
2010) with renin angiotensin-inhibitors, those beneficial addi-
tive effects were obtained by preventive treatment, whereas in
our study we attempted to demonstrate a therapeutic effect by
administrating the compounds 3 days after induction of disease.

In summary the most important result of the present study
is that kinin B1 receptor antagonism is as efficient in reducing
renal fibrosis as angiotensin receptor 1 antagonism in the UUO
model using a curative treatment protocol. This point has to be
kept in mind because (i) the B1R is induced specifically in the dis-
eased organ and thus potentially displays low side effects and (ii)
it might become an alternative therapy in cases of poor tolerability
due to the known adverse effects (chronic cough, hyperkalemia,
angio-edema) of angiotensin converting enzyme inhibitors or to
a lesser extent of AT1 receptor antagonist.

If targeting the renin–angiotensin system is now a well-
admitted therapy for CKD, our data strongly suggested that a
combination therapy associating an AT1a and a B1Ra might
be much more effective to slow down the progression of renal
fibrosis. However, this combination has to be evaluated in more
chronic model (such as subtotal nephrectomy, glomerulonephri-
tis, diabetic nephropathy) of renal disease associated to the slow
progression of renal fibrosis.
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