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Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors,
lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some
inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of
nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes
hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled
manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2
pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter.
SLC29 genes encode four members, being hENT1 and hENT2 the only two which are
unequivocally implicated in the translocation of nucleosides and nucleobases (the latter
mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can
also interact with and be translocated by members of the SLC22 gene family, particularly
hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps,
more importantly, altered expression associated with the disease itself might modulate
the transporter profile of target cells, thereby determining drug bioavailability and action.
Drug transporter pharmacology has been periodically reviewed.Thus, with this contribution
we aim at providing a state-of-the-art overview of the clinical evidence generated so far
supporting the concept that these membrane proteins can indeed be biomarkers suitable
for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can
also be envisaged as drug targets, as long as they can show “transceptor” functions, in
some cases related to their role as modulators of extracellular adenosine levels, thereby
providing a functional link between P1 receptors and transporters.
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Nucleosides and nucleotides play important roles in cell physi-
ology both as nutrients and modulators of cellular homeostasis.
They are implicated in crucial processes such as DNA and RNA
synthesis, cell signaling, and metabolic regulation. Moreover,
nucleoside and nucleobase analogs are currently used in the
treatment of solid tumors, lymphoproliferative diseases, viral
infections such as hepatitis and AIDS, and some inflammatory
diseases such as Crohn (Minuesa et al., 2011; Jordheim et al.,
2013). Nucleosides and nucleoside-derived drugs are hydrophilic
molecules and diffuse, if they can, slowly across cell mem-
branes. Thus, to exert their physiological and cytotoxic effects,
specific membrane transporters that mediate their flux across
cell membranes are required. Nucleoside transporters (NTs)
are integral membrane proteins implicated in the salvage of

Abbreviations: CLL, chronic lymphocytic leukemia; CMV, cytomegalovirus; CNT,
concentrative nucleoside transporter; DFS, disease free survival; ENT, equilibrative
nucleoside transporter; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human
immunodeficiency virus; HSV, herpes simplex virus; NBTI, nitrobenzylthioino-
sine; NT, nucleoside transporter; OAT, organic anion transporter; OCT, organic
cation transporter; OCTN, organic cation/carnitine transporters; OS, overall sur-
vival; PEPT, peptide transporter; SLC, solute carrier transporter; SVR, sustained
virological response.

natural nucleobases and nucleosides for nucleic acid synthesis.
NTs belong to solute carrier families 28 and 29 (SLC28 and
SLC29), which encode human concentrative nucleoside trans-
porters (hCNT) and equilibrative nucleoside transporter proteins
(hENTs), respectively (Molina-Arcas et al., 2009; Pastor-Anglada
et al., 2009; Cano-Soldado and Pastor-Anglada, 2012; Molina-
Arcas and Pastor-Anglada, 2013). However, the chemical modi-
fications of the nucleoside analogs can alter their ability to interact
with canonical transporter proteins implicated in the uptake of
natural nucleosides. The paradigm of this concept is the lack
of interaction of hCNT1 with those antiviral drugs lacking the
3′OH of the ribose, which appears to be an essential struc-
tural requirement for substrate translocation (Cano-Soldado et al.,
2004). In fact, the structural requirements for nucleoside-NT
interactions have already been reviewed elsewhere (Cano-Soldado
and Pastor-Anglada, 2012). Therefore, in some cases additional
carrier proteins become major players in drug bioavailability, and
likely, drug action. In this sense, members of the SLC22 gene fam-
ily, which encode human organic cation transporters, (hOCTs)
and organic anion transporters (hOATs) are also implicated in
the uptake of nucleoside-derived drugs (Minuesa et al., 2011).
Moreover, although both hENT1 and hENT2 have been reported
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to translocate some nucleobases (Yao et al., 2011), other trans-
porter proteins might contribute to the uptake of purine and
pyrimidine nucleobases into cells despite the molecular entity
behind them still have to be identified (Wallace et al., 2002;
Quashie et al., 2010).

NUCLEOSIDE-DERIVED DRUG TRANSPORTERS
SLC28
The three human CNT proteins (hCNTs) mediate the unidirec-
tional flow of nucleosides in an energy-costly process coupled to
the influx of sodium ions. All three members of the SLC28 gene
family accept uridine as substrate, but differ in their selectivity
for other substrates. Thus, hCNT1 prefers pyrimidine nucle-
osides, hCNT2 purine nucleosides and uridine, and hCNT3
transports both pyrimidine and purine nucleosides. Importantly,
they all have the ability of translocating selected nucleoside-
derivatives currently used in anticancer and antiviral therapies,
being major determinants of drug action (Huber-Ruano and
Pastor-Anglada, 2009; Errasti-Murugarren and Pastor-Anglada,
2010). The sodium/nucleoside coupling ratio of hCNT1 and
hCNT2 is 1:1, while hCNT3 shows a 2:1 stoichiometry (Smith
et al., 2004, 2007). Interestingly, hCNT3 is the only trans-
porter in this family able to accept protons as driving force
(Smith et al., 2005; Gorraitz et al., 2010). Based upon its broad
selectivity and highly potential concentrative activity, hCNT3
is considered to be a major player in nucleoside-derived drug
uptake.

hCNT proteins, initially thought to be expressed almost exclu-
sively in polarized epithelia, are in fact broadly expressed but
not ubiquitous. In most polarized epithelia, these proteins local-
ize at the apical membrane, thus facilitating vectorial flux of
nucleosides across the barriers (Mangravite et al., 2001, 2003; Lai
et al., 2002; Errasti-Murugarren et al., 2007). In fact, CNTs are
expressed in all tissues which are considered to be relevant for
drug pharmacokinetics (i.e., intestine, kidney, liver, and blood
brain barrier).

SLC29
The human ENT proteins (hENTs) family contain four mem-
bers, hENT1-4 (Molina-Arcas et al., 2009; Pastor-Anglada et al.,
2009; Cano-Soldado and Pastor-Anglada, 2012; Molina-Arcas and
Pastor-Anglada, 2013). hENTs, except hENT4, mediate the facil-
itative transport of natural nucleosides with broad selectivity but
relatively lower affinity than their CNT-type counterparts (Bald-
win et al., 2004; Young et al., 2008). In fact, hENT1-3 proteins
transport both purine and pyrimidine nucleosides, despite signifi-
cant differences in substrate selectivity. The two best-characterized
transporters hENT1 and hENT2 can be distinguished on the
basis of their sensitivity to inhibition by the nucleoside ana-
log NBTI, with hENT1 being much more sensitive than hENT2.
Both transporters are also inhibited by vasodilation potentia-
tors including dipyridamole and dilazep, being hENT1 also more
sensitive than hENT2 (Visser et al., 2002). Additionally, hENT2
transports nucleobases (Osses et al., 1996). Moreover, hENT1
has recently been shown to transport some nucleobases, albeit
with low kinetic efficiencies compared to hENT2 (Yao et al.,
2011). hENT3 can also transport the nucleobase adenine and

is not sensitive to inhibition by NBTI. This transporter protein
was initially reported to be localized in lysosomes and, more
recently, identified in mitochondria (Govindarajan et al., 2009).
hENT3 is the only NT studied to date that has been associ-
ated with inherited human diseases. Several syndromes, including
the H syndrome (Molho-Pessach et al., 2008, 2014; Bolze et al.,
2012; Huber-Ruano et al., 2012) and the pigmented hypertri-
chosis with insulin dependent diabetes (PHID) syndrome (Spiegel
et al., 2010) have been associated with mutations in the SLC29A3
gene. Finally, hENT4 may not be considered a “canonical” NT
because it mostly transports organic cations, although it is a suit-
able adenosine transporter under acidic pH conditions (Barnes
et al., 2006).

hENT1 and hENT2 are ubiquitously distributed, but differ in
abundance among tissues and cell types (Baldwin et al., 2004).
These transporters seem to be mainly, but not exclusively, local-
ized at the basolateral side of polarized epithelial cells (Lai et al.,
2002; Mangravite et al., 2003), contributing to the vectorial flux of
nucleosides across these barriers.

SLC22
The organic ion transporter family, SLC22, includes 22 trans-
porters. Within the family, there are several subfamilies, which
consist of members that cluster together based on sequence
homology, including the OATs, the OCTs, and the OCTNs.

hOCT1, hOCT2, and hOCT3 are encoded by genes SLC22A1-3
(Koehler et al., 1997; Grundemann et al., 1998; Grundemann
and Schomig, 2000). Transport of organic cations by hOCTs is
electrogenic, sodium-independent, and bidirectional across the
plasma membrane. The driving force is supplied by the elec-
trochemical gradient of the transported organic cation. These
proteins display broad substrate selectivity, transport positively
charged compounds with a relative molecular mass below 500
and target both endogenous (hormones, neurotransmitters, cre-
atinine, and others) and exogenous molecules (antiviral, antidia-
betic, antiemetic, cytostatic among other drugs). hOCTs exhibit
broad tissue distribution and are expressed in epithelial cells
and neurons (Koepsell et al., 2003; Muller et al., 2005), whereas
its occurrence in immune system cells has also been reported
(Minuesa et al., 2008).

hOAT1, hOAT2, hOAT3, and hOAT4 are encoded by genes
SLC22A6-8 and 11 (Rizwan and Burckhardt, 2007; VanWert
et al., 2010). hOATs exchange extracellular against intracellular
divalent organic anions. The concentration of the intracellu-
lar organic anion must be higher in the cytosol than out-
side the cell in order to drive the uptake of organic anions
through OATs. This concentration difference is maintained by
sodium-coupled anion transporters located at the same mem-
brane as the respective OATs. These proteins accept a huge
variety of chemically unrelated endogenous and exogenous
organic anions including many drugs (Koepsell, 2013). OATs
play a pivotal role in renal excretion of water-soluble, nega-
tively charged organic compounds including endogenous waste
products, numerous drugs, and drug metabolites. OATs are
located at the plasma membrane of epithelial cells of proxi-
mal tubules, the site of efficient renal organic anion secretion.
Selected OATs are present also outside the kidneys, e.g., in liver,
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placenta, nasal epithelium, and brain, where they serve spe-
cial functions (VanWert et al., 2010; Burckhardt, 2012; Koepsell,
2013).

Although the SLC22 family include other members, those are
the ones that are most likely to transport nucleoside analogs
(Errasti-Murugarren and Pastor-Anglada, 2010; Minuesa et al.,
2011; Koepsell, 2013).

NUCLEOSIDE ANALOGS IN MEDICINAL CHEMISTRY
NUCLEOSIDE ANALOGS IN CANCER TREATMENT
Nucleoside analogs were among the first chemotherapeutic agents
used in the treatment of malignant diseases and today their
activity is well established, showing a broad clinical use. The
research on purines and purine analogs was recognized with
the Nobel Prize in Physiology or Medicine in 1988. In the early
50’ Gertrude Elion and George Hitchings developed thioguanine
and 6-mercaptopurine (6-MP) against leukemia. Later, they also
developed, azathioprine, a drug that prevents rejection of trans-
planted organs and allopurinol which is used in the treatment
of gout. Essentially, their research involved the rational devel-
opment of a series of new drugs based upon the understanding
of basic biochemical and physiological processes (Elion, 1989).

(http://www.nobelprize.org/nobel_prizes/medicine/laureates/
1988/press.html).

The anticancer nucleosides include analogs of pyrimidine and
purine nucleosides (Table 1). The basic mechanism of action
of most nucleoside analogs used in cancer treatment is similar
(Parker, 2009). They get into cells where they are converted to
analogs of cellular nucleotides (often the real active drugs) by
enzymes of either the purine or the pyrimidine metabolic path-
ways. Nucleotide drugs can then be incorporated into nucleic acids
and, in most cases, inhibit enzymes implicated in DNA synthesis,
causing DNA damage and induction of apoptosis. Selective dif-
ferences among them can also be found and they often rely upon
their ability to interact with enzymes of the purine and pyrimidine
salvage pathways.

In general, purine nucleosides work almost exclusively against
hematological malignancies, while pyrimidine analogs typically
show efficacy against both blood cancers and solid tumors. NTs
display different affinities for the analogs and their substrate selec-
tivity has been comprehensively reviewed elsewhere. Thus, the
tissue distribution of the transporters has a large impact on their
therapeutic effect. As expected, purine-based nucleoside analogs
such as fludarabine, cladribine, and clofarabine are substrates for

Table 1 | Nucleoside analogs used for cancer treatment.

Drug name Therapeutic use Analogous to FDA

approval

Identified uptake transporter Reference

Mercaptopurine Lymphoproliferative diseases Purine 1953 hCNT3, hENT1, hENT2 Fotoohi et al. (2006), Yao

et al. (2011)

Cytarabine Lymphoproliferative diseases Pyrimidine 1969 hCNT1, hENT1, hENT2 Smith et al. (2004), Clarke

et al. (2006)

Fludarabine Lymphoproliferative diseases Purine 1991 hCNT2, hCNT3, hENT1, hENT2 King et al. (2006)

Pentostatin Lymphoproliferative diseases Purine 1991 hENT1, hENT2 Wiley et al. (1991)

Cladribine Lymphoproliferative diseases Purine 1993 hCNT2, hCNT3, hENT1, hENT2 King et al. (2006)

Azacitidine Lymphoproliferative diseases Pyrimidine 2004 hCNT1, hCNT2, hCNT3, hENT1,

hENT2, hENT3, hENT4

Rius et al. (2009),

Damaraju et al. (2012)

Clofarabine Lymphoproliferative diseases Purine 2004 hCNT2, hCNT3, hENT1, hENT2 King et al. (2006)

Nelarabine (AraG)1 Lymphoproliferative diseases Purine 2005

Decitabine Lymphoproliferative diseases Pyrimidine 2006 hENT1, hENT2 Damaraju et al. (2012),

Arimany-Nardi et al. (2014)

Floxuridine Solid tumors Pyrimidine 1970 hCNT1, hCNT2, hCNT3 Lang et al. (2001), Smith

et al. (2004), Hu et al.

(2006)

Gemcitabine Solid tumors Pyrimidine 1996 hCNT1, hCNT3, hENT1, hENT2,

hENT3

Mackey et al. (1999), Hu

et al. (2006), Govindarajan

et al. (2009)

Capecitabine (5-DFUR)2 Solid tumors Pyrimidine 1998

5-Fluorouracil Solid tumors Pyrimidine 1998 hENT1, hENT2, hOAT2 Kobayashi et al. (2005), Yao

et al. (2011)

1Nelarabine is a prodrug of AraG, which is translocated by hENT1 and hENT2 (Prus et al., 1990).
2Capecitabine is a prodrug of 5-DFUR, which is translocated by hCNT1, hCNT2, hCNT3, hENT1 and hENT2 (Lang et al., 2001; Mata et al., 2001; Molina-Arcas et al.,
2006; Errasti-Murugarren et al., 2007). In gray, transporters for which weak substrate interaction has been reported.
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hENT1, hENT2, hCNT3, and hCNT2 (Lang et al., 2001; Molina-
Arcas et al., 2005; King et al., 2006; Owen et al., 2006; Errasti-
Murugarren and Pastor-Anglada, 2010). Conversely, pyrimidine
analogs such as gemcitabine, cytarabine, and azacytidine are
transported by hCNT1 in addition to hENT1, hENT2, and
hCNT3 (Mackey et al., 1999; Smith et al., 2004; Clarke et al.,
2006; Endo et al., 2007; Errasti-Murugarren et al., 2007; Errasti-
Murugarren and Pastor-Anglada, 2010; Arimany-Nardi et al.,
2014). Nucleobases, such as 5-fluorouracil and 6-MP have also
been reported to interact with hENT1 and hENT2 proteins,
although their affinity constants are within the mM range
(Yao et al., 2011).

NUCLEOSIDE ANALOGS IN VIRAL DISEASES
During the past two decades, antiviral drugs have become cru-
cial in the management of several viral infections, including
HSV, HIV, HBV, HCV, and CMV infections. Prominent among
these drugs are nucleoside derivatives(Table 2), which can act as
potent antiviral agents owing to their ability to inhibit viral DNA
polymerases and reverse transcriptases, which have key roles in
the various viral life cycles. Antiviral nucleoside and nucleotide
analogs are structurally more diverse than anticancer nucleo-
side analogs, as they consist of nucleosides, nucleotides, and
acyclic nucleosides (De Clercq and Holy, 2005). Acyclic nucle-
osides have been approved for the treatment of various DNA
virus infections (cidofovir), hepatitis B (adefovir), and AIDS
(tenofovir).

Some NT proteins and particularly, but not exclusively, the
broad selective transporter hCNT3 can interact and translo-
cate different types of antiviral drugs, such as ribavirin and
zidovudine, among others (Hu et al., 2006; Errasti-Murugarren
et al., 2007). However, hOCT proteins also appear to inter-
act with these drugs with high affinity, lamivudine being a
substrate and tenofovir, abacabir, and zidovudine high affinity
inhibitors of hOCT1, hOCT2, and hOCT3 (Minuesa et al., 2009).
This might be particularly relevant in the clinics, because AIDS
patients are under combined therapy and hOCT1 and hOCT3
are highly expressed in target cells (i.e., CD4+ T cells; Minuesa
et al., 2008). Moreover, hOCTs (particularly hOCT1) are highly
polymorphic proteins, with some variants showing high allelic
frequency and already shown to be relevant in the pharmacoki-
netics of other drugs such as metformin (Errasti-Murugarren
and Pastor-Anglada, 2010). Other SLC22 members might also
interact with nucleoside-derived drugs (Errasti-Murugarren and
Pastor-Anglada, 2010; Cano-Soldado and Pastor-Anglada, 2012),
whereas for novel drugs at the pre-clinical stages, or even
in the clinics such as the pronucleotide sofosbuvir, the best
candidates to mediate their cellular uptake still have to be
identified.

NUCLEOSIDE ANALOGS IN INFLAMMATORY DISEASES
The thiopurines, 6-MP, and its pro-drug azathioprine (AZA)
have been a cornerstone of medical management of patients
with inflammatory bowel disease (IBD) and many rheumatoid
disorders.

Thiopurines are metabolized to their end products,
6-methymercaptopurine (6-MMP) and the 6-thioguanine

nucleotides (6-TGN). Although these nucleotides disturb proper
DNA synthesis it has not been conclusively shown, that 6-TGN
are the only molecules responsible for proper action. However,
immunosuppressive function seems to be mediated in part by
induction of apoptosis in lymphocytes. A correlation of ther-
apeutic benefit and 6-TGN levels has been put into question.
Although thiopurines are widely used, several safety concerns
remain regarding the optimal treatment regimens. Thioguanine
has been proposed as an alternative to overcome such problems,
as it skips the metabolic conversion to 6-MMP which is responsi-
ble for hepatotoxicity (Bar et al., 2013; Frei et al., 2013; Friedman
et al., 2014).

TRANSPORTERS AS BIOMARKERS
Transporter function may be influenced by multiple factors and is
likely to be highly variable among individuals (Nies et al., 2009;
Sakamoto et al., 2013; Prasad et al., 2014). Thus, interindivid-
ual heterogeneity in response to therapy can be somehow related
to inherent transporter function variability among patients and
also to altered transporter expression in target cells, even as a
result of the disease itself. In this context, transportome pro-
files and their associated pharmacogenetics might prove suitable
for the prediction of treatment outcomes, and ideally should be
helpful in decision making processes, such as choice of treat-
ment (drug and dose) and in anticipating drug–drug interactions
when patients face drug combination schedules. In fact, drug
transporters can often be inhibited by numerous compounds,
either other drugs or endogenous substrates, typically by com-
petition for recognition and binding. These interactions may
even result in altered drug pharmacokinetics. Genetic hetero-
geneity of the transporter-encoding genes may also determine
variable transporter function, either by increasing or by reducing
the individual overall exposure to a substrate, also depend-
ing upon the tissue expression and localization of particular
transporters.

In summary, inter-individual differences in transporter expres-
sion and function and, perhaps more importantly, altered expres-
sion either due to the oncogenic process itself, to viral infection or
to inflammation might modulate the transporter profile of target
cells, thereby determining drug bioavailability and action.

BIOMARKERS OF DRUG SUSCEPTIBILITY
As mentioned above, NT proteins are necessary for nucleo-
side analogs to enter into cells and exert their pharmacological
action. The analysis of the role played by NTs in drug sensitiv-
ity and clinical outcomes of cancer patients initially focused on
lymphoproliferative diseases.

Leukemic cells express both CNTs and hENTs and the analysis
of these proteins in cells from 22 patients with primary CLL cells
similarly expressed hENT1, hENT2, hCNT2, and hCNT3 mRNAs.
However, fludarabine accumulation in CLL cells is mainly medi-
ated by hENT1 and hENT2 (Molina-Arcas et al., 2003). Moreover,
fludarabine transport correlates with hENT2 protein expression
and activity, whereas in Mantle Cell Lymphoma (MCL) hENT1
correlates with ex vivo gemcitabine sensitivity (Marce et al., 2006).

Furthermore, data suggest that hENT1 expression influences
response to cytarabine, but not sufficient to support its use as
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Table 2 | Nucleoside analogs used as antiviral agents.

Drug name Therapeutic use Analogous to FDA

approval

Identified uptake

transporter

Reference

Ribavirin HCV Purine 1998 hCNT2, hCNT3, hENT1,

hENT2

Jarvis et al. (1998), Patil et al. (1998),

Hu et al. (2006), Govindarajan et al.

(2008), Fukuchi et al. (2010)

Sofosbuvir HCV Purine 2013 hOATP1B1 Furihata et al. (2014)

Adefovir HBV Purine 2003 hOAT1, hOAT3 Cihlar et al. (1999, 2001), Uwai et al.

(2007)

Entecavir HBV Purine 2004 hOAT1, hOAT3, hPEPT2 Xu et al. (2013, 2014)

Telbivudine HBV Pyrimidine 2006

Lamivudine HIV, HBV Pyrimidine 1995 hENT3, hOCT1, hOCT2,

hOCT3

Jung et al. (2008), Govindarajan

et al. (2009), Minuesa et al. (2009)

Tenofovir HIV, HBV Purine 2001 hOAT1, hOAT3 Cihlar et al. (2001), Uwai et al. (2007)

Emtricitabine HIV, HBV Pyrimidine 2003 hOCT1, hOCT2, hOCT3 Minuesa et al. (2009)

Zidovudine HIV Pyrimidine 1987 hCNT1, hCNT3, hENT2,

hENT3, hOAT1, hOAT2,

hOAT3, hOAT4

Yao et al. (2001), Takeda et al. (2002),

Cano-Soldado et al. (2004), Smith

et al. (2004), Baldwin et al. (2005),

Hu et al. (2006), Minuesa et al.

(2009)

Didanosine HIV Purine 1991 hCNT2, hCNT3, hENT1,

hENT2, hENT3

Ritzel et al. (1998, 2001), Yao et al.

(2001), Baldwin et al. (2005), Hu

et al. (2006)

Zalcitabine HIV Pyrimidine 1992 hCNT3, hENT1, hENT2,

hOCT1, hOCT2

Ritzel et al. (2001), Yao et al. (2001),

Baldwin et al. (2005), Jung et al.

(2008)

Stavudine HIV Pyrimidine 1994 hCNT1, hCNT3, hENT3 Cano-Soldado et al. (2004), Hu et al.

(2006), Govindarajan et al. (2009)

Abacavir HIV Purine 1998 hOCT1, hOCT2, hOCT3 Minuesa et al. (2009)

Acyclovir Herpes Purine 1982 hOCT1, hOAT1, hOAT2 Takeda et al. (2002), Cheng et al.

(2012)

Penciclovir Herpes Purine 2002 hOAT1, hOAT2, hOAT3 Cheng et al. (2012)

Famciclovir (Penciclovir)1 Herpes Purine 2007

Ganciclovir Herpes, CMV Purine 1989 hOCT1, hOAT1, hOAT2 Takeda et al. (2002), Cheng et al.

(2012)

Valaciclovir

(Acyclovir valyl ester)

Herpes, CMV,EBV Purine 1996 hPEPT1, hPEPT2,

ATB(0,+)

Ganapathy et al. (1998), Hatanaka

et al. (2004)

Cidofovir CMV Pyrimidine 1996 hOAT1, hOAT3 Cihlar et al. (1999), Uwai et al. (2007)

Valganciclovir

(Ganciclovir valyl ester)

CMV Purine 2001 hPEPT1, hPEPT2,

ATB(0,+)

Sugawara et al. (2000), Umapathy

et al. (2004)

1Famciclovir is a prodrug of Penciclovir.
In gray, transporters where only interaction has been demonstrated.

a biomarker for guiding treatment in Acute Myeloid Leukemia
(AML). In any case, permeant nucleoside analogs have been
designed as a way to bypass NT function. Thus the activity of
elacytarabine (the elaidic acid ester derivative of cytarabine) is
not significantly predicted by the hENT1 expression level (Rizzieri
et al., 2014).

To date, most studies in solid tumors focused on hENT1 levels
and clinical response to gemcitabine, mainly in pancreatic cancer
(Table 3). Comprehensive in vitro evidence supports the view that
hENT1 activity is a key determinant of gemcitabine action. Over-
expression of hENT1 enhances gemcitabine response in human
pancreatic cancer, and cells lacking hENT1 expression are highly
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Table 3 | hENT1 expression and clinical response.

Transporter Treatment Assay Cancer type n = Analysis Reference

hENT1 GE containing chemotherapy IHQ NSCLC 24 Response to therapy Oguri et al. (2007)

hENT1 GE qRT-PCR Bladder 12 Complete response Mey et al. (2006)

hENT1 GE-CDDP IHQ Bladder 40 OS Matsumura et al. (2011)

hENT1 GE IHQ Biliary tract 31 TTP Santini et al. (2011)

hENT1 GE IHQ Biliary tract 26 OS and PFS Borbath et al. (2012)

hENT1 GE IHQ Biliary tract 105 OS Kobayashi et al. (2012)

hENT1 GE IHQ Biliary tract 28 OS Murata et al. (2013)

hENT1 GE monotherapy after operation IHQ Pancreas 434 OS Greenhalf et al. (2014)

hENT1 GE IHQ Pancreas 169 Not a prediction biomarker Ormanns et al. (2014)

hENT1 GE plus S-1 after operation IHQ Pancreas 109 OS and DFS Nakagawa et al. (2013)

hENT1 GE-based chemoradiation after operation IHQ Pancreas 95 RFS Fisher et al. (2013b)

hENT1 GE-based chemotherapy IHQ Pancreas 44 OS and DFS Xiao et al. (2013)

hENT1 GE-based chemotherapy before operation IHQ Pancreas 55 OS Murata et al. (2012)

hENT1 GE-based chemotherapy after operation IHQ Pancreas 27 OS and DFS Morinaga et al. (2012)

hENT1 GE-based chemoradiation after operation IHQ Pancreas 222 OS Maréchal et al. (2012)

hENT1 GE plus S-1 IHQ Pancreas 86 OS and DFS Kondo et al. (2012)

hENT1 GE-based chemotherapy after operation qRT-PCR Pancreas 40 OS Fujita et al. (2010)

hENT1 GE-based chemoradiation after operation IHQ Pancreas 45 OS and DFS Maréchal et al. (2009)

hENT1 GE-based chemoradiation after operation IHQ Pancreas 91 OS and DFS Farrell et al. (2009)

hENT1 GE adjuvant and palliative qRT-PCR Pancreas 81 OS Giovannetti et al. (2006)

hENT1 GE palliative IHQ Pancreas 21 OS Spratlin et al. (2004)

resistant to gemcitabine (Mori et al., 2007; Perez-Torras et al.,
2008, 2013). There is increasing evidence supporting the view that
hENT1 is a predictive biomarker for the use of gemcitabine. Several
studies have explored hENT1 expression in gemcitabine-treated
solid tumors with various techniques (immunohistochemistry and
qRT-PCR) and different treatment regimens trying to establish
correlations with patient outcomes. The first studies demonstrated
that hENT1 expression was prognostic in pancreatic cancer, but
this research included both early (resected) and advanced disease,
which were mostly treated with gemcitabine (Spratlin et al., 2004;
Giovannetti et al., 2006). Later, in patients with pancreatic cancer
from a randomized phase III RTOG 9704 study, hENT1 expres-
sion was associated with increased OS and DFS in patients who
received adjuvant gemcitabine chemotherapy, but not on those
who received 5-fluorouracil (Farrell et al., 2009). Moreover, in an
analysis of 45 pancreatic cancer patients treated with postopera-
tive adjuvant gemcitabine-based chemoradiation therapy, patients
with high hENT1 expression had significantly longer DFS and OS
than those with low hENT1 expression, and hENT1 expression was
the only independent predictor for DFS and OS (Maréchal et al.,
2009). Additional studies conducted up to now have provided
encouraging but not yet convincing evidence of the use of this
transporter as a suitable biomarker (Fujita et al., 2010; Kim et al.,
2011; Kawada et al., 2012; Kondo et al., 2012; Maréchal et al., 2012;
Morinaga et al., 2012; Murata et al., 2012; Fisher et al., 2013b; Nak-
agawa et al., 2013; Xiao et al., 2013). This is probably because they
have been mostly retrospective and have used non-randomized

series of patients. On the contrary, only a few studies have pro-
vided no evidence supporting the use of hENT1 as a predictive
biomarker for gemcitabine efficacy in a neoadjuvant gemcitabine-
based chemoradiation setting (Kawada et al., 2012) and in patients
with advanced pancreatic cancer (Ormanns et al., 2014). However,
none of the latter studies truly tested gemcitabine monotherapy
in a defined group of patients. Recently, hENT1 expression was
determined in a large unbiased group of patients that were given
gemcitabine monotherapy (ESPAC3 trial), confirming its role as a
predictive marker in gemcitabine-treated but not 5-fluorouracil-
treated patients. This suggests that gemcitabine should not be used
for patients with low tumor hENT1 expression (Greenhalf et al.,
2014). Nevertheless, it cannot be ruled out the fact that differences
among studies should also be explained by the tools used in this
type of analysis. In this sense, it has been recently stated that the
two antibodies used to detect hENT1 are not equivalent (Svrcek
et al., 2014).

Interestingly, correlations between intratumoral hENT1
expression and responsiveness to gemcitabine have also been
reported to occur in other types of malignant tumors. Responses
to gemcitabine-based chemotherapy were evident in patients
with high hENT1 expression but not in patients without hENT1
expression in an analysis of 24 patients with non-small cell
lung cancer (Oguri et al., 2007). In bladder cancer, a first
study with 12 cancer specimens showed a significant correla-
tion between gemcitabine chemotherapy outcome and hENT1
expression (Mey et al., 2006). Later, the OS of patients treated
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with a gemcitabine-/cisplatin-based combination chemotherapy
was significantly higher in patients with high hENT1 expression
(Matsumura et al., 2011). In addition, a few studies in biliary
cancer have shown an association between hENT1 expression, as
determined by immunohistochemistry, and chemosensitivity to
gemcitabine (Santini et al., 2011; Borbath et al., 2012; Kobayashi
et al., 2012; Murata et al., 2013).

BIOMARKER OF PROGNOSIS
Besides the role of NT proteins as biomarkers of drug sus-
ceptibility discussed above, NT expression by itself might be a
biomarker of disease prognosis, although available data are con-
troversial so far. This is due to the fact that almost all studies have
included treated-patients. Indeed, hENT1 itself has been related
to epithelial mesenchymal transition (EMT) probably indepen-
dently of its role as a drug transporter (Guillen-Gomez et al.,
2012; Lee et al., 2014). Thus, it is likely that these proteins can
also serve as prognostic biomarkers. Although several studies ana-
lyzed the prognostic value of intratumoral hENT1 expression in
patients who had not received gemcitabine chemotherapy, in many
of them it is not possible to discriminate between a therapeu-
tic predictive effect and a disease prognostic effect for hENT1
expression due to the patient cohort choice, often based on ret-
rospective analysis. A retrospective analysis of 111 patients with
resected gastric cancer who had not received gemcitabine-based
chemotherapy revealed that patients with high hENT1 expression
had a shorter OS or DFS than those with low hENT1 expres-
sion (Santini et al., 2010). Similar results were also reported in 41
patients with ampullary cancer (Santini et al., 2008). In ampullary
carcinoma, hENT1 expression and proliferation index were found
to be dependent on the histological subtypes, suggesting a key
role of hENT1 in tumor growth (Perrone et al., 2010). In bil-
iary tract malignancies, high expression of hENT1 was correlated
with improved OS, although the study was performed in 63
patients including intrahepatic, hilar, or distal cholangiocarci-
noma and gallbladder carcinoma and a small group of patients
within this cohort had been treated with nucleoside analogs (Fisher
et al., 2013a). In addition, in a study with 84 pancreatic cancer
patients, low expression of hENT1 was associated with shorter
OS and progression free survival (PFS) independently of gem-
citabine treatment (Kim et al., 2011). In an attempt to clarify
this point, Greenhalf et al. (2014) examined the expression of
hENT1 combining the observation arms from the ESPAC1 and
ESPAC3 trials that were specifically randomized to no adjuvant
treatment. Although the resultant number of cases investigated
was small, there was no evidence to support hENT1 expres-
sion levels per se as indicative of OS (Greenhalf et al., 2014).
However, further studies on a larger number of patients with
various cancers are needed to clarify the role of hENT1 as a
prognostic biomarker. Furthermore, the analysis of NTs expres-
sion in nearly 300 gynecologic tumors (ovary, endometrium,
and uterine cervix carcinomas) showed loss of hCNT1 in a
much higher number of cases than hENT1 and hENT2 and,
this loss highly correlated with poor prognosis histotypes (Farre
et al., 2004). In breast cancer, hCNT1 alone exhibited prognos-
tic value for DFS and risk of relapse (Gloeckner-Hofmann et al.,
2006).

A major bottleneck in the interpretation of the available data is
the fact that almost all the studies addressed to determine the role
of NTs as prognosis biomarkers in cancer analyzed different grades
of the disease without a direct comparison with healthy tissue.

GENETIC HETEROGENEITY AS BIOMARKER
Compared to other drug transporter encoding-genes, neither
SLC28 nor SLC29 genes appear to be highly polymorphic in
humans (Errasti-Murugarren and Pastor-Anglada, 2010). On the
contrary, hOCTs are highly polymorphic proteins, with some
variants showing high allelic frequency in humans, being rele-
vant to the pharmacokinetics of selected drugs such as metformin
(Errasti-Murugarren and Pastor-Anglada, 2010).

Pharmacogenetic studies of hENT1 have not clearly identified
yet any clinical relevance of the inter-individual sequence varia-
tions in the hENT1 encoding gene (SLC29A1). Although single
nucleotide polymorphisms (SNPs) in hENT1 have been identi-
fied, none have demonstrated functional consequences in terms of
drug uptake or accumulation (Osato et al., 2003; Kim et al., 2006;
Myers et al., 2006). However, a recent study of 154 patients treated
with neoadjuvant gemcitabine suggested that a combined assess-
ment of six SNPs, including the hENT1 T-549C allele and hENT1
C913T allele, did correlate to OS (Okazaki et al., 2010). While
multiple alternatively spliced variants encoding hENT1 have been
identified, they have not been shown to have clinical relevance
so far. As for hENT1, hENT2 also shows different spliced vari-
ants, some of them likely to be translated into proteins, although
their physiological relevance is also unknown (Mangravite et al.,
2003). Regarding the other members of the SLC29 gene family,
as mentioned above, hENT3 has been directly implicated in the
pathogenesis of human disease. Loss-of-function mutations in the
hENT3 encoding gene have been associated with familial Rosai-
Dorfman disease, Faisalabad histiocytosis, H syndrome, and PHID
(Molho-Pessach et al., 2008; Cliffe et al., 2009; Kang et al., 2010;
Morgan et al., 2010; Spiegel et al., 2010; Avitan-Hersh et al., 2011).
Despite some controversy about the intracellular location of this
transporter protein, it has recently been shown that ENT3 null
mice develop defects in the lysosomal system, causing ineffec-
tive apoptotic cell clearance and increased M-CSF signaling which
contribute to increase macrophage number and histiocytosis
(Hsu et al., 2012).

Although hCNTs do not appear to be particularly variable
at the gene level, some polymorphisms have been identified
and supposed to have clinical relevance (Errasti-Murugarren and
Pastor-Anglada, 2010). Functional complexity of selected poly-
morphic variants can be paradigmatic, as for the Spanish hCNT3
variant (hCNT3 Cys602Arg) which shows variable affinities for
hCNT3 substrates, apparent loss of interaction with one of
the two Na+ ions being translocated along with the drug, and
lipid raft missorting of the mutated variant, thereby dramati-
cally affecting its biological function (Errasti-Murugarren et al.,
2008, 2010; Cano-Soldado et al., 2012; Cano-Soldado and Pastor-
Anglada, 2012). Genetic variability of the SLC28 genes has recently
been addressed also in the context of ribavirin-based therapies
in patients infected with the HCV. The analysis of SLC28A2,
SLC28A3, SLC29A1, and SLC29A2 variants in a cohort of 169
patients cronically infected with HCV did not show any significant
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correlation with response to treatment. However, the SLC28A3
haplotype rs10868138G/rs56350726T was associated with protec-
tion against ribavirin-induced hemolytic anemia (Doehring et al.,
2011), a finding which may be difficult to interpret as long as
hENT1 is the major NT in erythrocytes. Moreover, the SLC28A3
rs56350726T variant has also been associated with SVR in a cohort
of 216 patients. Some of these polymorphisms might probably
affect ribavirin pharmacokinetics, as for the SLC28A2 rs11854484
variant, which was linked in the same study to high plasma rib-
avirin levels during combined PegIFN-α/ribavirin treatment (Rau
et al., 2013). The same SLC28A2 variant was previously signifi-
cantly associated with SVR (D’Avolio et al., 2012). Interestingly,
the SCL28A2 gene product, hCNT2, has recently been shown
to be a ribavirin transporter that is regulated by INF-α (Pinilla-
Macua et al., 2014). Notwithstanding, considering the impact of
ribavirin transporters in the clinical outcome there are limited
data relative to the expression of these transporters and their
polymorphisms.

NTs AS DRUG TARGETS
Nucleotides and nucleosides can be supplied by either salvage or by
de novo synthesis from smaller precursors. NTs perform a crucial
role in maintaining nucleoside homeostasis under physiologi-
cal conditions through provision of nucleosides and nucleobases
derived from the diet or produced by tissues such as liver. In this
sense, as mentioned above NTs show less functional diversity than
other transporter proteins and it has been suggested, as for hCNT3
as a paradigm within this family, that any change can critically
compromise “fitness” in humans (Badagnani et al., 2005). This
would be consistent with low evolutionary-related heterogeneity
and, at least up to now, no genetic-based diseases associated with
this gene family.

MORE THAN TRANSPORTERS
For years the study of these membrane proteins in the context of
anticancer therapy has focused on the role these proteins might
play in drug efficacy and safety. Notwithstanding, cancer rep-
resents an important pathophysiological condition that requires

abnormally high levels of nucleoside influx to support higher
amounts of DNA synthesis associated with the disease. Most cells
express several NT-encoding genes, thereby anticipating some
sort of apparent functional redundancy when analyzing trans-
porter profiles, particularly considering that transporters often
show overlapping or even identical selectivity profiles. Indeed,
hCNT expression is commonly associated with fully differenti-
ated cell types (Molina-Arcas et al., 2009; Pastor-Anglada et al.,
2009; Cano-Soldado and Pastor-Anglada, 2012; Molina-Arcas and
Pastor-Anglada, 2013) and oncogenesis often results in hCNT
down-regulation, particularly in hCNT1 (Farre et al.,2004; Zollner
et al., 2005; Lane et al., 2010; Bhutia et al., 2011; Martinez-Becerra
et al., 2012; Mohelnikova-Duchonova et al., 2013; Table 4). How-
ever, the evidence of hCNT1 loss during oncogenesis needs further
investigation, because almost all the studies performed so far
focused exclusively on hCNT1-related mRNA levels. We have
recently demonstrated that restoration of hCNT1 function in
pancreatic adenocarcinoma cell lines is able to induce cell cycle
arrest, increase cell death by a non-apoptotic mechanism, trig-
ger changes in some intracellular signaling cascades and inhibit
cell migration (Perez-Torras et al., 2013). More importantly, all
these events can also be induced when expressing a mutated
hCNT1 protein that localizes to the plasma membrane but lacks
the ability to translocate substrates. Remarkably, hCNT1 pro-
tein restoration can also inhibit tumor growth in a mouse model
of pancreatic adenocarcinoma (Perez-Torras et al., 2013). These
observations would argue in favor of hCNT1 being a transceptor
protein. This new concept within the field comes from seminal
studies both in mammalian cells and yeast: a transporter that
in a substrate translocation-dependent or -independent manner
is able to modulate cell functions, behaving as a signaling-
inducer molecule or a receptor itself. Several examples of SLC
membrane transporters with these additional regulatory roles
have recently been reported in the literature (Lacoste et al.,
2012; Coothankandaswamy et al., 2013; Perez-Torras et al., 2013;
Tanaka et al., 2014).

The possibility of hCNT proteins behaving as putative tran-
sceptors might also apply to the other two members of the

Table 4 | NTs expression in tumor tissue.

Transporter Tumor Assay n = Expression Compared vs. healthy

tissue

Reference

hCNT1 Breast IHQ Decreased Yes Lane et al. (2010)

hCNT1 Pancreas qRT-PCR, WB 5 Decreased Yes Bhutia et al. (2011)

hCNT1 Ovary IHQ 90 Decreased No Farre et al. (2004)

hCNT1 Endometrium IHQ 79 Decreased No Farre et al. (2004)

hCNT1 Uterine cervix IHQ 118 Decreased No Farre et al. (2004)

hCNT1 Pancreas qRT-PCR 32 Decreased Yes Mohelnikova-Duchonova et al. (2013)

hCNT1 Hepatocarcinoma qRT-PCR 10 Decreased Yes Zollner et al. (2005)

hCNT1 Bladder qRT-PCR 12 Decreased No Mey et al. (2006)

hCNT3 Pancreas qRT-PCR 32 Decreased Yes Mohelnikova-Duchonova et al. (2013)

hENT1 Breast IHQ Decreased Yes Lane et al. (2010)

hENT1 Pancreas qRT-PCR 32 Decreased Yes Mohelnikova-Duchonova et al. (2013)
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SLC28 gene family, hCNT2 and hCNT3. In contrast to hCNT1,
both are high affinity adenosine transporters likely to modu-
late extracellular adenosine levels and, consequently, purinergic
signaling. CNT2 was shown to be under the control of A1
adenosine receptors in hepatocytes by a mechanism which is
dependent upon ATP-sensitive potassium channels and glucose
availability (Duflot et al., 2004; Medina-Pulido et al., 2013). A
similar receptor-transporter crosstalk has recently been reported
for CNT2 in neurons (Medina-Pulido et al., 2013), being CNT2
expression down-regulated in the rat brain by sleep deprivation
and experimental ictus (Guillen-Gomez et al., 2004; Medina-
Pulido et al., 2013). Moreover, adenosine taken up by CNT2 is
responsible for AMP-dependent protein kinase (AMPK) activation
in epithelial and neuronal models (Aymerich et al., 2006; Medina-
Pulido et al., 2013). As for CNT1, CNT2 expression appears to
be characteristic of differentiated hepatocytes (del Santo et al.,
1998, 2001; Dragan et al., 2000) being regulated by glucocorti-
coids and hepatocyte-specific transcription factors (Valdes et al.,
2006; Fernandez-Veledo et al., 2007). On the other hand CNT3,
which is not expressed in normal hepatocytes but shows broad
expression in other epithelial tissues, such as colon and bil-
iary epithelia, also appears to be a major player in regulating
extracellular adenosine levels. In fact, CNT3 is under puriner-
gic control via A2a adenosine receptors in cholangiocytes, thereby
contributing to end up the initially driven purinergic control of
bile flow started by ATP secretion into the bile (Godoy et al.,
2014). This evidence suggest that selected NT proteins can indeed
be part of the purinome, the molecular network of nucleoside
and nucleotide receptors (P1 and P2), enzymes, and transporters
responsible for purinergic regulation of cell functions (Volonte
and D’Ambrosi, 2009). As long as some of the membrane pro-
teins within the purinome, and other drug transporters as well,
might eventually exert physiological effects other than the mere
uptake or release of drugs, it can be anticipated that clinical impli-
cations of the changes in the transportome associated with the
progression of disease will have to be evaluated from different per-
spectives and are likely to become suitable biomarkers and even
drug targets.

FUTURE PERSPECTIVES
Academic research focused on human NT proteins has established
so far the basis for anticipating a probable role of these membrane
proteins as biomarkers of diagnosis and prognosis. One major
bottleneck in translational research within this field is the lack
of suitable tools. Highly reliable antibodies are needed for both
immunohistochemistry and flow cytometry, although quantitative
proteomics can also prove to be suitable for biomarker analysis.
This would enable more comprehensive, well structured, prospec-
tive clinical studies. The determination of NT protein expression
during oncogenesis and the likely relationship between changes in
the NT profile and stages of tumor progression would make these
biomarkers very robust, although this progress is highly dependent
upon the availability of well characterized clinical specimens. A
major breakthrough within the field might come from the elucida-
tion of NT interactomics, aiming at linking NTs with other cellular
events that would help in the understanding of the biological basis
of their use as biomarkers.
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