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In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer
effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve
cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric
antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express
antigen receptors against tumor-associated surface antigens, thus redirecting the effector
cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens
are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by
CAR-engineered cells. In order to control such potentially severe side effects, the insertion
of suicide genes into CAR-modified effectors can provide a means for efficient depletion
of these cells. While CAR-expressing T cells have entered successfully clinical trials,
experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations
and predominantly to NK cell lines. In this review we summarize the data on CAR expressing
NK cells focusing on the possible advantage using these short-lived effector cells and
discuss the necessity of suicide switches. Furthermore, we address the compliance of such
modified NK cells with regulatory requirements as a new field in cellular immunotherapy.
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INTRODUCTION
Cell-based therapies are becoming more and more important for
the treatment of disease progression in cancer, severe infection, or
GvHD occurring after stem cell (SCT) or organ transplantation.
Beside hematopoietic stem cells, dendritic cells, mesenchymal
stromal cells, unselected T lymphocytes, and antigen-specific or
regulatory T cells, alloreactive NK cells are currently getting into
the focus of interest as suitable and powerful effector cells for
cellular therapy of cancer (Velardi, 2012). NK cells are defined
as CD56+ and CD3- cells and are subdivided into cytotoxic
CD56dimCD16+ and immunoregulatory CD56brightCD16− cells.
NK cells are of great clinical interest because they contribute to
the graft-versus-leukemia/tumor (GvL/GvT) effect but are not
responsible for the GvHD. However, the strong cytotoxicity of
NK cells can be hampered by various tumor immune escape
mechanism (Raffaghello et al., 2004; Holdenrieder et al., 2007;
Kloess et al., 2010). In order to improve cytotoxic activity, effector
cells can be efficiently and specifically redirected by recombinant
chimeric antigen receptors (CARs), which consist of a single-chain
variable fragment (scFv; ectodomain) linked to intracellular sig-
naling domains (endodomain). The scFv binds to a defined target
antigen on, i.e., cancer cells and triggers effector cell activation
upon target engagement.

Extensive pre-clinical studies over the last decades have led to
successful clinical phase I/II studies with CAR expressing T cells in
hematological malignancies, including lymphoma, chronic lym-
phocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL;

Brentjens et al., 2010; Porter et al., 2011; Kochenderfer et al., 2012,
2013; Grupp et al., 2013; Maude et al., 2014). Especially CD19
CAR T cells have induced long-term remissions in patients with
B cell malignancies (Grupp et al., 2013). Currently, a broad range
of different cancer target antigens is under clinical investigation
in several clinical CAR T cell trials such as CD20, CD30, CD138,
c-Met, EGFRvIII, FAB, GD2, HER2, WT1, PSMA, NY-ESO1, and
others as reviewed in Corrigan-Curay et al. (2014) and Maus et al.
(2014) and even more target antigens are under pre-clinical devel-
opment (Kenderian et al., 2014; Leuci et al., 2014). In contrast to
numerous pre-clinical and clinical trials in the context of CAR-
modified T cells, little is known on CAR-engineered NK cells.
Therefore the present review focuses on engineered NK cells from
pre-clinic to clinic and addresses the question of the necessity of
suicide switches to improve the safety of CAR-expressing NK cells.

NK CELL SOURCES
Natural killer cells can be generated from different sources
such as peripheral blood (PB), unstimulated leukapheresis prod-
ucts (PBSC), umbilical cord blood (UCB), bone marrow (BM),
human embryonic stem cells (hESCs) or induced pluripotent stem
cells (iPCSs; Woll et al., 2009; Chouaib et al., 2014). While the
generation of NK cells from hESCs or iPCS has been largely exper-
imental to date, the ex vivo expansion and NK differentiation of
UCB-derived CD34+ cells has been successfully translated to the
clinics (Spanholtz et al., 2011). An ongoing phase I clinical trial
uses NK cells produced from CD34+ hematopoietic precursors to
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treat acute myeloid leukemia (AML) in elderly patients (CCMO
nr. NL31699 and Dutch Trial Register nr. 2818). In the last decade
effective methods for clinical grade purification and expansion of
donor NK cells from PB and PBSC have been established suc-
cessfully in order to obtain large numbers of NK cells (Iyengar
et al., 2003; Koehl et al., 2005, 2013; Miller et al., 2005; Sutlu et al.,
2010; Leung, 2011; Leung et al., 2014). In this respect, feasibility
and safety of NK cell therapies has been shown in several phase
I/II trials performing both the adoptive transfer of donor NK cells
without transplantation (Miller et al., 2005) or donor-derived allo-
geneic NK cells post-SCT (Koehl et al., 2004; Stern et al., 2013;
Leung et al., 2014). Depending on the source and the protocol,
more immature, such as polyfunctional CD56dimKIR+CD62L+
or mature terminal effector CD56dimKIR+NKG2A−CD62L− NK
cells are available for the use in clinical studies (Luetke-Eversloh
et al., 2013).

Next to primary human NK cells, cell lines can also be useful for
allogeneic NK cell therapy. Several human NK cell lines have been
established, i.e., NK-92, HANK-1, KHYG-1, NK-YS, NKG, YT,
YTS, NKL reviewed in Kornbluth et al. (1985) and NK3.3 Cheng
et al. (2012). Among them, the NK-92, KHYG-1, NKL, and NKG
cell lines exert well-documented antitumor activities (Yagita et al.,
2000). Beyond these pre-clinical investigations, NK-92 has also
entered clinical trials successfully (Tonn et al., 2013).

CAR EXPRESSING NK CELLS
Ex vivo expanded primary human NK cells produce a different
spectrum of cytokines compared to T cells including γ-Interferon,
IL-3 and the granulocyte macrophage colony stimulating factor
(GM-CSF; Huenecke et al., 2010; Klingemann, 2014). CAR-
modified NK cells can represent a complementary therapeutic
option to CAR-expressing T cells. To date, pre-clinical data
have been reported for CAR-modified primary human NK cells
redirected against CD19, CD20, CD244, and HER2 as well as
CAR-expressing NK-92 cells targeting a broader range of cancer
antigens (Table 1).

Several of the pre-clinical studies with CAR-expressing NK
cells focus on anti-CD19 and anti-CD20 CARs targeting B cell
malignancies (Imai et al., 2005; Muller et al., 2008; Boissel et al.,
2009, 2013; Li et al., 2010; Shimasaki et al., 2012). Other pre-
clinical studies have used the ganglioside GD2 as an antigen to
target neuroblastoma (Altvater et al., 2009; Esser et al., 2012). An
additional field for anti-GD2 CAR therapy could be opened by
the finding that breast cancer stem cells are GD2 positive as well
(Battula et al., 2012). HER2 may represent another attractive tar-
get for CAR-based immunotherapies if current safety concerns
can be adequately addressed (Morgan et al., 2010). HER2 is over-
expressed in 30–80% of human breast, ovarian, pancreatic, colon,
gastric, lung, prostate carcinomas as well as melanomas, and cor-
relates with a more aggressive disease progression (Uherek et al.,
2002; Kruschinski et al., 2008; Schonfeld et al., 2014). A CAR tar-
geting the pan-cancer antigen “Epithelial cell adhesion molecule”
(EpCam) was successfully tested in NK-92 cells (Sahm et al., 2012).
Further, CARs, that have been pre-clinically evaluated in the NK
cell context, target GPA7 (Zhang et al., 2013), CD138 (Jiang et al.,
2014), and CS1 (Chu et al., 2014a), which are present on multiple
myeloma. Retroviral transduction of an NKG2D-DAP10-CD3ζ

CAR that utilizes the extracellular domain of NKG2D for recogni-
tion of natural NKG2D ligands on the tumor cell surface, markedly
increased NKG2D surface expression in NK cells, which became
more cytotoxic against leukemia and solid tumor cell lines (Chang
et al., 2013).

Importantly, also non-cancer targets can be eliminated by redi-
rected NK cells. For example, an anti-EBNA3C CAR was used for
the NK cell-mediated destruction of EBV positive T cells (Tassev
et al., 2012) and an anti-CD4 CAR for the elimination of HIV-
infected cells (Ni et al., 2014), overall demonstrating the huge
potential of CAR-modified NK cells. To date, investigations about
CAR expressing NK cells report on the overall NK cells and do not
differ between specific NK cells subpopulations and maturation
status of the NK cells. Mature donor NK cells purified from PB
and activated with cytokines have a limited lifespan of a few days
up to a few weeks (Brehm et al., 2011, 2014). Hence, allogeneic
CAR-engineered NK cells are expected to be rejected or exhausted
after destroying the cancer cells. In contrast, more immature NK
cells derived from cord blood (Spanholtz et al., 2011) or from iPSC
(Ni et al., 2014) have a longer lifespan which may allow extended
antitumor activity, but also increases the risk of malignant trans-
formation and other adverse effects, thus requiring improved
safety strategies.

VECTORS FOR TRANSDUCTION OF NK CELLS AND
TRANSDUCTION EFFICACY
Stable gene transfer is required to enable sustained CAR expression
in expanding and persisting effector cells (Sadelain et al., 2013).
CAR endodomains are responsible for transmitting the activating
signal within the lymphocytes. In first generation CARs, usually
the cytoplasmic CD3ζ domain of the TCR complex was used as
an endodomain (Irving et al., 1993). The potency of CARs can be
increased by addition of one (second generation CAR) or more
co-stimulatory domains (third generation CAR), derived from,
e.g., CD28, OX-40, or 4-1BB. To increase the specificity of effector
cells, also two separate chimeric proteins can be co-expressed, one
representing a low-affinity activating CD3ζ receptor specific for a
first tumor-associated antigen, the other receptor harboring a co-
stimulatory domain fused to an antigen-binding domain targeting
a second antigen. Only when both components are triggered,
the effector cells will sufficiently be activated to achieve cytolytic
activity (Park et al., 2011; Sadelain et al., 2013; Corrigan-Curay
et al., 2014). In general, CAR affinity and functionality is deter-
mined by the interplay between the antigen-binding scFv (single
chain variable fragment) antibody, hinge region, transmembrane
region, and endodomain. Thus, CARs should be experimentally
optimized for each target antigen and application.

Retro- or lentivirus-based vectors have mostly been used for
CAR-engineered NK cells with various transduction efficacies.
Imai et al. (2005) reported retrovirus-based transduction of a
CD19-specific CAR construct with an efficacy of 43–93% in
expanded primary NK cells. Another method of CAR transfec-
tion into NK cells is electroporation of plasmid DNA or mRNA (Li
et al., 2010). In one study a comparison of mRNA transfection and
lentivirus-based transduction of CD19 and CD20 CAR constructs
showed a lower efficacy (<10%) in the electroporation approach
in PB and cord blood NK cells, in comparison to a transduction
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Table 1 | Pre-clinical trials using CAR-engineered primary human NK cells and Pre-clinical investigations of CAR-expressing NK-92 cells.

Literature Target

Pre-clinical investigations of CAR-expressing NK-92 cells

Boissel et al. (2009) Chronic lymphocytic leukemia CD19

Boissel et al. (2013) Lymphoblastic leukemia CD19;CD20

Chang et al. (2013) Enhancement of NK cytotoxicity NKG2D

Chu et al. (2014a) Multiple Myeloma CS1

Esser et al. (2012) Neuroblastoma GD2

Jiang et al. (2014) Multiple Myeloma CD138

Muller et al. (2008) Lymphoma and leukemia CD20

Sahm et al. (2012) Breast carcinoma EpCAM

Schonfeld et al. (2014) Tumors of epithelial origin (breast carcinoma, pulmonary metastasis

of renal cell carcinoma)

HER-2

Tassev et al. (2012) EBV positive T cells EBNA3C

Uherek et al. (2002) Tumors of epithelial origin (breast carcinoma, ovarian carcinoma and

epidermoid carcinoma cell lines)

HER-2 (ErbB2)

Zhang et al. (2013) Melanoma GPA7

Pre-clinical trials using CAR-engineered primary human NK cells

Alsamah and Romia (2014) HER-2 expressing cell lines HER-2

Altvater et al. (2009) Neuroblastoma CD244

Chu et al. (2014b) Burkitt lymphoma CD20

Imai et al. (2005) Leukemia CD19

Kruschinski et al. (2008) Ovarian cancer HER-2

Li et al. (2010) CD 19+ B-ALL derived OP-132 cell line CD19

Shimasaki et al. (2012) Leukemia CD19

Studies

NCT 00995137 Genetically modified haploidentical natural killer cell infusions for

B-lineage acute lymphoblastic leukemia

National Cancer Institute (NCI) David

Shook, MD

NTC 01974479 Pilot study of redirected haploidentical natural killer cell infusions for

B-lineage acute lymphoblastic leukemia

National University Health System, Singapore,

Dario Campana

efficacy for lentiviral vectors of 8–16% for PB and 12–73% for
cord blood NK cells. Clinically relevant levels of mRNA transfec-
tion were obtained with the NK-92 cell line (Boissel et al., 2009).
Likewise, Shimasaki et al. (2012). showed highly efficient expres-
sion of anti-CD19 chimeric receptors in either freshly purified
(median, 40.3%) or expanded NK cells (median, 61.3%) after
electroporation of the corresponding mRNA. During transduc-
tion of the NK cell, the CAR encoding vector is semi-randomly and
stably incorporated into the host cell genome. This ensures long-
lasting CAR expression, but may also lead to severe side effects,
such as insertional mutagenesis and – in case of antigen healthy
tissues – also persisting off-tumor/on-target activity. Numerous
clinical studies have been performed with gamma-retro- and
lentiviral vectors targeting hematopoietic stem and progenitor
cells. While these approaches have clearly demonstrated efficacy,
especially in inherited immunodeficiency disorders, leukemias due
to insertional mutagenesis have been observed in a number of
studies using gamma-retroviral vectors for the treatment of X-
linked severe combined immunodeficiency (Hacein-Bey-Abina

et al., 2008; Howe et al., 2008), chronic granulomatous disease
(Stein et al., 2010), or the Wiskott–Aldrich syndrome (Braun et al.,
2014). Improvements in vector architecture including the design of
so-called SIN (self-inactivating) vectors have allowed second gen-
eration trials, which so far have shown a more favorable biosafety
spectrum with no leukemia documented up to now (Aiuti et al.,
2013; Biffi et al., 2013; Hacein-Bey-Abina et al., 2014). Never-
theless, clonal dominance, i.e., the strong prevalence of a few
specific clones dominating hematopoiesis, has also been observed
with second generation SIN vectors (Cavazzana-Calvo et al., 2010),
arguing for careful vector design and/or additional inclusion of
suicide switches even in these vectors.

In this respect, numerous clinical trials using LTR (long termi-
nal repeat)-driven gamma-retroviral vectors for transduction of
T cells have failed to show severe adverse events related to inser-
tional mutagenesis reviewed in (Suerth et al., 2012) underlining
the more favorable biosafety pattern of retroviral applications in
mature lymphoid cells, such as T cells. Although these results
are likely transferable to NK cells, a systematic biosafety analysis

www.frontiersin.org February 2015 | Volume 6 | Article 21 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Glienke et al. CAR expressing NK cells

in NK cells with respect to vector architecture remains to be
accomplished.

SUICIDE SYSTEMS
Different safety concerns are associated with CAR-engineered
effector cells, which include induction of (acute) GvHD as well
as on-target/off-tumor effects, tumor lysis syndrome and cyto-
toxicity to normal tissues due to limited selectivity of the chosen
target antigen (Ferrara et al., 2009; Stauss and Morris, 2013; Maus
et al., 2014). To date, these observations are mainly restricted to
CAR-expressing T cells, but are discussed for CAR-engineered NK
cells as well, especially for immature NK cells.

Suicide gene therapy was first introduced in the context of
human SCT performed in the 1990s using the herpes simplex
thymidine kinase (HSV-TK)/Ganciclovir (GCV) suicide system
(Bonini et al., 1997). Although its safety and efficacy was demon-
strated, the HSV-TK system is severely limited by only being
effective in proliferating cells. Due to its viral origin, HSV-TK is
also immunogenic and can therefore cause the rejection of modi-
fied cells by the immune response of the host, although it has led
to effective abrogation of GvHD in all clinical trials (Bonini et al.,
2007). To overcome the limitations of the HSV-TK system, various
alternative suicide gene systems have been developed. Previously
we could demonstrate the B cell molecule CD20 as an effective sui-
cide marker for genetically modified T cells (Vogler et al., 2010).
CD20 expression on the cell surface allows elimination of the cells

upon administration of rituximab. In contrast to HSV-TK, CD20
as a suicide gene may not be immunogenic due to its human
origin, and elimination by rituximab is not affected by the cells’
proliferation status. Nevertheless, bio-distribution of the mono-
clonal antibody may be sub-optimal, and normal B cells are also
depleted. Different apoptotic pathways have been employed as
suicide systems, including the death receptor Fas and caspase 9
(CASP9; Fan et al., 1999; Di Stasi et al., 2011). Beside very low risk
for immunogenicity, these suicide genes share the advantages of
non-cell cycle dependency, full clinical compatibility and optimal
bio-distribution, as CIDs are small molecules exquisitely designed
for suicide purposes (Lipowska-Bhalla et al., 2012). A summary
of the different suicide systems was published recently by Jones
(Jones et al., 2014).

None of the aforementioned suicide systems has been inten-
sively tested in NK cells. To date, suicide genes are primarily
discussed in the context of long-living genetically modified effec-
tor cells. In contrast, mature allogeneic CAR-engineered NK cells
are expected to induce anti-cancer effects and disappear after a few
days. Therefore, the necessity of a suicide switch might not be given
(Klingemann, 2014). However, in the context of more immature
CAR expressing NK cells, suicide switches might be beneficial con-
sidering that UCB-derived NK cells or immature NK cells such as
polyfunctional CD56dimKIR+CD62L+ cells have a lifespan up to
months. Worth mentioning would also the finding, that IL15/4-
1BBL activated NK cells could contribute to an acute GvHD caused

FIGURE 1 | GMP-conform manufacturing of chimeric antigen receptor

expressing natural killer cells with/without suicide genes for safety

improvement. One major technical obstacle for the wide spread
application of CAR expressing NK cells in cancer is the complexity of
the GMP-conform manufacturing process of these CAR-ATMPs. The
development of this process comprises not only the set-up of
GMP-conform protocols for isolation, activation, engineering and
expansion of the cells but also the final formulation, definition of
product specifications and release quality control. In order to enter a

clinical phase I/II trial the corresponding SOPs will be generated,
validation runs will be performed and the application for manufacturing
licenses has to be submitted. Due to the maturation status of the NK
cells suicide genes might be necessary to improve safety in the use of
CAR-engineered NK cells. CAR, chimeric antigen receptor; ATMP,
advanced therapy medicinal products; depl., depletion; sel., selection;
SOP, standard operation protocol; IMP, investigational medicinal product;
IMPD, investigational medicinal product dossier; CMC, chemical
manufacturing and control.
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by inflammation or other factors up-regulating activating ligand
expression on non-malignant tissues (Shah et al., 2014).

ENGINEERED NK CELLS: FROM PRECLINICAL STUDIES TO
CLINIC APPLICATION
When compared to CAR T cells, experience with CAR-engineered
NK cells is still limited. In contrast to a large number of clinical
studies using CAR T cells for the treatment of various cancers,
only two clinical studies employing CAR-expressing NK cells
have been approved by the regulatory authorities and are open
for patient acquisition. The longest open study is the pediatric
study at St. Jude Children’s Research Hospital using haploidenti-
cal NK cells modified with anti-CD19 CARs for the treatment of
B-lineage ALL (ClinicalTrials.gov. NCT00995137). In this study,
the donor-derived NK cells are expanded by co-culture with the
irradiated K562 cell line expressing membrane bound IL-15 and
41BB ligand (K562-mb15-41BBL). Another study for pediatric
and adult patients with refractory ALL is the recently approved
study at the National University Hospital in Singapore (Clinical-
Trials.gov. NCT01974479). In this study, haploidentical NK cells
will be activated by incubation with IL-2 and transduced with the
same construct as employed in the St. Jude trial (Shimasaki and
Campana, 2013). A number of scientific questions and regulatory
hurdles have to be adressed before NK CAR cellular therapy can
be extended to larger patient cohorts in phase III studies, such as
manufacturing issues. Although powerful methods for isolation,
expansion, and transduction have been described, the preparation
of the cells is still cumbersome and currently restricted to highly
specialized laboratories.

MANUFACTURING OF REDIRECTED NK CELLS AND
REGULATORY ISSUES IN EUROPE
According to their biological and pharmacological complexity
CAR/suicide gene expressing NK cells will be classified as advanced
therapy medicinal products (ATMP) in Europe and regulated
either centralized or under the hospital exemption by the mem-
ber states [Regulation (EC) No 1394/2007, Directive 2001/83/EC,
and Regulation (EC) No 726/2004]. Although the primary thera-
peutic effect remains NK cell-specific the significant alteration of
targeting by introduction of CAR will result in a gene therapy
medicinal product (GTMP), whereas lifespan control by engi-
neered suicidality only would result in a somatic cell therapy
medicinal product (CTMP) [EMA/CAT/600280/2010 Rev.1, 20
June 2014].

For successful clinical translation of gene modified NK cells,
the preclinical and clinical development (Figure 1) will have to
focus on the transduction efficacy, as well as on the safety and
efficacy of the CAR and/ or the suicide constructs introduced.
Therefore quality aspects related to CTMP and GTMP as defined
in guidelines [CPMP/BWP/3088/99; EMEA/CHMP/410869/2006;
Ph. Eur. 0784: Ph. Eur. 5.14] will apply to the identity, potency, and
activity including the conditional suicidality, purity, and safety of
vectors and genetically modified product. The establishment of
correspondingly adequate in-process and quality controls as well
as of process target values and product specifications will have to
take into account the variability of the primary effector cell as the
starting material (Schule et al., 2010).

OUTLOOK
To date suicide gene-modified T cells and CAR expressing T cells
have successfully entered clinical trials. For future clinical appli-
cations, a combination of both modifications might lead to an
improved safety strategy. In contrast to gene-modified T cells,
experiments with modified primary human NK cells are mainly
restricted to the pre-clinical setting with promising results. Impor-
tantly, the first two clinical studies using CAR-expressing NK
cells have started very recently. Due to the limited lifespan of
mature CD56dimKIR+NKG2A−CD62L−NK cells, suicide genes
might not be necessary, but this could be different for more imma-
ture CD56dimKIR+CD62L+ NK cells derived from cord blood
or iPS cells. While theoretical risk-benefit considerations, only
argue for the incorporation of suicide switches in the context of
CAR-modified and/ or more immature NK cells, careful preclinical
investigations are needed to provide a final answer in the future.
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