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Peptide ligand recognition by G
protein-coupled receptors

Brian E. Krumm and Reinhard Grisshammer *
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Health, Rockville, MD, USA

The past few years have seen spectacular progress in the structure determination of
G protein-coupled receptors (GPCRs). We now have structural representatives from
classes A, B, C, and F. Within the rhodopsin-like class A, most structures belong
to the a group, whereas fewer GPCR structures are available from the g, y, and 8
groups, which include peptide GPCRs such as the receptors for neurotensin (8 group),
opioids, chemokines (y group), and protease-activated receptors (8 group). Structural
information on peptide GPCRs is restricted to complexes with non-peptidic drug-
like antagonists with the exception of the chemokine receptor CXCR4 that has been
crystallized in the presence of a cyclic peptide antagonist. Notably, the neurotensin
receptor 1 is to date the only peptide GPCR whose structure has been solved in
the presence of a peptide agonist. Although limited in number, the current peptide
GPCR structures reveal great diversity in shape and electrostatic properties of the ligand
binding pockets, features that play key roles in the discrimination of ligands. Here, we
review these aspects of peptide GPCRs in view of possible models for peptide agonist
binding.

Keywords: neurotensin receptor, peptide agonist, peptide GPCRs, GPCR structure, chemokine receptors, opioid
receptors, protease activated receptors

Introduction

G protein-coupled receptors are integral membrane proteins involved in many cellular processes
including cell-to-cell communication, mediation of hormonal activity, and sensory transduction
(Ji et al., 1998). Being of enormous clinical relevance, many GPCRs have been implicated as major
therapeutic targets for the treatment of human diseases. Combining the recent explosion in GPCR
structural biology with functional data highlights common principles for signal transduction, but
more importantly also demonstrates many differences. Thus, despite our current knowledge, much
still needs to be learned to fully comprehend the breadth and complexity of GPCR involvement in
cell signaling.

G protein-coupled receptors recognize a large array of diverse natural ligands. If the ligand is
an agonist, the GPCR catalyzes nucleotide exchange in cytoplasmic heterotrimeric GTP-binding
proteins (G protein) leading to downstream events such as changes in the cAMP concentration
in the cell. In addition, GPCRs have also been found to signal through arrestin-mediated cascades.
These alternative G protein independent signaling pathways can be selectively stimulated alongside

Abbreviations: CCR5, CC chemokine receptor 5; CXCR4, CXC chemokine receptor 4; DOR, 3-opioid receptor; ECL,
extracellular loop; GPCR, G protein-coupled receptor; KOR, k-opioid receptor; MOR, |1-opioid receptor; NOP, noci-
ceptin/orphanin FQ receptor; NTS, neurotensin; NTSR1, neurotensin receptor 1; PARI, protease-activated receptor 1.
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G protein activation, and a ligand’s efficacy can be “biased” more
or less to different pathways (Violin and Lefkowitz, 2007).

Ligand/receptor/G protein interactions have been described
by various models such as the classic ternary complex model
(Kenakin, 2001). Central is the notion that GPCRs adopt
different conformations, which do or do not allow produc-
tive interaction with the respective G protein. Simplified, the
GPCR can be in a non-signaling, inactive state (R) by bind-
ing an inverse agonist, or it can be in a signaling-competent,
active conformation (R*) with an agonist bound, catalyzing
nucleotide exchange at the G protein. Today, GPCRs are no
longer thought to be simple two-state switches (R or R*, although
rhodopsin may come close to this definition) but are able to
sample many conformations (Yao etal., 2009). Particular lig-
ands can achieve varying efficacies by stabilizing a particu-
lar receptor conformation that can interact with G proteins
and arrestins to varying degrees. Likewise, the presence of a
particular intracellular signaling partner can also stabilize a
given receptor conformation. Describing the structural basis
for allosteric modulation and signaling bias (Katritch etal.,
2013) is still one of the great challenges in GPCR structural
biology.

For this review, we define inactive receptor states as
GPCR conformations that are signaling incompetent, i.e.,
do not activate the G protein. Inactive receptor conforma-
tions may be stabilized by inverse agonists (Cherezov etal,
2007), but structures of agonist-occupied inactive GPCRs
have also been reported (Rosenbaum etal., 2011; Egloff etal,
2014). Active-like conformations are activation intermedi-
ates, bound to agonist but not to G protein, with fea-
tures characteristic for active GPCRs such as an outward-
tilted transmembrane helix 6 at the cytoplasmic surface
(White et al., 2012). An active receptor conformation is capa-
ble of catalyzing nucleotide exchange at the G protein, sta-
bilized by both the agonist and G protein (Rasmussen et al.,
2011b).

Our knowledge about GPCR structures has advanced tremen-
dously over the past several years. We now have GPCR structures
from classes A, B, C, and F. These structures are in complex
with antagonists or inverse agonists, with agonists, and with
G protein or G protein-mimicking antibodies. Thus they rep-
resent examples of inactive and active-like GPCR states and
one distinct G protein signaling conformation of a receptor
in complex with a heterotrimeric G protein (Rasmussen et al.,
2011b).

Most of the known GPCR structures belong to the o group
of the rhodopsin-like class A. The o group receptors charac-
teristically bind small ligands within their transmembrane core.
Fewer structures are available from the f, y, and § groups which
include peptide binding GPCRs, the focus of this review. Current
peptide GPCR structures include the NTSR1 (White et al., 2012;
Egloffetal., 2014; B group); the DOR (Granier etal,, 2012;
Fenalti et al., 2014), KOR (Wu et al., 2012), MOR (Manglik et al.,
2012), and the related NOP (Thompson etal., 2012; y group);
the chemokine receptors (CXCR4 Wuetal,, 2010 and CCR5
Tanetal, 2013; y group); and the PAR1 (Zhangetal., 2012;
8 group). All peptide GPCRs, with the exception of NTSRI,

have been crystallized in complex with non-peptidic drug-like
antagonists in their inactive conformations. CXCR4 has also
been crystallized in the presence of a cyclic peptide antago-
nist. NTSR1 has been co-crystallized with the peptide agonist
NTS, both in an active-like conformation (White et al., 2012)
and in an inactive state at the cytosolic domain (Egloff et al.,
2014).

Peptide GPCRs bind agonists of a wide range of sizes, from
a few amino acid residues in length to small proteins. In this
review, we will discuss our knowledge of peptide GPCR structures
with focus on their ligand binding pockets and ligands, and we
will analyze those aspects in view of possible models for peptide
agonist binding.

Neurotensin Receptor 1

Neurotensin is a 13-amino-acid peptide (Carraway and Leeman,
1973) that is found in the nervous system and in peripheral
tissues, where it functions as both a neurotransmitter and a hor-
mone through activation of NTSR1. NTS shows a wide range
of activities and has been implicated in Parkinson’s disease and
the pathogenesis of schizophrenia, and the growth of cancer cells
(Kitabgi, 2002). The crystal structure of NTSRI has been deter-
mined in an active-like conformation (no G protein present)
in complex with the peptide agonist NTSg_3, the C-terminal
portion of NTS mediating agonist-induced activation of NTSR1
(White et al., 2012). This makes the NTSR1 structure distinct
from the structures of other peptide GPCRs, which have all
been crystallized in inactive states. NTSR1 has also been crys-
tallized in the presence of agonist but in an inactive state at the
cytosolic domain, lacking active-like characteristics (Egloff et al.,
2014). Whilst several GPCRs have been crystallized with small
molecule agonists (Choe etal., 2011; Rasmussen etal.,, 2011b;
Warne et al.,, 2011; Xuetal,, 2011), the NTSR1 structures rep-
resent to date the only example of a GPCR bound to a peptide
agonist.

The NTSRI ligand pocket (White et al., 2012) is open and
solvent exposed as that found in the opioid receptors and
chemokine receptors, but unlike that of PAR1 (see below), with
the NTSR1 N-terminus covering a small part of the ECL1 while
interacting with ECL2. The peptide agonist binds to NTSR1 in
an extended conformation, nearly perpendicular to the mem-
brane plane, with the C-terminus oriented toward the receptor
core (White et al., 2012) that is in the opposite orientation pro-
posed for opioid peptides. There is a striking difference between
the binding mode of NTSg_13 compared to the binding mode
of small endogenous agonists. The NTSg_13 binding cavity is
located near the receptor surface. Thus NTSg_ 3 does not pen-
etrate the receptor deeply (Figure 1) placing the C-terminus
of NTSs_;3 over 5 A away from small molecule agonist moi-
eties seen in other GPCR structures. The mode of activation
of NTSR1 may thus be subtly different from that of other
GPCRs.

There is charge complementarity between NTSg_;3 and
its binding pocket with the positively charged arginine side
chains of the ligand (Arg®-Arg’) facing the electronegative
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FIGURE 1 | Crystal structures of peptide receptors. Receptors were
aligned in PyMol. Ligands are shown as yellow sticks, receptors are
shown as cartoons. CXCR4 with the cyclic peptide antagonist CVX15
(PDB code 30EO0), DOR with the morphinan antagonist naltrindole (PDB
code 4EJ4), NTSR1 with the peptide agonist NTSg_13 (PDB code 4GRV),
and PAR1 with the antagonist vorapaxar (PDB code 3VW?7). For

P
=
240 | Pas
4 N 5A P ~\.,(./‘
.- 5A t S
&g CT el -
B2AR CXCR4 DOR NTSR1 PAR1

comparison, the a group member Po-adrenergic receptor with the partial
inverse agonist carazolol (PDB code 2RH1) is shown. Red lines indicate
the putative depth of peptide ligand binding as discussed in the review;
black lines indicate the depth of ligand binding as seen in the respective
structures. Residues of PAR1, implicated in tethered ligand binding, are
shown as purple sticks.

rim of the binding site, whereas the negatively charged car-
boxylate of Leu'® resides in an electropositive environment.
There are also extensive van der Waals interactions between
NTSs_13 and the receptor; key NTSRI residues are in con-
tact with NTS via hydrogen bonds and salt bridges. It is
remarkable that only three out of eight hydrogen bonds are
made between the side chains of NTSg_;3 and the receptor,
with the bulk of receptor-ligand contacts being van der Waals
interactions.

Opioid Receptors (DOR, KOR, MOR,
NOP)

The classical opioid receptors DOR, KOR, and MOR, and the
related NOP, play important roles in the central nervous sys-
tem, regulating pain perception and mood (Pasternak, 2014). The
structures of all four opioid GPCRs, in complex with subtype
specific non-peptide antagonists, have been determined in their
inactive conformations (Granier et al., 2012; Manglik et al., 2012;
Thompson et al., 2012; Wu et al., 2012; Fenalti et al., 2014). The
ligand binding pockets are wide open and solvent exposed, with
the lower part being highly conserved among opioid receptors,
and the upper part being diverse conferring subtype specificity.
Thus the opioid receptor structures provided insight into the
‘message-address’ concept (Lipkowski et al., 1986) in which the
ligand consists of two distinct parts with information about
efficacy (message, in contact with the lower portion of the
binding pocket) and selectivity (address, upper part of bind-
ing pocket). Many opioid antagonists (DOR specific naltrindole,
KOR specific JDTic; MOR specific B-funaltrexamine) display
common features such as a phenolic hydroxyl in close prox-
imity to a positive charge (Granier et al., 2012; Manglik et al.,
2012; Wuetal,, 2012) resembling the N-terminal tyrosine
residue of endogenous opioid peptides, for example endorphins,
enkephalins, and dynorphins. The NOP specific compound
C-24 has a benzofuran head group lacking the hydroxyl group
(Thompson et al., 2012) reminiscent of the N-terminal pheny-
lalanine of the nociceptin peptide. All the determined structures
have an antagonist bound deep within the binding pocket at

similar positions as agonists and antagonists in the B-adrenergic
receptor, forming ionic interactions with an aspartate residue
(Asp®>32) conserved in all opioid receptors, suggesting an essen-
tial role of Asp®3? in anchoring positively charged ligands
(Wu et al., 2012). Additional interactions between binding pocket
residues and antagonists involve a water-mediated hydrogen
bond network linking the antagonist phenolic hydroxyl to a
conserved histidine residue (His®>?) in the classical opioid
receptors (Granier et al., 2012; Manglik etal., 2012; Wuetal,
2012).

There are currently no structures of opioid receptors in com-
plex with a peptide agonist or peptide antagonist. However, the
binding mode and the similarity of features between non-peptidic
antagonists and opioid peptides suggest that the N-termini of
the opioid peptides might penetrate deeply into their respec-
tive receptors (Figure 1). Opioid peptides show great diversity
in their chemical properties. For example, enkephalins are short
peptides lacking charged amino acid side chains, whereas dynor-
phins and nociceptin are longer peptides with several Arg and
Lys residues in their C-termini (Figure 2 inset). Site-directed
mutagenesis studies suggest that the MOR selective synthetic
peptide agonist [D-Ala2,N-MePhe4,Gly-ol5] enkephalin makes
both polar and non-polar contacts with the receptor (Seki et al.,
1998; Manglik et al., 2012), reflecting the lack of highly charged
surfaces in the MOR ligand binding site. In contrast, electro-
static surface potentials of NOP and KOR reveal striking differ-
ences compared to those of DOR and MOR (Figure 2). NOP
and KOR have highly acidic patches at the extracellular side
which likely form contact points for the basic C-termini of
nociceptin and dynorphins. Molecular docking of the peptide
antagonist UFP-101 into the NOP binding pocket corroborates
that all six basic amino acids of the peptide are in contact
with the acidic residues of ECL2 at the binding pocket entrance
(Thompson et al,, 2012).

Chemokine Receptors (CXCR4, CCR5)

Chemokine receptors and their peptidic ligands, chemokines, are
implicated in the migration of many cell types and constitute
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CCR5

Dynorphin (KOR):
Enkephalin (MOR):

FIGURE 2 | Electrostatic surface properties contribute to discrimination
between peptide ligands. View from the extracellular side. The receptor
surfaces are colored according to their electrostatic potential (scale bar
—4KTe~" to 4+4 kTe™"; red, negative; blue, positive; PyMol using APBS tools).
NOP (PDP code 4EA3); KOR (PDB code 4DJH); DOR (PDB code 4N6H); MOR

Tyr-Gly-Gly-Phe-Leu-Arg-Arg-lle-Arg-Pro-Lys-Leu-Lys
Tyr-Gly-Gly-Phe-Met

NTSR1

s

(PDB code 4KDL); CXCR4 (PDB code 30EQ); CCR5 (PDB code 4MBS); NTSR1
(PDB code 4GRV); PAR1 (PDB code 3VW?7). For orientation, the position of
transmembrane helix 1 (TM1) and ECL2 (circle) are indicated in NOP. Examples
of peptides for opioid receptors highlight the presence or absence of positive
charges.

therapeutic targets owing to their role in many human disorders
(Baggiolini, 1998). In addition, the chemokine receptors CXCR4
and CCR5 have been identified as HIV-1 co-receptors via the viral
envelope glycoprotein gp120 (Berger et al., 1999). The structures
of CXCR4 (Wu etal, 2010) and CCR5 (Tan et al., 2013) have
been solved in complex with small drug-like inhibitors; CXCR4
has also been crystallized in complex with the 16 residue cyclic
peptide inhibitor CVX15, an analog of the horseshoe crab peptide
polyphemusin. Comparison of the CXCR4 and CCRS5 structures
provide clues about the determinants for chemokine binding and
HIV-1 co-receptor selectivity.

CXC chemokine receptor 4 has been co-crystallized with the
small-molecule antagonist IT1t, an isothiourea derivative, and
the peptide CVX15. The ligand binding cavity is wide open
although the entrance to the CXCR4 ligand binding pocket is par-
tially covered by the receptor N-terminus and ECL2. The overall
structures of CXCR4 with IT1t and with CVX15 are similar; how-
ever, the binding of the much larger CVX15 peptide caused some
conformational differences compared to the CXCR4-IT'1t struc-
tures. CXCR4 is activated by the chemokine CXCL12, and a two-
site model of chemokine binding has been suggested separating
the binding and signaling functions of chemokine ligands: the
chemokine globular domain is thought to bind the receptor N-
terminus and ECLs (site one) defining affinity and specificity,

whereas the disordered N-terminal domain is thought to pene-
trate into the receptor helical core (site two) controlling receptor
signaling. The IT1t and CVX15 complexes of CXCR4 may point
to site two, with the CVX15 peptide residues Arg! and Arg?
possibly indicating the depth of binding of the N-terminus of
CXCL12 (Figure 1) whose residue Lys' has been implicated in
direct involvement in receptor activation.

CC chemokine receptor 5 has been co-crystallized with the
inhibitor Maraviroc, an approved drug for the treatment of HIV-
1 infection. The CCR5 binding pocket is more open than that
of CXCR4. Maraviroc binding is distinct from the proposed
major recognition sites for chemokines and the viral glycoprotein
gp120, providing insight into allosteric inhibition of chemokine
signaling and viral entry (Tan et al., 2013).

The third variable loop V3 of gp120 adopts a B-hairpin struc-
ture and has been shown to play a major role in cellular tropism
and co-receptor specificity (Berger et al., 1999). Several acidic
residues in the binding pocket of CXCR4 have been reported to be
critical for HIV-1 infectivity. Interestingly, these acidic residues
are substituted by uncharged residues in CCR5 resulting in dif-
ferent electrostatic surface potentials of the structures (Figure 2).
This difference may correlate with the different charge properties
of the V3 loops of X4- and R5-tropic viruses: X4-tropic viruses
have a more positively charged V3 region complementary to

Frontiers in Pharmacology | www.frontiersin.org

March 2015 | Volume 6 | Article 48


http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive

Krumm and Grisshammer

Peptide GPCRs

the more negative surface of CXCR4, whereas V3 loops of
R5-tropic viruses are less positively charged (Tan etal., 2013).
Thus the structural features of CXCR4 and CCRS5 highlight the
possible importance of the net charge of the gp120 V3 loops for
co-receptor selectivity.

Protease Activated Receptor 1

Protease Activated Receptors are central to signaling through
coagulation proteases. The proteases cleave the N-terminal
receptor exodomain exposing a new tethered peptide ago-
nist ligand irreversibly activating the respective PAR. A well-
studied system is PARI activation by thrombin (Coughlin,
2000). The crystal structure of inactive PAR1 in complex with
the antagonist vorapaxar has been solved (Zhangetal., 2012)
providing insight how a small compound inhibits activation
of PARI by the tethered ligand. Compared to opioid recep-
tors, the vorapaxar binding pocket extends closer to the extra-
cellular receptor side but is not well exposed to the aque-
ous solvent. This is in part due to the central location of
ECL2 that covers the extracellular-facing portion of vorapaxar.
Given the occluded access of the binding pocket from out-
side, reminiscent of the rhodopsin and the sphingosine-1-
phosphate receptor (S1P;) structures, the lipophilic vorapaxar
may enter PAR1 through the lipid bilayer (Zhangetal., 2012)
in a similar way as proposed for retinal channeling to opsin
(Park et al., 2008) or for lipid to the SIP; receptor (Hanson et al.,
2012).

Thrombin cleaves PARI to generate a new N-terminus starting
at Ser??, which can bind, and activate PAR1. The PAR1-vorapaxar
structure does not provide insight how the agonist peptide gains
access to its binding site. However, the structure is consistent
with mutagenesis data proposing that the agonist peptide is in
contact with superficial receptor areas rather than reaching deep
into the transmembrane core (Gerszten et al., 1994; Zhang et al.,
2012). Specifically ECL2 has been implicated in the binding of
the tethered agonist (Nanevicz et al., 1996; Figure 1). The surface
location of these residues may thus imply that superficial inter-
action between the tethered PAR1 N-terminus and extracellular
receptor loops suffices to activate PAR1. Alternatively, the initial
binding of the tethered peptide agonist may lead to deeper pene-
tration of the receptor N-terminus into the transmembrane core
through a series of conformational changes of PAR1 (Zhang et al.,
2012).

Possible Binding Modes of Peptides

Peptide receptors bind peptide ligands of a wide range of
sizes, from a few amino acids in length such as enkephalin (5
residues), to longer peptides such as NTS (13 residues) and noci-
ceptin (17 residues), to small proteins such as chemokines (~90
residues). The distinct features of peptide ligands thus necessi-
tate complementary receptor characteristics to promote a specific
signaling event.

Although most peptide receptor structures are not with pep-
tide ligands, they nevertheless provide information on putative

binding modes of peptides. First, peptides may reach deeply into
the receptor core (opioid peptides); bind closer to the receptor
surface NTS; or are in contact with superficial receptor areas
(tethered PARI1 ligand). Chemokine ligands may combine all of
those aspects. As minute changes in the buried binding sites
for small drug-like agonists trigger the larger conformational
changes on the intracellular receptor surface upon activation
(Rasmussen et al., 2011a), additional structures of peptide GPCRs
are eagerly awaited to rationalize how binding of a peptide agonist
closer to or on the receptor surface causes the intracellular helical
rearrangements of the activated state thought to be conserved in
all class A GPCRs.

Second, matching electrostatic properties between peptide
ligand and binding pocket (or their absence) allows discrim-
ination between ligands. For example, KOR has highly acidic
patches at the extracellular side, which likely interact with the
basic C-terminus of dynorphin; in contrast, MOR lacks such a
pronounced negative surface potential reflecting the uncharged
nature of enkephalins.

Third, subtype specificity and ligand affinity are given by the
complementary shape and property of the binding site. Because
of the larger size of peptides compared to small-molecule com-
pounds, extensive van der Waals contacts would provide addi-
tional discriminatory aspects for peptide binding characteristics.
For example, the hexapeptide NTSg_ 3 has 34 potential inter-
molecular interactions with eight hydrogen bond-mediated con-
tacts. It is striking that only three out of the eight hydrogen bonds
are made between the side chains of NTSg_;3 and the receptor,
with the bulk of receptor-ligand contacts being van der Waals
interactions (White et al., 2012).

Fourth, most peptide receptor structures show inactive, sig-
naling incompetent conformations. Only the structure of NTSR1
represents an active-like, agonist-bound state (White et al., 2012).
As further structural changes are expected to occur upon
engagement of an agonist-occupied receptor with G protein
(Rasmussen et al., 2011b), additional structures of GPCRs bound
to peptide agonists and G protein are needed to define common
principles and also differences in the signaling conformations of
peptide receptors compared to receptors from the o group of class
A that bind small agonists within the transmembrane core.
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Authors’ Note

While the manuscript was in submission, the crystal structures of
the orexin 2 receptor in complex with the non-peptide inhibitor
suvorexant (Yin etal, 2014), and of the chemokine receptor
CXCR4 in complex with a viral chemokine (Qin et al., 2015) have
been published. The coordinates for a 8-opioid receptor bound to
a bifunctional peptide (Fenalti et al., 2014) have been released in
the Protein Data Bank.
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