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The role of the immune system in response to chemotherapeutic agents remains

elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic

responses is likely, at least in part, due to complex genetic differences. Through

the use of a panel of genetically diverse mouse inbred strains, we developed a

drug screening platform aimed at identifying genes underlying these chemotherapeutic

cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we

identified four genome-wide significant quantitative trait loci (QTL) that contributed to the

sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus

on chromosome 16 was significantly associated with cell viability following idarubicin

administration (p = 5.01 × 10−8). Within this QTL lies App, which encodes amyloid

beta precursor protein. Comparison of dose-response curves verified that T-cells in App

knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice

(p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to

the identification and subsequent validation of a gene involved in T-cell viability after

idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo

cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while

the knockdown of this gene is deleterious to cell viability. Further investigations should

include performing mechanistic studies, validating additional genes from the GWAS,

including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human

studies.

Keywords: pharmacogenomics, genome-wide association studies, candidate genes, amyloid precursor protein,

anthracyclines, immune cells

Introduction

The role of the immune system in cancer development is well established with the evasion of
immune elimination described as one of Hanahan and Weinberg’s hallmarks of cancer devel-
opment (Hanahan and Weinberg, 2011). Developing tumors commonly avoid immune surveil-
lance by inducing an immunosuppressive tumor microenvironment with regulatory T-cells,
myeloid-derived suppressor cells, alternatively activated macrophages, and tolerant dendritic cells
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(Alizadeh and Larmonier, 2014). Thus, the induction, potency,
and persistence of the patient’s functional immune system is
critical to combating tumor advancement (Raval et al., 2014).

The generation of an efficacious clinical antitumor response
depends upon the successful initiation of several immune pro-
cesses. In this regard, the adaptive immune system has been
described as an ideal anticancer agent with features includ-
ing diversity, specificity, and memory. Recent advances in
immune-based therapeutic approaches have focused on boost-
ing the adaptive antitumor immune response using various
approaches, including vaccination, adoptive T-cell therapy, anti-
tumor antibodies, and the advent of immune checkpoint block-
ade agents (Hodi et al., 2010; Brahmer et al., 2012; Kantoff
et al., 2012; Topalian et al., 2012; Kalos and June, 2013).
Clinically, monitoring T- and B-cell response may prove use-
ful in correlating specific immune responses to patient out-
comes (Raval et al., 2014). For instance, patients with denser
T-cell infiltrates in a variety of cancer tumors have bet-
ter clinical responses to traditional, cytotoxic chemotherapy
agents compared to patients with smaller infiltrates (Gal-
luzzi et al., 2012). Some cytotoxic chemotherapeutics, such
as anthracyclines, promote immunogenic cell death by releas-
ing molecules such as calreticulin, which subsequently primes
T-cells to elicit an antitumor Th1 phenotype (Ma et al., 2011;
Mattarollo et al., 2011). Therefore, assessing the functional-
ity of the immune system is crucial for evaluating clinical
responses to cytotoxic chemotherapy (Vanneman and Dranoff,
2012).

Previous studies have noted intersubject variability in
chemotherapy-induced cytotoxicity within the immune system
(van Kuilenburg et al., 2000; Stocco et al., 2008; Ross et al.,
2011). Although several genes have been linked to the toxic-
ity of anticancer chemotherapy on the innate immune system
(i.e., neutropenia), the role of pharmacogenomics in the cyto-
toxicity of the adaptive immune system requires further investi-
gation. Here, we examined the underlying genetic components
that may be responsible for the differential immune cell sen-
sitivity to anticancer drugs. A model organism approach was
used to evaluate pharmacotherapeutic response, as the effects
of chemotherapy on the normal immune system are difficult
to ascertain in humans. We previously developed a cell-based
screen using immune cells from 36 inbred mouse strains to mea-
sure phenotypic differences in immune cell sensitivity to anti-
cancer therapeutics (Frick et al., 2015). We were able to identify
robust interstrain variation in T- and B-cell viability to cytotoxic
anthracycline agents, doxorubicin and idarubicin. This in vitro
pharmacogenomics screen was also developed to facilitate iden-
tification of genetic biomarkers involved in immune cytotox-
icity pathways. Thus, the aims of this study were to identify
quantitative trait loci (QTL) that contribute to the sensitivity of
T- and B-cells to the described anthracyclines using genome-
wide association studies (GWAS) and to prioritize and validate
candidate genes. Following GWAS, we identified a candidate
gene, App (encoding amyloid beta precursor protein) that was
further shown to be involved in mediating T-cell sensitivity to
idarubicin.

Materials and Methods

Phenotype Determination
The methods and results of our drug-screening platform in
normal, non-cancerous, murine immune cells have been pre-
viously described (Frick et al., 2015). Briefly, splenocytes were
collected from a panel of 36 inbred mouse strains (n = 4
per strain, 129S1/SvImJ, 129X1/SvJ, A/J, AKR/J, BALB/cByJ,
BTBR T+ Itpr3tf /J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J,
C57BR/cdJ, C58/J, CBA/J, CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ,
KK/HiJ, LG/J, LP/J, MA/MyJ, NOD/LtJ, NON/LtJ, NZB/BINJ,
NZO/HiLtJ, NZW/LacJ, PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ,
RIIIS/J, SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ), aged 10–12
weeks, obtained from The Jackson Laboratory Mouse Diversity
Panel (Bar Harbor, ME). Splenocytes were isolated using stan-
dard procedures; spleens were excised and mechanically dis-
sociated into a single-cell suspension, after which red blood
cells were removed using ammonium-chloride-potassium lysing
buffer (Gibco, Grand Island, NY, USA). Splenocytes at a den-
sity of 100,000 cells per mL and volume of 100µL per well were
then exposed to nine half-logarithmic concentrations of doxoru-
bicin, idarubicin (Sigma-Aldrich, Milwaukee, WI, USA), BEZ-
235 (provided by Novartis, Inc.), and selumetinib (ChemieTek,
Indianapolis, IN, USA) ranging from 0.01 to 100µM.At 4 h post-
treatment, cells were sequentially incubated with physiological
indicator dyes [i.e., 3.75µL (0.19µg) 7-AAD (BD Biosciences,
San Jose, CA, USA), 3.75µM CellEvent™ Caspase-3/7 Green
Detection Reagent, and 125 nM Mitotracker R© Deep Red (Invit-
rogen, Carlsbad, CA, USA) per 100µL well] for 30min at 37◦C
and 5% CO2 and cell surface marker antibodies [i.e., 0.05µg
V500 Syrian hamster anti-mouse CD-3e, 0.1µg APC-H7 rat anti-
mouse CD-19, 0.1µg V450 rat anti-mouse CD-11b, and 0.1µg
PE-Cy7 rat anti- mouse Ly-6G per 100µL well (all antibodies
were obtained from BD Biosciences)] for 30min at 4◦C and then
fixed with 4% paraformaldehyde (Thermo Fisher Scientific, Pitts-
burgh, PA, USA) for 15min at room temperature. Samples were
analyzed by flow cytometry using a BD FACSCanto™ II flow
cytometer (BD Biosciences) equipped with three lasers (405 nm,
488 nm, and 640 nm) and Flow Jo software version X (TreeStar,
Ashland, OR, USA). Dose-response curves with response nor-
malized to the zero dose as a function of log concentration were
generated. After detecting immune cell populations of interest
(e.g., CD19+ B-cells, CD3e+ T-cells, and CD11b+ monocytes),
cells positive for physiological indicator dyes in each subpopula-
tion were gated. Dose-response curves with response normalized
to the zero dose as a function of log concentration were generated
using GraphPad Prism 6 (La Jolla, CA) and the Hill equation:

f (x) = Max−
Max−Min

1+ ( x
IC50 )

γ

where Max is the maximum asymptote, Min is the minimum
asymptote, γ is the Hill slope, and x is the drug concen-
tration (Beam and Motsinger-Reif, 2013). Heritability or the
percent of variability likely due to genetics was calculated by
comparing intra- and interstrain variation in percent viability.
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The proportion of phenotype variation attributable to genetics
was estimated with broad-sense heritability. Intrastrain correla-
tions were estimated by

r1 =
MSB−MSW

MSB+ (n+ 1)MSW

where r1 is the intrastrain correlation estimate,MSB is the mean
square of the between-strain comparison, MSW is the mean
square of the within-strain correlation, and n is the number of
animals per strain (Nichols et al., 2014). Viability measurements
of B-cells and T-cells exposed to the anthracyclines provided the
most heritable phenotypes in this screen and thus underwent
further QTL mapping analysis (Frick et al., 2015).

Quantitative Trait Loci (QTL) Mapping
GWAS were performed for half maximal inhibitory concentra-
tion (IC50) values and individual drug concentrations that corre-
sponded to cell viability for splenic B-cells and T-cells exposed to
doxorubicin and idarubicin. SNPster and efficient mixed-model
association (EMMA) algorithms, which are well described else-
where, were used for QTL mapping (McClurg et al., 2007; Kang
et al., 2008). Briefly, SNPster performs QTL mapping analysis
from an inferred haplotype structure determined by overlap-
ping 3-SNP windows for each strain. Using One-Way ANOVA,
an F-statistic is calculated following association analyses of phe-
notypic values with haplotypes. p-values are then estimated by
bootstrapping phenotypic values 1× 106 times, providing a max-
imum –log(p) score of 6.0 (McClurg et al., 2007). EMMA uses
F-tests for single marker association mapping while account-
ing for population structure and genetic relatedness (Kang et al.,
2008). SNP genotypes used for GWAS were obtained from the
Mouse Diversity Array set at the CGDSNPdb website (http://
cgd.jax.org/cgsnpdb/) (Yang et al., 2011). The SNP panel was
trimmed for redundancy (SNPs showing identical haplotype pat-
tern at a locus), missingness (genotyping call rates <95%), and
non-informative nature (SNPs without variation amongst the 36
strains), leaving a panel of 356,596 SNPs. Manhattan plots were
visualized using R version 3.1.0 and the UCSC Mouse Genome
Browser on the Mouse July 2007 (NCBI37/mm9) Assembly
(https://genome.ucsc.edu) (Waterston et al., 2002). The threshold
of significance for QTL mapping was adjusted using a conser-
vative Bonferroni correction. QTL were considered significant
when the−log(p) score was ≥6.85.

Candidate Gene Selection
QTL regions that overlapped using both association mapping
algorithms, although both were not required to be genome-wide
significant [−log(p) ≥ 6.85], were further selected for candi-
date gene selection. Candidate genes were prioritized based on
the following: literature evidence for biological involvement with
the immune system or anthracycline response, gene expression
in spleens and immune cells across strains, correlation between
phenotypic values and gene expression levels in spleens and
immune cells, similarity in the haplotype structure between the
QTL and the candidate gene, presence of potentially deleterious
non-synonymous coding SNPs, and apoptotic or immune cell

pathway involvement (Supplementary Figure 1) (Moreau and
Tranchevent, 2012). Candidate genes were only included if they
were expressed in the spleen, the tissue originally assayed to pro-
duce our phenotypes of interest. Expression levels were mea-
sured in spleens and immune cells from inbred strains of mice
using the Affymetrix Mouse Genome 2.0 Array (Santa Clara,
CA). Genes were considered expressed if their expression level
was greater than 50 for at least one of the strains following
data processing with the gcRMA algorithm. Non-synonymous
coding SNPs were obtained from dbSNP (http://www.ncbi.nlm.
nih.gov/projects/SNP/). The likely effect of amino acid substi-
tutions in protein sequences was determined using PROVEAN
(Protein Variation Effect Analyzer) version 1.1.3 (Choi et al.,
2012) and PANTHER (Protein Analysis Through Evolutionary
Relationships) version 9.0 software (Thomas et al., 2003; Mi
et al., 2005). Using PROVEAN, a score of ≤−2.5 indicates a
functional effect on the protein. For the PANTHER algorithm,
a subSPEC (substitution position-specific evolutionary conser-
vation) score of −3 corresponds to a 50% probability that a
score is deleterious (Pdeleterious = 0.5). Chilibot (Chen and
Sharp, 2004) (http://www.chilibot.net) was used to search the
PubMed literature database for biological relevance of genes
with regards to immune cell function or anthracycline response.
Ingenuity R© Pathway Analysis was used to gage the involve-
ment of genes in apoptotic or various immune function path-
ways (http://www.ingenuity.com/). The haplotype structure for
the interval and for specific genes was reviewed with the Mouse
Phylogeny Viewer (https://msub.csbio.unc.edu/) (Wang et al.,
2012).

App Gene Validation
Based on the criteria for candidate gene validation as described
above, App was chosen for downstream validation studies. An
in vitro knockout approach was used for validation of App. App
knockout (B6.129S7-Apptm1Dbo/J, stock number: 004133) and
C57BL/6J control (stock number: 000664) male mice aged 10–12
weeks were obtained from the Jackson Laboratory (Bar Harbor,
ME). Other than a reduced body weight of 15–20% less than wild-
type age-matched controls, mice homozygous for the targeted
allele are viable without blatant physical and behavioral abnor-
malities at birth. At 14 weeks of age, an age beyond the range we
included in our assay, the mice exhibit evidence of reactive glio-
sis with significantly reduced forearm grip strength and reduced
locomotion (Zheng et al., 1995). For the validation study, mice
were housed three per cage in polycarbonate cages on a 12 h
light/dark cycle (lights on at 0700 h) with access to food and water
ad libitum. Following 1 week of habituation, splenic immune
cells from these knockout and control mice were obtained and
underwent the cellular screening as described (Frick et al., 2015).
All procedures were approved by the UNC Institutional Animal
Care and Use Committee and followed the guidelines set forth by
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Statistical Analyses
Additional statistical analyses, including Pearson correlations, t-
tests, and partial F-tests, were performed with SAS version 5.2
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(Cary, NC) and GraphPad Prism 6 with p < 0.05 considered to
be statistically significant. Pearson correlations were performed
to determine the relatedness betweenmetrics (Brown et al., 2011).
Dose-response curves from knockout and control populations
were compared using t-tests for IC50 and viability measurements.
Finally, a partial F-test was used to determine if there was evi-
dence that the knockout and control data sets differed from each
other, necessitating the use of two separate dose-response curves
to represent the conglomerate data.

Results

The results from our initial ex vivo assessment of drug sensi-
tivity phenotypes have been previously discussed (Frick et al.,

FIGURE 1 | Phenotypes for GWAS. Dose-response curves reflecting

interstrain variation in viability are shown for T-cells exposed to idarubicin (A),

B-cells exposed to doxorubicin (B), and B-cells exposed to idarubicin (C).

Thirty-six strains are represented: 129S1/SvImJ, 129X1/SvJ, A/J, AKR/J,

BALB/cByJ, BTBR T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J,

C57BR/cdJ, C58/J, CBA/J, CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HiJ,

LG/J, LP/J, MA/MyJ, NOD/LtJ, NON/LtJ, NZB/BINJ, NZO/HiLtJ, NZW/LacJ,

PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ, RIIIS/J, SEA/GnJ, SJL/J, SM/J,

SWR/J, and WSB/EiJ. Concentrations used to generate genome-wide

significant QTL (respectively 1, 0.3, and 3µM) are enclosed with a black box.

2015). Although we measured multiple cell health parame-
ters, the cell viability phenotype was most robust and herita-
ble and was subsequently used for GWAS. Figure 1 displays the
interstrain phenotypic variation for the most heritable viability

FIGURE 2 | Manhattan plots for immune cell cytotoxicity to

anthracycline agents. Manhattan plots were obtained from GWAS using

EMMA and SNPster algorithms for T-cells exposed to idarubicin (A), B-cells

exposed to doxorubicin (B), and B-cells exposed to idarubicin (C). Manhattan

plots derived from EMMA are displayed above Manhattan plots obtained from

SNPster. The threshold of genome-wide significance (−log(p) ≥ 6.85 following

Bonferroni correction) is represented by the horizontal red line. The black

boxes contain matching QTL peaks obtained from both EMMA and SNPster

algorithms respectively on chromosomes 16 (A), 6 (B) 5, and 7 (C).

The −log(p) scores for the respective QTL are 7.34, 7.94, 12.08, and 10.98.
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phenotypes: T-cells exposed to idarubicin (Figure 1A), B-cells
exposed to doxorubicin (Figure 1B), and B-cells exposed to
idarubicin (Figure 1C). Several strains repeatedly appeared to be
more sensitive (e.g., C57BLKS/J and DBA/2J) or less sensitive
(e.g., BALB/cByJ, KK/HiJ, andWSB/EiJ) to the cytotoxic effects of
the different anthracycline agents across cell types. The concen-
trations (respectively 0.3, 1, and 3µM) contained in black boxes
corresponded to the phenotypic values that generated genome-
wide significant QTL with respective heritability measurements
of 70.6, 87.5, and 85%. The viability measurements at these con-
centrations significantly correlated with IC50 values obtained
from our assay with respective Pearson correlations of 0.85942
(p < 0.0001), 0.82489 (p < 0.0001), and 0.92028 (p < 0.0001).

Using a GWA approach, we identified four genome-wide
significant QTLs that overlapped using both SNPster and
EMMA algorithms: chr16 84.7–85.6Mb for T-cells exposed to

idarubicin (Figure 2A), chr6 146.5–147.5Mb for B-cells exposed
to doxorubicin (Figure 2B), and chr5 74.5–74.9Mb and chr7
151.4–152.0Mb for B-cells exposed to idarubicin (Figure 2C)
with −log(p) scores of 7.34, 7.94, 12.08, and 10.98, respec-
tively. Within these four QTL peaks, there were 25 genes that
were further prioritized using the criteria described previously
(Supplementary Figure 1). Only 16 out of 25 genes within
genome-wide significant peaks were expressed in the spleen
(expression level > 50) and were included for prioritization
(Supplementary Table 1).

The viability of splenic T-cells following idarubicin exposure
is a robust phenotype exhibiting strong interstrain variability.
This phenotype was strongly associated with a 0.9Mb region
(84.7–85.6Mb) on chromosome 16 containing eight genes, six of
which met criteria for candidate gene prioritization (Figure 3).
Supplementary Table 1 lists characteristics for all candidate

FIGURE 3 | Genomic region associated with T-cell toxicity

following idarubicin exposure. Potential candidate genes from the

Reference Sequence database on chromosome 16 are displayed

using Manhattan plots that were generated from both EMMA and

SNPster algorithms. The candidate QTL within a 0.9Mb region is

visualized with the UCSC Genome Browser (http://genome.ucsc.edu)

with the QTL region derived from EMMA displayed above the QTL

region obtained from SNPster.
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genes across various dose-response phenotypes. Briefly, of the
six genes, App was one of four (i.e., Atp5j, Gabpa, and Mir155)
that is involved in apoptosis and immune cell pathways accord-
ing to Ingenuity R© pathway analysis. Using Chilibot, App is the
only gene with a known relation to anthracyclines and one of
two genes (i.e., Mir155) that is associated in the literature with
the immune system. The haplotype structure of App, Gabpa, and
Mrpl39 contained groupings of strains corresponding to sensi-
tive and resistant phenotypes. App and Mrpl39 have potentially
deleterious SNPs. App is also the only gene under this peak
that is differentially expressed (≥2 fold difference in expression
levels) across our selected inbred mouse strains in the spleen,
CD4+ cells, CD4+ Th1 cells, and macrophages. For these rea-
sons, App, encoding amyloid beta precursor protein, was chosen
for validation.

As shown in Figure 4, the haplotype structure of App illus-
trates similar groupings of sensitive and resistant strains as the
one seen for the top peak (Figure 4A). Additionally, the gene
does contain non-synonymous coding SNPs (Figure 4B), which
introduce the following amino acid sequence changes in the
protein: D516E, A480V, D309E, and G221S. Using PROVEAN
and PANTHER algorithms, A480V and D309E were classified
as likely deleterious to App (Figure 4C). Finally, based on lit-
erature review, although associated mutations and differences
in expression in App have been historically linked primarily to
Alzheimer’s disease, there is evidence of a role for App in cyto-
toxicity involving chemotherapeutics (Uberti et al., 2007; Woods
and Padmanabhan, 2013).

A gene validation study was performed using splenocytes from
App knockout (B6.129S7-Apptm1Dbo/J) and C57BL/6J control
mice, subjected to the same conditions within our cellular screen.
Without drug exposure, the relative splenic T-cell composition
and viability of App knockout vs. control mice were not statisti-
cally different using a t-test (p > 0.05, respectively p = 0.344
and p = 0.386). However, the mean viability of T-cells from App
knockout mice was more than that of the control mice follow-
ing exposure to idarubicin (Figure 5). Given that the log10(IC50)
value for the control mice (3.48, 95% CI: 3.401–3.56) is signif-
icantly higher than the log10(IC50) value for the App knockout
mice (3.28, 95% CI: 3.18–3.38), this result suggests that suscepti-
bility to idarubicin-induced cytotoxicity on T-cells is greater with
the absence of App (p < 0.05). Additionally, the knockout of
App was significantly associated with increased cell toxicity as
observed by the shift to the left in the dose-response curve from
the control mice (partial F-test, p = 0.0056, Figure 5).

Discussion

This investigation aimed to uncover genetic components of the
normal immune system’s sensitivity to chemotherapeutic agents.
The importance of this comes from studies that implicate the
uncompromised immune system in the efficacy of chemothera-
peutic treatments (Hanahan and Weinberg, 2011). In this study,
we assessed the resilience of immune function cells to potentially
toxic drugs, including anticancer agents. As this investigation is
difficult to conduct in human patients, we proposed a model
system to examine cytotoxicity in healthy immune cells from

inbred strains of mice with the objective of identifying genetic
biomarkers of immune cytotoxicity (Frick et al., 2015).

Recently, standardization of pharmacogenomic screening has
come under intense scrutiny, necessitating improvements in the
design, application, and implementation of robust assays for phe-
notypic measurement (Haibe-Kains et al., 2014; Hatzis et al.,
2014). For these GWAS, we examined IC50 values, AUC val-
ues, and individual viability concentrations (only results from the
GWAS for individual viability concentrations are shown here). It
is often not clear how to best represent the phenotype data when
multiple varying dose-response curves are involved, and all three
measurements used for GWAS present their own challenges and
benefits. In this study, IC50 could not be estimated in some cases
as necessary concentrations for 50% viability were outside of our
selected, generic concentration range (15 nM–100µM) and were
far beyond physiological boundaries. While IC50 is a biologically
relevantmeasurement if slopes are comparable, it can be regarded
as a moving target and differs based on software and equations
used to fit the dose-response curve. AUCmeasures can always be
estimated from the dose-response curve and all points are used
in data analysis. However, the appropriateness of this model in
regards to its biology has been questioned (Brown et al., 2011;
Fallahi-Sichani et al., 2013). The viability concentrations, which
were located on either side of the mean logarithmic IC50 for all
strains, provided precise, replicable, and robust measurements
and the necessary interstrain variation for GWAS compared to
IC50 and AUC values. Therefore, the cell viability data from these
viability concentrations were used to compute the genome-wide
significant QTL.

In this study, we uncovered four genome-wide significant
QTL that were identified with two different GWA algorithms
(EMMA and SNPster) using the same genotype and phenotype
data. Because the two mapping approaches determine QTL using
different methodologies, the use of both algorithms potentially
helps to minimize identification of false positive QTLs. Results
from both analyses identified four loci containing 25 candidate
genes. These candidate genes subsequently underwent careful
inspection to examine as much available data that can be gar-
nered to rank these genes and select a “most likely” candidate for
validation.

Here, we selected one gene for a validation study; App was
validated ex vivo using knockout and control mice. App knock-
out mice are commercially available and viable, and only with
a concurrent knockout of Aplp2 (amyloid precursor-like pro-
tein 2) is this loss of function perinatally lethal. The down-
stream processing of App is fairly complex, and the role of
domains in addition to the plaque forming β-App, typically
associated with Alzheimer’s disease, is still under investiga-
tion. App consists of multiple domains (i.e., A4, N-terminal
heparin-binding, copper-binding, KU, E2, β-App, and amyloid
C-terminal domains as shown in Figure 4B) with numerous
cleavage sites (Sherry et al., 2001). Alzheimer’s disease has been
suggested to result from an imbalance in the production and
clearance of β-APP However, additional theories have been pro-
posed, for instance suggesting β-APP is a marker of oxida-
tion rather than a symptom of neurodegeneration (Dong et al.,
2012).
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FIGURE 4 | Haplotype and protein structure of App. The haplotype

structure of the inbred mouse strains within App (A), the structure of App (B),

and the likelihood of deleterious effects within App due to non-synonymous

coding SNPs (C) are shown. Strains are arranged in descending order of

phenotype (i.e., T-cell viability following exposure to 1µM idarubicin) from

most to least sensitive along with mean, standard deviation, and the

haplotype structure (chr16 84.95Mb–85.17Mb). The haplotype

(Continued)
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FIGURE 4 | Continued

structure was visualized with the Mouse Phylogeny Viewer

(https://msub.csbio.unc.edu/). Within App, non-synonymous coding SNPs

are indicated by arrows. The structure of App is provided with key domains

and the sites of potential amino acid substitutions caused by

non-synonymous coding SNPs. Non-synonymous coding SNPs within App

were obtained from the Center for Genome Dynamics

(http://cgd.jax.org/cgdsnpdb). The likelihood scores for these SNPs to cause

deleterious effects within the associated protein’s structure using PROVEAN

and the PANTHER Classification System are displayed. Using PROVEAN, a

score of ≤−2.5 indicates a functional effect on the protein. For the PANTHER

algorithm, a subSPEC (substitution position-specific evolutionary

conservation) score of −3 corresponds to a 50% probability that a score is

deleterious (Pdeleterious = 0.5). Likely deleterious values have been bolded.

FIGURE 5 | In vitro validation of App in T-cell toxicity following

idarubicin exposure. Dose-response curves (A) and baseline splenic

T-cell composition (B) and non-viable T-cells (C) are shown.

Dose-response curves were generated following exposure of splenic

T-cells from C57BL/6J control mice (N = 3) and App knockout mice

(N = 3) to idarubicin. A significant shift to the left was observed in App

knockout cells as calculated using a partial F-test (p = 0.0056). At the

zero dose, the relative splenic T-cell composition and viability of App

knockout vs. control mice were not statistically different using a t-test

(p > 0.05, respectively p = 0.344 and p = 0.386).

APP has been studied primarily in the context of Alzheimer’s
disease, but knowledge of other biological functions has not been
as well studied. This gene is ubiquitously expressed, suggesting
roles outside of various neuronal functions and potentially in
diseases likely to occur due to aberrant processes that are typi-
cally associated with APP. The extracellular portion of the pro-
tein has been implicated in cell adhesion, signaling, and growth,
and the intracellular portion has been associated with cell sig-
naling and apoptosis (Thinakaran and Koo, 2008; Dawkins and
Small, 2014). Overexpression of APP, particularly the soluble N-
terminal ectodomain (sAPP), has been linked to carcinogenesis,
including cancers originating from the nasopharynx, oral cavity,
lung, breast, thyroid, parathyroid, colon, testicles, and pancreas
(Takagi et al., 2013; Yamada et al., 2013). Ryan et al. exposed rat
hippocampus slice cultures to sAPP, which elicited an inflamma-
tory and immune gene response that was suggested to cause a
neuroprotective environment. Apoptotic pathways were down-
regulated, while cell proliferation and survival pathways were

upregulated (Ryan et al., 2013). In addition, APP expression is
indirectly linked to Ras/MAPK and PI3K/Akt pathways, which
are often upregulated in various cancers (Ruiz-León and Pascual,
2004). These findings suggest a potential role of APP in cellular
processes involved in cancer or in chemotherapy response.

Epidemiologically, an inverse comorbidity with cancer was
found in two studies of 500 patients with Alzheimer’s dis-
ease (Tabarés-Seisdedos and Rubenstein, 2013). This inverse
correlation was hypothesized to be driven by molecular processes
common to CNS disorders and cancer. Ibáñez et al. found a sig-
nificant overlap between genes (e.g., PIN1, Wnt pathway, p53
pathway, and pathways related to protein folding and folding
degradation) upregulated in CNS disorders (i.e., Alzheimer’s dis-
ease, Parkinson’s disease, and schizophrenia) and genes down-
regulated in cancer (i.e., lung, prostate, and colorectal cancers)
and vice versa (Ibáñez et al., 2014). APP also may be affected
by anticancer chemotherapeutics. A recent clinical observational
study indicated that the risk of Alzheimer’s disease was reduced
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following the administration of anticancer chemotherapy (Stong,
2013).

Additionally, in CHO cells, carmustine administration
reduced β-APP and was suggested to cause altered intracellular
trafficking and processing of APP with an increase in sAPP and
immature APP levels at the cell surface (Hayes et al., 2013). APP
overexpressing cell lines have also been found to have a higher
resistance to cytotoxicity; overexpression of wild-type APP in
HEK cells resulted in a conformational change in p53 and a sub-
sequent reduced sensitivity to doxorubicin (Uberti et al., 2007).
The link between APP and p53 has been previously suggested,
and APP has been proposed to activate gene transcription in a
similar way as Notch, a protein with roles in cell differentiation,
cell proliferation, neuronal function, and T-cell lineage commit-
ment (Thinakaran and Koo, 2008). Altogether, these findings
suggest a potential role of APP in cancer and in anticancer drug
response.

We have not yet determined the mechanism as to why a lack
of App leads to enhanced toxicity to idarubicin. From the find-
ings discussed above, we can hypothesize that an increase in wild
type APP and subsequent sAPP leads to a decrease in functional
proteins within the p53 pathway, which causes a downregula-
tion in apoptotic processes, upregulation in cell survival, and
subsequent resistance to toxic insults such as treatment with anti-
cancer drugs. This situation could present a clinical conundrum
in how to treat patients with cancers overexpressing APP and
thus warrants further investigation (Lanni et al., 2012).

Genomic differences in molecular machinery processing APP
could add additional layers of complexity. Full-length APP is pro-
cessed by α-, β-, and γ-secretases to yield β-APP or sAPP in the
extracellular domain and complementary membrane-tethered
fragments that are further cleaved into smaller peptides. Alterna-
tive splicing generates several APP isoforms, often tissue-specific,
ranging from 365 to 770 amino acids. The exact nature of these
fragments is difficult to determine, but they can have functions
independent of the parent protein. The effect of idarubicin on
the profile of alternative APP variants and APP cleavage prod-
ucts remains to be determined. A number of post-translational
modifications also occur in APP; APP is extensively glycosy-
lated in extra- and intracellular domains and is phosphorylated at
several residues in its cytoplasmic domain, which interacts with
multiple proteins (Muresan and Ladescu Muresan, 2015). The
intracellular concentrations of active drugs may be affected by
these modifications in general (Marin et al., 2014); however, the
effect of drugs, particularly idarubicin, on these processes in APP
warrants further investigation.

In this study, the expression of App in the spleen and other
immune cells did not correlate with the interstrain sensitivity
of T-cells to idarubicin. Thus, the effect of App on anticancer
cytotoxicity is not likely driven by App expression in this study.
An additional study to explore the mechanism of App’s effect on
idarubicin toxicity may include creating specific polymorphisms

introducing the potentially deleterious non-synonymous cod-
ing changes mentioned previously to see how the viability of
T-cells exposed to idarubicin is affected. Furthermore, we have
additional candidate genes from our screen for future valida-
tion. Of particular interest, Ppfia1 and Ppfibp1 were found using

the viability of B-cells exposed to doxorubicin and idarubicin,
respectively. These genes encode liprin-alpha-1 and liprin-beta-1,
members of the LAR protein tyrosine phosphatase-interacting
protein family, which orchestrate cell-matrix interactions (http://
omim.org/, 2014). Future studies examining the roles of Ppfia1
and Ppfibp1 in immune-mediated cytotoxicity are needed to
better understand this finding.

We achieved our aims by demonstrating that we can identify
genes implicated in the immune cell survival after treatment with
chemotherapeutic agents. Using a cellular screening approach, we
identified and subsequently validated a gene involved in cytotoxic
T-cell sensitivity to idarubicin. Further work would be required to
define the precise mechanism by which APP mediates this sensi-
tivity. In addition, it is very unlikely that this is the only gene that
impacts the variable response to this chemotherapeutic agent.We
identified additional candidate genes of interest that would also
require a validation process, with the ultimate goal of translating
these findings to clinical practice.
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