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Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular
mechanisms of their action and contributed significantly to molecular pharmacology.
This is primarily due to technical advances in protein engineering, production
and crystallization of these important receptor targets. On the other hand, NMR
spectroscopy of GPCRs, which can provide information about their dynamics, still
remains challenging due to difficulties in preparation of isotopically labeled receptors and
their low long-term stabilities. In this review, we discuss methods used for expression
and purification of GPCRs for crystallographic and NMR studies. We also summarize
protein engineering methods that played a crucial role in obtaining GPCR crystal
structures.
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Introduction

G protein-coupled receptors are 7TM proteins that transmit signals between the cellular environ-
ment and its interior. Due to their key role in pathophysiology, GPCRs are important drug targets
(Roth, 2005). One of the features of GPCRs and proteins involved in their signaling pathways is
that they are very dynamic and flexible proteins and change their conformation during the signal
transduction. Binding of ligands stabilizes particular conformations of a GPCR, which result in the
activation of G proteins (Hepler and Gilman, 1992), G protein-coupled kinases (Gurevich et al.,
2012) and arrestin-mediated (Shukla et al., 2011) signaling pathways. The efficacy of the ligands
varies from agonists, which activate a specific response, to antagonists, which block the binding site

Abbreviations: 7TM, seven transmembrane α-helical; BRIL, apocytochrome b562RIL; C8E4, tetraethylene
glycol monooctyl ether; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; CHAPSO, 3-
([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate; CHS, cholesteryl hemisuccinate; CMA,
carboxymethylaspartate; CMC, critical micelle concentration; ConA, concanavalin A; DDG, n-dodecyl-β-D-glucopyranoside;
DDM, n-dodecyl-β-D-maltopyranoside; DG, n-decyl-β-D-glucopyranoside; DM, n-decyl-β-D-maltopyranoside; DMPC,
1,2-dimyristoyl-sn-glycero-3-phosphocholine; dsT4L, ‘disulfide-stabilized’ T4 lysozyme; FACS, fluorescence-activated
cell sorting; FRAP, fluorescence recovery after photobleaching; FSEC, fluorescence-detection size-exclusion chro-
matography; GFP, green fluorescent protein; GST, glutathione S-transferase; GPCR, G protein-coupled receptor;
HEGA-10, n-decanoyl-N-hydroxyethylglucamide; HPTO, n-heptane-1,2,3-triol; HRV, human rhinovirus; HTG, n-
heptyl-β-D-thioglucopyranoside; ICL, intracellular loop; IMAC, immobilized metal-ion affinity chromatography; LCP,
lipidic cubic phase; LDAO, lauryldimethylamine-oxide; LMNG, lauryl-maltose-neopentyl glycol; LMPG, 1-myristoyl-
2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)]; MBP, maltose-binding protein; mT4L, ‘minimal’ T4 lysozyme;
NG, n-nonyl-β-D-glucopyranoside; NMR, nuclear magnetic resonance; NTA, nitrilotriacetic acid; OG, n-octyl-β-D-
glucopyranoside; OTG, n-octyl-β-D-thioglucopyranoside; PCR, polymerase chain reaction; PGS, the catalytic domain of
Pyrococcus abyssi glycogen synthase; Rd, rubredoxin; ROS, rod outer segment; SEC, size-exclusion chromatography; T4L, T4
lysozyme; TEV, tobacco etch virus; TrxA, thioredoxin A.
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without changing the basal activity, to inverse agonists, which
further reduce the activity below the basal level. Some ligands
show bias, preferentially activating either G protein or arrestin
pathways, or even changing the balance between the activation of
different G protein subtypes (Mary et al., 2013; Nygaard et al.,
2013; Venkatakrishnan et al., 2013). This rich pharmacology
offers a large therapeutic potential, and understanding the under-
lying structural basis may help in the rational design of new drugs
(Congreve et al., 2014).

In the last several years, X-ray crystallography gave signif-
icant contribution to understanding of molecular mechanisms
of GPCR signaling. Until the end of 2014, crystal structures of
the transmembrane regions have been published for 29 unique
GPCRs (Table 1). This terrific progress is due to several tech-
nological advances in GPCR crystallization (Figure 1), including
use of antibodies, in particular nanobodies (Steyaert and Kobilka,
2011), and/or fusion partners for conformational stabilization
and an increase in hydrophilic molecular surface, truncations
and deletions of flexible loops to reduce molecular flexibility, as
well as an introduction of stabilizing point mutations in order
to increase thermostability of a detergent-solubilized receptor
(Tate and Schertler, 2009; Tate, 2012). Also, this progress can
partially be attributed to an increased use of LCP as a crystal-
lization environment particularly suitable for membrane proteins
(Caffrey and Cherezov, 2009) along with development of syn-
chrotron X-ray microfocus beamlines and, more recently, X-ray
free-electron lasers (Liu et al., 2013; Liu et al., 2014; Weierstall
et al., 2014).

Structures of several GPCRs were obtained in both inactive
and active conformations in complexes with diverse sets of lig-
ands, ranging from inverse agonists to full agonists (Maeda and
Schertler, 2013). This gave us some basic understanding of lig-
and specificity and ligand-induced conformational changes in the
studied receptors and their interactions with intracellular signal-
ing partners (Granier and Kobilka, 2012; Venkatakrishnan et al.,
2013). Furthermore, the crystal structures enabled structure-
based fragment screening for this important superfamily of drug-
gable proteins (Kolb et al., 2009; Carlsson et al., 2010, 2011;
de Graaf et al., 2011; Christopher et al., 2013). In addition, we
were able to grasp structural basis of disease-causing mutations
in the visual GPCR rhodopsin for the first time (Singhal et al.,
2013).

Despite the fantastic progress in the crystallography of GPCRs,
several key questions about the functioning of the receptors,
such as the basis for the ligand selectivity, the activation mech-
anism and the structural basis for biased signaling, remained
open because these processes are likely to be determined not
only by the structure but also by the dynamics of the system.
NMR spectroscopy is an ideal method to provide such dynamic
information.

In this paper we give an in-depth overview of strategies and
methods used to prepare GPCRs for crystallization and NMR
spectroscopy. Although soluble GPCR domains, like N-terminal
extracellular domains of class B, C, and F GPCRs, have been
structurally studied (e.g., Kunishima et al., 2000; Dann et al.,
2001; Tsuchiya et al., 2002; Rana et al., 2013; Dong et al., 2014),
we limit ourselves only to discussion of expression, purification

and protein engineering of GPCR molecular entities comprising
a 7TM domain.

Expression

Natural Sources
Because of its abundance in retina of eye, rhodopsin could be iso-
lated from natural sources in relatively large amounts and used
for structural studies. Bovine (Bos taurus) rhodopsin has been
isolated from ROS membranes, where it comprises more than
90% of membrane proteins (Okada et al., 1998). This allowed
extensive crystallization screening in order to find the optimal
crystallization conditions (Okada et al., 2000; Edwards et al.,
2004; Salom et al., 2006a) resulting in crystal structures of sev-
eral different forms of bovine rhodopsin (Table 1). Similarly,
squid (Todarodes pacificus) rhodopsin was isolated from rhab-
domic microvillar membranes in squid retina and its structure
was determined in three different forms by X-ray crystallography
(Murakami and Kouyama, 2008, 2011; Shimamura et al., 2008).

Bovine and squid rhodopsins are exceptional examples. The
majority of GPCRs are present in scarce amounts in cell mem-
branes, so in such cases purification from natural sources for
structural studies would become very impractical and expensive.
Moreover, modifications of GPCR molecules are usually needed
for structural studies. Such modifications are impossible or very
difficult to make in GPCRs isolated from natural sources. All
these reasons make heterologous expression a preferred method
of GPCR production (Table 1).

Mammalian Cells
As many other eukaryotic proteins, GPCRs are heavily post-
translationally modified. These modifications include glycosyla-
tion, fatty acylation (most often palmitoylation) and phospho-
rylation. N-linked glycosylation plays a role in proper GPCR
folding in the endoplasmatic reticulum and subsequent traf-
ficking to the plasma membrane. Phosphorylation is important
in GPCR desensitization and internalization, while palmitoy-
lation stabilizes receptor conformation in the membrane and
thus might have a role in GPCR oligomerization and signal-
ing. Because they have all necessary cellular and enzymatic
machinery for correct post-translational processing, folding and
insertion into a membrane, cultured mammalian cells are in
general optimal systems for heterologous expression of func-
tional mammalian GPCRs. Furthermore, lipidic content of mam-
malian membranes provides native environment for mammalian
GPCRs. That does not mean that mammalian expression systems
always provide enough protein suitable for structural studies.
It often happens that the protein sample produced by overex-
pression is heterogenously glycosylated or that some portion of
protein, although produced, is not properly folded and thus not
functional.

There are two general ways for expressing proteins in mam-
malian cells: transient and stable expression (reviewed in Andréll
and Tate, 2013). Mammalian cells can be transiently trans-
fected by using recombinant non-replicative viruses with a GPCR
gene (e.g., Semliki Forest Virus expression system) or by using
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TABLE 1 | G protein-coupled receptors with experimentally determined structure of a 7TM domain (published until the end of 2014).

GPCRa Source
organismb

GPCR family (Class)a Expression
system

Referencesc

Isolation from natural source

Rhodopsin Bovine Opsin (A) Bovine (rod
photoreceptor cells)

Palczewski et al. (2000), Teller et al. (2001), Okada et al. (2002, 2004), Li et al. (2004),
Nakamichi and Okada (2006), Salom et al. (2006b), Nakamichi et al. (2007), Park
et al. (2008, 2013), Scheerer et al. (2008), Makino et al. (2010), Choe et al. (2011),
Szczepek et al. (2014)

Rhodopsin Squid Opsin (A) Squid (rhabdomeric
photoreceptor cells)

Murakami and Kouyama (2008, 2011)

Expression in mammalian cells

Rhodopsin Bovine Opsin (A) COS-1 Standfuss et al. (2007)

Rhodopsin Bovine Opsin (A) HEK293S(TetR)
GnTI−

Standfuss et al. (2011), Deupi et al. (2012), Singhal et al. (2013)

Expression in insect cells

β1-
adrenoceptor

Turkey Adrenoceptors (A) High Five Warne et al. (2008, 2011, 2012), Moukhametzianov et al. (2011), Christopher et al.
(2013), Huang et al. (2013), Miller-Gallacher et al. (2014)

β2-
adrenoceptor

Human Adrenoceptors (A) Sf9 Cherezov et al. (2007), Rasmussen et al. (2007, 2011a,b), Hanson et al. (2008),
Bokoch et al. (2010), Wacker et al. (2010), Rosenbaum et al. (2011), Zou et al. (2012),
Ring et al. (2013), Weichert et al. (2014)

D3 receptor Human Dopamine (A) Sf9 Chien et al. (2010)

M2 receptor Human Acetylcholine
(muscarinic) (A)

Sf9 Haga et al. (2012), Kruse et al. (2013)

M3 receptor Rat Acetylcholine
(muscarinic) (A)

Sf9 Kruse et al. (2012), Thorsen et al. (2014)

5-HT1B

receptor
Human 5-Hydroxytryptamine

(A)
Sf9 Wang et al. (2013a)

5-HT2B

receptor
Human 5-Hydroxytryptamine

(A)
Sf9 Liu et al. (2013), Wacker et al. (2013)

A2A receptor Human Adenosine (A) Sf9 Jaakola et al. (2008), Doré et al. (2011), Xu et al. (2011b), Congreve et al. (2012), Liu
et al. (2012b)

A2A receptor Human Adenosine (A) High Five Lebon et al. (2011b)

P2Y12

receptor
Human P2Y (A) Sf9 Zhang et al. (2014a,b)

CXCR4 Human Chemokine (A) Sf9 Wu et al. (2010)

CCR5 Human Chemokine (A) Sf9 Tan et al. (2013)

δ receptor Mouse Opioid (A) Sf9 Granier et al. (2012)

δ receptor Human Opioid (A) Sf9 Fenalti et al. (2014)

κ receptor Human Opioid (A) Sf9 Wu et al. (2012)

μ receptor Mouse Opioid (A) Sf9 Manglik et al. (2012)

NOP receptor Human Opioid (A) Sf9 Thompson et al. (2012)

NTS1

receptor
Rat Neurotensin (A) High Five White et al. (2012)

PAR1 Human Proteinase-activated (A) Sf9 Zhang et al. (2012)

OX2 Human Orexin (A) Sf9 Yin et al. (2015)

S1P1

receptor
Human Lysophospholipid (S1P)

(A)
Sf9 Hanson et al. (2012)

FFA1
receptor

Human Free fatty acid (A) Sf9 Srivastava et al. (2014)

CRF1

receptor
Human Corticotropin-releasing

factor (B)
High Five Hollenstein et al. (2013)

Glucagon
receptor

Human Glucagon (B) Sf9 Siu et al. (2013)

mGlu1

receptor
Human Metabotropic

glutamate (C)
Sf9 Wu et al. (2014)

mGlu5

receptor
Human Metabotropic

glutamate (C)
Sf21 Doré et al. (2014)

(Continued)
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TABLE 1 | Continued

GPCRa Source
organismb

GPCR family (Class)a Expression
system

Referencesc

SMO Human Frizzled (F) Sf9 Wang et al. (2013b, 2014), Weierstall et al. (2014)

Expression in yeast

H1 receptor Human Histamine (A) P. pastoris
SMD1163

Shimamura et al. (2011)

A2A receptor Human Adenosine (A) P. pastoris
SMD1163

Hino et al. (2012)

Expression in bacteria

CXCR1d Human Chemokine (A) E. coli BL21(DE3) Park et al. (2012b)

NTS1

receptor
Rat Neurotensin (A) E. coli BL21(DE3) Egloff et al. (2014b)

aG protein-coupled receptor nomenclature used in this paper is according to the International Union of Basic and Clinical Pharmacology, IUPHAR (Alexander et al., 2013).
bBinomial names of organisms: Bovine – Bos taurus; Human – Homo sapiens; Mouse – Mus musculus; Rat – Rattus norvegicus; Squid – Todarodes pacificus; Turkey –
Meleagris gallopavo. cPublications reporting the structures. dThe structural model is based on solid-state NMR spectroscopy.

FIGURE 1 | Crystal structure of the β2-adrenoceptor–Gs protein
complex (PDB ID: 3SN6) illustrates some of the protein engineering
strategies available for structural studies of GPCRs. The receptor (gray)
was N-terminally fused with T4L (blue) and complexed with an agonist (orange
spheres). The complex with Gs protein (α-subunit shown in cyan, β-subunit in
green and γ-subunit in orange) is additionally stabilized by nanobody
(magenta). Three point mutations (residues shown as red spheres) had to be
introduced in order to delete a glycosylation site (mutation N187E) and to
increase expression level of the T4L–β2-adrenoceptor chimera (mutations
M96T, M98T). Finally, the receptor molecule was truncated to remove a
flexible C-terminal tail interfering with crystallization.

chemical reagents, like cationic compounds, which form com-
plexes with plasmid DNA and thus enable its insertion into a cell.
In transient transfection the gene of interest does not integrate
into the genome. On the contrary, stable transfection denotes
integration of the gene of interest into the cellular genome. A gene
for antibiotic resistance is also present in the same cloning cas-
sette as the gene of interested, so the stable cells can be selected
for antibiotic resistance. Incorporation into the genome can be
random or specific by using a recombinase and site-specific
recombination (e.g., Flp-In system from Life Technologies for

production of adherent stable mammalian cells). In case of ran-
dom incorporation, it is advisable to select clones with the highest
functional expression levels. Otherwise, in the mixed population
expression levels can drop over time, because the clones which
express badly or not at all might grow faster. Alternatively, cells
can be enriched for the highest expressers with FACS (Mancia
et al., 2004; Thomas and Tate, 2014). With stable cell lines there is
no need to transfect or infect the cells every time one produces the
protein. This is certainly an advantage in comparison to transient
expression.

Another important parameter to consider in heterologous
expression is the choice of promoter. Constitutive promoters are
not a good choice if the produced protein is toxic to cells. On the
other hand, inducible promoters allow induction of expression
after the cells have reached a certain density and minimize the
negative effect of protein overexpression on the cells.

The first crystal structure of GPCR produced by heterolo-
gous expression was that of the thermally stable bovine rhodopsin
mutant with an engineered disulfide bond (Standfuss et al., 2007).
It was produced in adherent mammalian COS-1 cells transiently
transfected using diethylaminoethyl-dextran. In this case, the
rhodopsin gene was under control of constitutive adenovirus
major late promoter (Oprian et al., 1987). From 50 transiently
transfected 15-cm plates, Standfuss et al. (2007) got 2.5 mg
rhodopsin 72 h after transfection, which resulted in 0.6 mg pure
protein.

In order to avoid effects of heterogeneous and incom-
plete glycosylation in overexpression, Khorana’s group devel-
oped suspension adapted HEK293S(TetR) GnTI− cells with
a tetracycline-inducible expression system under control of
cytomegalovirus promoter (Reeves et al., 2002a). Lacking the
N-acetylglucosaminyltransferase I activity, these cells express
proteins with N-linked glycosylation restricted to Man5GlcNAc2
N-glycan. Khorana and colleagues also showed that addition
of sodium butyrate, a histone deacetylase inhibitor is benefi-
cial for expression levels of rhodopsin (Reeves et al., 2002b).
Stable HEK293S(TetR) GnTI− cells were used in crystallographic

Frontiers in Pharmacology | www.frontiersin.org 4 March 2015 | Volume 6 | Article 66

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive
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studies of bovine rhodopsin mutants (Standfuss et al., 2011;
Deupi et al., 2012; Singhal et al., 2013). For these studies, the cells
in suspension were grown in 10 L wave bioreactors, which yielded
∼ 0.5 mg purified protein per liter of growth medium. Although
originally used for expression of rhodopsin, HEK293S(TetR)
GnTI− cells proved to be useful for expression of several human
membrane proteins, including a handful of GPCRs (reviewed in
Andréll and Tate, 2013). Based on that, we believe this and some
other mammalian cell lines will gain more prominence in future
structural studies of GPCRs.

Although very useful in producing milligram amounts of func-
tional GPCRs, expression in mammalian cells is accompanied
with some drawbacks. In general, media and antibiotics used
for GPCR production in mammalian cells are among the most
expensive ones. Generation of stable cell lines is time consum-
ing. It usually takes 3 weeks to obtain bulk, polyclonal sample of
stable cells. Additional three to 6 weeks are needed to do clonal
selection (Chaudhary et al., 2012). Alternatively, it can take up
to 2 months to do several rounds of FACS until one gets poly-
clonal cells enriched for the best expressers and with a constant
level of expression. On the other hand, transient expression is
faster, but it is associated with difficulties in scaling up and higher
costs. Nevertheless, transient transfection is very useful in ini-
tial screening of many GPCR constructs in adherent mammalian
cells, including HEK293T cells that can replicate plasmids with
SV40 origin of replication and thus increase expression levels.

Insect Cells
Insect cells are the most common expression system used in crys-
tallographic studies of GPCRs giving milligram amounts of pure
protein per liter of cell culture. The majority of those recep-
tors were expressed in Spodoptera frugiperda Sf 9 cells (Table 1).
Trichoplusia ni (Tni) High Five cells were used for produc-
tion of turkey β1-adrenoceptor (Warne et al., 2003, 2008, 2009),
rat neurotensin NTS1 receptor (White et al., 2012) and human
corticotropin-releasing factor CRF1 receptor (Hollenstein et al.,
2013), while A2A receptor has been produced both in High Five
(Lebon et al., 2011b) and Sf 9 cells (Jaakola et al., 2008). Class C
human metabotropic glutamate mGlu5 receptor was expressed
in S. frugiperda Sf 21 cells recently (Doré et al., 2014). Protein
expression levels can significantly vary in different cell lines, so it
is highly recommended to screen for the optimal cell line before
starting large-scale production of the studied GPCR. For exam-
ple, High Five cells express twice as much N-terminally truncated
turkey β1-adrenoceptor construct compared to Sf 9 cells (Warne
et al., 2003).

The production of GPCRs in insect cells is based on infection
with lytic baculovirus, a modified Autographa californica multi-
ple nuclear polyhedrosis virus, which carries a GPCR gene under
control of a strong polyhedrin promoter. Expression of poly-
hedrin is not essential in tissue culture, so its gene can be replaced
with a GPCR gene. Protein expression occurs in a very late stage
of infection when the lytic virus kills the host cells. This results in
high levels of expression of the target protein.

There are twomain approaches for preparing baculovirus with
a GPCR gene. In the first approach, the engineered baculovi-
ral DNA with a lethal deletion is cotransfected with a linearized

complementary baculovirus transfer vector carrying a GPCR
gene under control of polyhedrin promoter. Virus viability is
restored by homologous recombination, so only viruses which
carry the GPCR gene are viable (Kitts and Possee, 1993). This
approach is used in e.g., BaculoGold (BD Biosciences), BestBac
(Expression Systems) and Sapphire (Allele Biotechnology) bac-
ulovirus expression systems. The second approach, used in e.g.,
Bac-to-Bac baculovirus expression system (Invitrogen), is based
on site-specific transposition of an expression cassette from a
donor vector into the parent baculovirus shuttle vector (bacmid)
in Escherichia coli DH10Bac competent cells (Luckow et al.,
1993). Insertion of the expression cassette disrupts the lacZ
sequence in a bacmid, so the bacterial colonies with the recombi-
nant bacmid can be detected by blue/white selection. Insect cells
are then transfected with the recombinant bacmid to produce
a virus with the gene of interest. Sf 9 or Sf 21 cells are prefer-
ably used for either cotransfection or transfection with bacmid,
because they allegedly show higher transfection efficiency and
virus replication than High Five cells. In all cases, the recombi-
nant virus is amplified in successive rounds of infection (usually
two) and finally used for protein expression in the selected insect
cells. It is essential to quantify virus concentration by one of a few
available methods: e.g., plaque assay, end-point dilution assay,
in flow cytometry analysis after immunostaining with gp64-PE
antibody (Expression Systems) or ligand-biding assays to mea-
sure amounts of expressed protein. Multiplicities of infection in
a range of 5–10 viral particles per insect cell are usually necessary
for efficient protein expression.

As for mammalian cells, production of GPCRs in insect cells
is a time-consuming procedure. It can take up to a month to pro-
duce enough baculovirus for large-scale expression. Also, growth
medium is complex and quite expensive. In comparison to mam-
malian cells, which are grown at 37◦C, insect cells are grown
at 27◦C. This is reflected in different membrane composition
as well. Insect cell membranes are low in cholesterol, have very
high phosphatidyl inositol content and no phosphatidyl serine.
To make them more similar to the mammalian membranes,
lipids can be added to growth media for expression of verte-
brate GPCRs. Thus for expression of turkey β1-adrenoceptor,
insect cells were grown in medium supplement with a mixture
of lipids (Warne et al., 2003), while in case of human D3 recep-
tor cholesterol was added to the medium 24 h after final infection
(Chien et al., 2010). In some cases, the growth medium was sup-
plemented with an antagonist that served as a pharmacological
chaperone to assist receptor folding and provide additional sta-
bilization of the mature receptor molecule (Manglik et al., 2012;
Wu et al., 2012; Yin et al., 2015). Many posttranslational mod-
ifications similar to those in mammalian cells are also possible
in insect cells, but there are several instances for which non-
homogeneous glycosylation in insect cells resulted in immature
protein. Moreover, for angiotensin AT1 and adenosine A1 recep-
tors it was recently observed that a proportion of not properly
folded receptor molecules is higher for insect cell expression
in comparison to expression in stable human HEK293S(TetR)
GnTI− or T-Rex-293 cells (Thomas and Tate, 2014). The authors
attributed this observation to impairment of secretory pathway
caused by baculovirus infection and overproduction of mRNA of
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a targeted GPCR under control of a strong polyhedrin promoter.
They also noticed that turkey β1-adrenoceptor is a mixture of
both folded and misfolded molecules, so the success in crystal-
lizing this receptor can be attributed to purification procedures
and/or the crystallization process itself (Thomas and Tate, 2014).
It is likely that the same holds true for many other GPCRs
expressed in insect cells.

Yeast
Expression in methylotrophic yeast Pichia pastoris has been used
for production of human histamine H1 receptor in fusion with
T4L (Shiroishi et al., 2011) as well as for human adenosine A2A
receptor (Yurugi-Kobayashi et al., 2009) which has been cocrys-
tallized with an antagonist and an antibody Fab fragment (Hino
et al., 2012). Different constructs of human A2A receptor have
also been produced for crystallographic studies in Sf 9 and High
Five insect cells (Table 1). P. pastoris is the preferred yeast organ-
ism as it gives higher functional expression levels of GPCRs
(Lundstrom et al., 2006). On the other hand, Saccharomyces cere-
visiae is more suitable for cloning and rapid screening of the
protein constructs (Shiroishi et al., 2012) and it was used for
both H1 and A2A receptors to assemble the construct from PCR
fragments by yeast homologous recombination. The amplified
plasmids with the GPCR genes were linearized and transformed
into the protease-deficient P. pastoris SMD1163 strain. The trans-
formants were selected for the highest expression levels and the
best one was used for large-scale production. It was shown that
ligands and dimethyl sulfoxide in growth media increase the
functional expression levels of GPCRs in P. pastoris (André et al.,
2006).

In comparison to mammalian and insect cells, yeast cells
grow very quickly and to higher cell densities, are easier to scale
up and require relatively inexpensive media. Although they are
also eukaryotic and can perform most posttranslational modifi-
cations, glycosylation patterns are different than in mammalian
or insect cells. Their membranes possess higher ergosterol and
much lower cholesterol content than the membranes of mam-
malian cells. Despite these differences, the two published GPCR
structures and a large-scale study on expression of 100 GPCRs
(Lundstrom et al., 2006) showed that yeast can indeed be a viable
expression system for structural studies of GPCRs.

Escherichia coli
Similar to yeast, E. coli provides many advantages as an expres-
sion system. It has short doubling time, can be grown to higher
cell densities in inexpensive media and can easily be genetically
manipulated by transformation. Although most commonly used
to express soluble proteins for structural studies, prokaryotic E.
coli cells do not contain all necessary machinery to appropriately
process eukaryotic integral membrane proteins. Majority of post-
translational modifications (like glycosylation, phosphorylation,
and palmitoylation) are missing from mammalian proteins pro-
duced in E. coli. Also, the functional folding of most GPCRs is
dependent on correct formation of disulfide bonds in their extra-
cellular region, so the reductive periplasmic environment of E.
coli is not optimal for their functional production. In addition,

lipidic composition of the bacterial inner membrane is signif-
icantly different from that of eukaryotic cells and completely
lacks cholesterol, one of the main constituents of the mammalian
plasma membrane.

Nevertheless, for some GPCRs it was possible to establish
functional expression in the inner membrane of E. coli. In
all these cases, a GPCR had to be fused with proteins which
direct insertion into the inner bacterial membrane. The first
such example is human β2-adrenoceptor N-terminally fused
with cytoplasmic β-galactosidase (Marullo et al., 1988). MBP
proved to be a very efficient N-terminal fusion partner guid-
ing the expression into the inner membrane, as shown for a
few GPCRs (Bertin et al., 1992; Grisshammer et al., 1993; Weiß
and Grisshammer, 2002; Serrano-Vega et al., 2008). Even higher
expression levels were obtained if, in addition to MBP as the
N-terminal fusion partner, TrxA was added at the C-terminus
(Tucker and Grisshammer, 1996; Furukawa and Haga, 2000;
Yeliseev et al., 2007). More recently, combination of N-terminally
attached Mistic and C-terminally attached TarCF gave functional
expression of human CB2 receptor in E. coli (Chowdhury et al.,
2012).

After some skepticism whether E. coli can be used as an expres-
sion system for crystallographic studies of mammalian GPCRs at
all, Plückthun’s group published crystal structures of three ther-
mostabilized variants of rat neurotensin NTS1 receptor (Egloff
et al., 2014b). These were expressed as fusions with MBP at the
N-terminus and TrxA at the C-terminus in the inner cytoplasmic
membrane of E. coli BL21 cells and crystallized after cleaving off
the fusion partners. Although the structure of rat NTS1 receptor
fused with T4L in ICL 3 and produced in insect cells had already
been known (White et al., 2012), the new NTS1 receptor struc-
tures revealed the amphipathic helix 8, which is absent in the
older structure, as well as some differences in the ligand-binding
site.

When expression of the functional membrane-inserted pro-
tein does not work, GPCRs can be expressed as inclusion bodies
composed of misfolded, aggregated and almost pure protein
(Lundstrom et al., 2006; Michalke et al., 2009). In such a way,
higher expression levels might be reached. Namely, inclusion
bodies are resistant to proteolytic digestion and serve as a conve-
nient way to eliminate potential cell toxicity of the overexpressed
protein. The main difficulty remains in getting the functional
protein from the inclusion bodies. For that, they have to be dis-
solved and the protein folded to the native state (reviewed in
Banères et al., 2011). Sometimes, GPCRs can be expressed in
inclusion bodies without any fusion partner (Bane et al., 2007;
Michalke et al., 2010). There are also some fusion proteins that
target GPCRs into inclusion bodies: GST, TrxA and the fragment
of human α5 integrin are the most efficient ones (Kiefer et al.,
1996; Michalke et al., 2009; Arcemisbéhère et al., 2010).

Expression of GPCRs as inclusion bodies in E. coli and sub-
sequent refolding can indeed be used in their structural studies,
as confirmed by the NMR structure of human chemokine CXCR1
(Park et al., 2012b). The isotopically labeledGST fusion of CXCR1
was expressed as inclusion bodies in E. coli (BL21). The fusion
partner was cleaved off and the receptor molecule reconstituted
into proteoliposomes to measure solid-state NMR spectra.
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Cell-Free Expression
Cell-free expression becomes usedmore often for large-scale pro-
duction of integral membrane proteins with yields up to ∼ 1 mg
per mL of reaction mixture (reviewed in Junge et al., 2011; Rajesh
et al., 2011; Bernhard and Tozawa, 2013). E. coli extract (Schwarz
et al., 2007) is most common, although more complicated and
expensive eukaryotic cell extracts from wheat germ embryos or
rabbit reticulocytes have also been used for GPCR production
(Robelek et al., 2007; Kaiser et al., 2008; Katzen et al., 2008).
Cell-free expression based on a standard wheat germ extract has
decoupled translation, which means that mRNA with the gene of
interest has to be provided for translation to occur. For all cell-
free syntheses of GPCRs, continuous exchange configuration has
been applied.

Membrane proteins in cell-free settings can be expressed
either as insoluble precipitates or directly in a soluble form if
proper detergents or membrane mimetics are present. Cell-free
expression as precipitate and subsequent post-translational sol-
ubilization in a series of detergents did not yield functional
receptors (Klammt et al., 2005, 2007b). On the other hand, when
human ETB receptor was expressed as a precipitate, solubilized
in detergent LMPG and reconstituted into lipids, partial fold-
ing of the receptor molecule was observed (Proverbio et al.,
2013). Cell-free expression of ETB receptor in a presence of lipids
also resulted in the functional receptor (Proverbio et al., 2013).
In presence of mild detergents, like steroid detergent digitonin
or the long-chain polyoxyethylene derivatives (Brij), cell-free
synthesis gave functional proteins after their insertion into lipo-
somes (Figure 2) for a number of GPCRs (Ishihara et al., 2005;
Klammt et al., 2007a,b; Kaiser et al., 2008; Corin et al., 2011a;
Proverbio et al., 2013; Wang et al., 2013c,d). In addition, newly
developed peptide surfactants (Corin et al., 2011b; Wang et al.,
2011), a fructose-based NV10 polymer (NVoy; Klammt et al.,
2011), nanodiscs (Katzen et al., 2008; Yang et al., 2011; Proverbio
et al., 2013) and a solid-supported lipid membrane that mim-
ics a biological membrane (Robelek et al., 2007) have been used
instead of detergents for cell-free production of several functional
GPCRs.

Expression efficiency in a cell-free system sometimes depends
on an N-terminal tag used, with TrxA and some smaller tags, like
T7-tag, being most successful (Ishihara et al., 2005; Haberstock
et al., 2012; Lyukmanova et al., 2012). This is explained by differ-
ent secondary structure of the corresponding mRNA affecting the
translation efficiency.

Until now, there are no structural reports of GPCRs produced
in a cell-free system. The NMR structure of the bacterial pro-
teorhodopsin (Reckel et al., 2011) and the X-ray structure of
eukaryotic Acetabularia rhodopsin II from marine alga (Wada
et al., 2011), the two 7TM proteins produced by cell-free syn-
theses, suggest that this protein production method might gain
a more prominent role in future structural studies of GPCRs.

Other Expression Systems
Some prokaryotic organisms have been tried for production
of GPCRs, including archaeon Haloferax volcanii (Patenge
and Soppa, 1999) and photosynthetic bacterium Rhodobacter

FIGURE 2 | Schematic representation of some possible environments
for GPCR molecules after their extraction from biological membranes.

sphaeroides (Roy et al., 2008), but none of them resulted in suc-
cessful structural studies. Eyes of transgenic fruit flies (Drosophila
melanogaster; Eroglu et al., 2002; Panneels and Sinning, 2010) as
well as fat body and silk glands of transgenic silkworms (Bombyx
mori; Tateno et al., 2009) gave expression levels of the studied
GPCRs similar or even higher than in Sf 9 cells. Furthermore,
ROS membranes of transgenic Xenopus laevis tadpoles (Zhang
et al., 2005) and transgenic mice (Li et al., 2007) gave homoge-
neously glycosylated and functional GPCRs. Rabbit chemokine
receptor CXCR1 was expressed in mouse liver infected with the
adenovirus (Sarmiento et al., 2009). The authors estimated that
20 mice livers would be enough to produce 1 mg of the receptor.
More recently, milligram quantities of several functional GPCRs
were expressed in muscles and neurons of a worm Caenorhabditis
elegans (Salom et al., 2012). Taking into account how difficult and
expensive it is to create the transgenic animals, this is definitely
not the first method of choice to produce GPCRs for structural
studies.
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Solubilization

Cell Disruption and Membrane Preparation
To perform structural studies, GPCRs have to be extracted from
the biological membranes and purified. Mammalian and insect
cells are easier to break and usually hypotonic buffer in com-
bination with one freeze-thaw cycle is enough to completely
break the cells. In contrast, yeast and bacterial cells possess cell
walls, so usually mechanical force, like shaking with glass beads
(Yurugi-Kobayashi et al., 2009; Shiroishi et al., 2011) or soni-
cation (Egloff et al., 2014b), has to be used for complete cell
breakage. GPCRs are notoriously thermally unstable when out-
side of their native membrane environment, hence it is important
to take all necessary care not to overheat or mechanically damage
the sample during the mechanical cellular disruption. Also, pro-
tease inhibitors should always be included to prevent proteolytic
digestion of flexible GPCRmolecules.

After cellular disruption, the usual next step is membrane
preparation. This includes ultracentrifugation and extensive
washing with a high osmotic buffer containing up to 1.0 M NaCl,
which removes practically all cytoplasmic proteins, or – as in case
of bovine and squid rhodopsin isolated from natural sources –
sucrose density gradient preparation (Kito et al., 1982; Okada
et al., 1998). Although membrane preparation enriches a crude
sample with the overexpressed membrane protein, in several
instances GPCRs have been isolated for structural studies directly
from mammalian (Standfuss et al., 2007, 2011; Deupi et al., 2012;
Singhal et al., 2013), insect (Kruse et al., 2012;Manglik et al., 2012;
Zhang et al., 2012; Zou et al., 2012) or E. coli (Egloff et al., 2014b)
cells without intermediate preparation of membranes.

Solubilization – a Role of Detergents in
Structural Studies
Before any further purification, GPCRs have to be solubi-
lized in detergents. If concentration of detergent molecules
(monomers) in water solution is higher than the CMC, detergent
molecules associate into aggregates – detergent micelles – with
the hydrophilic heads at the surface of a micelle and hydrophobic
tails in its interior. The CMC is specific for each detergent and
also depends on a variety of factors, like ionic strength, pH and
temperature. For solubilization it is important that the detergent
concentration is high enough to disrupt the membrane and form
mixed micelles containing both membrane proteins and lipids.
In such protein–detergent complexes, protein hydrophobic sur-
faces are screened with detergent hydrophobic tails, while the
hydrophilic regions are exposed to the solvent (Figure 2). The
protein–detergent complex can be imagined as protein molecule
surrounded by a belt of detergent molecules and co-solubilized
membrane lipids. It is very important that the chosen detergent is
efficient enough in solubilizing the protein from the membrane,
but still mild enough not to deteriorate the protein native struc-
ture and functionality. As a rule of thumb, charged detergents
with smaller hydrophilic heads and shorter hydrophobic tails are
harsher than non-ionic detergents with larger hydrophilic heads
and longer hydrophobic tails. It is impossible to predict how a

particular detergent interacts with a GPCR, so the most suit-
able detergent for solubilization and further purification has to
be found experimentally.

A rather robust GPCR, rhodopsin, could be solubilized from
bovine ROS membranes without losing its structural integrity in
a variety of detergents (Figure 3): a mixture of HPTO and NG
(Okada et al., 1998, 2000; Salom et al., 2006a), OG (Park et al.,
2008, 2013; Scheerer et al., 2008; Choe et al., 2011), short-chain
HTG (Okada et al., 2004), zwitter-ionic LDAO (Edwards et al.,
2004) and a mixture of OG and mild DDM (Choe et al., 2011).
Bovine rhodopsin mutants produced in mammalian cells were
solubilized in DM (Standfuss et al., 2007) or DDM (Standfuss
et al., 2011; Deupi et al., 2012; Singhal et al., 2013).

For crystallographic studies, non-rhodopsin GPCRs are most
often solubilized in DDM (concentration: 0.5–1.0%, w/v),
although other detergents are employed as well, including DM
(1.5–2%; Warne et al., 2009; Hollenstein et al., 2013), a newly
developed lauryl-maltose-neopentyl glycol (LMNG or MNG-3,
1%; Chae et al., 2010; White et al., 2012) as well as mixtures of:
digitonin (1%) and sodium cholate (0.35%; Haga et al., 2012),
DDM (1%) and sodium cholate (0.2%; Zhang et al., 2012; Yin
et al., 2015), LMNG (1.0%) and sodium cholate (0.3%; Granier
et al., 2012), DM (1.5%) and zwitter-ionic CHAPS (0.8 %; Egloff
et al., 2014b), and finally, DDM (0.5%) and CHAPS (0.3%;
Manglik et al., 2012).

A cholesterol derivative CHS additionally stabilizes GPCRs
and maintains their activity in detergent solutions, as first
observed for human A2A receptor (Weiß and Grisshammer,
2002). It is usually added to solubilization buffers in concentra-
tion 0.1–0.3% (w/v) and kept further in subsequent purification
buffers in 10–30 times smaller concentration. Hanson et al. (2008)
established the cholesterol consensus binding motif which is
present in 44% of human class A GPCRs (Hanson et al., 2008).
Indeed, specific cholesterol binding sites have been indentified
in crystal structures of human β2-adrenoceptor (Cherezov et al.,
2007; Hanson et al., 2008; Wacker et al., 2010; Rosenbaum et al.,
2011), turkey β1-adrenoceptor (Warne et al., 2011; Christopher
et al., 2013), human A2A receptor (Liu et al., 2012b), human 5-
HT2B receptor (Liu et al., 2013; Wacker et al., 2013) as well as
human P2Y12 receptor (Zhang et al., 2014b).

G protein-coupled receptors are less stable in high concentra-
tions of detergents used for solubilization, so detergent concen-
trations are gradually reduced in further purification steps. It is
important for detergent concentration to stay above the CMC
value; therefore, concentrations corresponding to 2–3 CMC are
usually applied. Detergent concentrations lower than CMCmight
cause dissociation of protein–detergent complex and subsequent
protein aggregation. Sometimes a detergent which is very efficient
in GPCR solubilization might not be the optimal one for struc-
tural studies. If crystallization of GPCR is pursued in surfo, i.e.,
from protein–detergent complex in water solutions, detergents
which form smallermicelles are preferred. Theirmolecules screen
less of GPCR hydrophilic surfaces, produce smaller protein–
detergent complexes (Privé, 2007) and thus favor a formation of
crystal contacts between GPCR molecules. As a counter-effect,
these detergents are usually more destabilizing (harsher), there-
fore it is crucial that GPCRmonodispersity and functionality are
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FIGURE 3 | Detergents used in solubilization and purification of rhodopsin and other GPCRs for crystallographic studies.

carefully evaluated before trying crystallization. Smaller protein–
detergent complexes, having faster tumbling, are also preferred
for solution-state NMR spectroscopy.

Detergents successfully used for in surfo crystallization of
bovine and squid rhodopsins include a mixture of HPTO andNG
(Okada et al., 2000), HTG (Okada et al., 2004), LDAO partially
exchanged with C8E4 (Edwards et al., 2004), C8E4 (Standfuss
et al., 2007), NG alone (Salom et al., 2006a), OG alone (Murakami
and Kouyama, 2008; Park et al., 2008; Deupi et al., 2012) or
in a mixture with DDM (Choe et al., 2011), and a mixture of
DDM and LDAO (Shimamura et al., 2008; Figure 3). Several
other GPCRs have also been crystallized in surfo. Diffraction-
quality crystals of the thermostabilized turkey β1-adrenoceptor
were obtained in OTG (Warne et al., 2008, 2009), HEGA-10
(Moukhametzianov et al., 2011; Warne et al., 2011) and even in
DDM supplemented with a mixture of four lipids (Huang et al.,
2013). The thermostabilized variants of human A2A receptor
were crystallized in surfo from NGwith addition of 6-cyclohexyl-
1-hexyl-β-D-maltopyranoside (Cymal-6; Doré et al., 2011) and
OTG with CHS (Lebon et al., 2011a), while OTG only, with-
out additional lipids, was enough for in surfo co-crystallization
of the non-stabilized receptor with Fab fragment (Hino et al.,

2012). Egloff et al. (2014b) used a mixture of NG, DG, DDG,
and CHS in vapor diffusion experiments to prepare crystals of
the thermostabilized variants of rat NTS1 receptor expressed in
E. coli.

In contrast to in surfo crystallization, less consideration for
detergent needs to be given for in meso crystallization meth-
ods. These are performed in membrane-mimetic environment,
either in bicelles (Ujwal and Bowie, 2011) or in lipidic mesophases
(Caffrey, 2015). Bicelles are disk-like lipidic bilayer patches which
are surrounded and stabilized by amphiphile (usually detergent)
molecules (Figure 2). They provide almost native environment to
a membrane protein, but their relatively large size is a disadvan-
tage for their use in crystallization or solution-state NMR spec-
troscopy. Nevertheless, the structure of human β2-adrenoceptor
in complex with a Fab fragment was obtained in vapor diffusion
crystallization from bicelles made from a mixture of DMPC and
CHAPSO in DDM (Rasmussen et al., 2007).

The most used systems for crystallization of GPCRs are lipidic
mesophases (reviewed in Yin et al., 2014; Caffrey, 2015). LCPs
are bicontinuous liquid crystals composed of a single, curved
lipidic bilayer that separates two continuous, non-contacting
channels filled with water medium (Figure 4). As a lipidic
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component different monoacylglycerols are used and among
them monoolein (MAG9.9) is the most common one (Caffrey,
2015). LCP forms by mixing e.g., monoolein with water solu-
tion containing a solubilized membrane protein in a 3:2 weight
ratio at 20◦C. In this process, a membrane protein gets incor-
porated into the stabilizing and native-like environment of a
lipidic bilayer. In certain conditions LCP transforms into lipidic
sponge phase, which essentially preserves its bicontinuous struc-
ture, but it is a true liquid and lacks the liquid-crystal properties.
If the right crystallization conditions are encountered, both LCP
and lipidic sponge phase support crystal nucleation and growth.
The most GPCR crystal structures were obtained from crystal-
lization in a lipidic mesophase. In almost all cases, a mixture of
monoolein and cholesterol in 9:1 weight ratio was used, because –
as already discussed – cholesterol makes GPCRs more stable, less
conformationally flexible and thus increases probability of their
crystallization. A notable exception is the β2-adrenoceptor–Gs
protein complex (Rasmussen et al., 2011b), for which a mixture
of MAG7.7 and cholesterol in a weight ratio of 9:1 was used
instead of a monoolein–cholesterol mixture. Rationale for this
is the fact that MAG7.7 forms LCP with water channels that are
large enough to accommodate a relatively large heterotrimeric G
protein in the macromolecular complex (Figure 1).

Because a membrane protein is incorporated in a lipidic
bilayer (Figure 4) and mechanisms of protein crystallogenesis

FIGURE 4 | Structure of a LCP. (A) LCP consists of water channels (shown
as colored cross-sections) and a continuous 3D lipid bilayer that allows free
diffusion of the reconstituted membrane protein molecules. (B) A detailed view
of GPCR molecules in a LCP bilayer.

are different than for in surfo crystallization, the nature of deter-
gent or other surfactant used to keep GPCR soluble in water
plays a less important role for this kind of in meso crystalliza-
tion. DDM in a mixture with CHS is the most common detergent
used in purification of GPCRs for LCP crystallization. There
are also several instances where LMNG was used instead, both
alone (Rasmussen et al., 2011a,b; Rosenbaum et al., 2011; Haga
et al., 2012; Yin et al., 2015) or mixed with CHS (Granier et al.,
2012; Kruse et al., 2012; Manglik et al., 2012; White et al., 2012).
Actually, LMNG might even be a better choice for LCP crystal-
lization than DDM. It can provide higher stability to solubilized
GPCRmolecules and has lower CMC (Chae et al., 2010). Namely,
higher detergent concentration not only destabilizes native pro-
tein conformation, but it also prevents formation of LCP (Ai
and Caffrey, 2000; Misquitta and Caffrey, 2003). One should
always be careful not to exceed the maximal tolerable detergent
concentration in the last protein concentrating step, in which
empty detergent micelles might be concentrated together with
protein–detergent complexes.

After solubilization, detergents can be exchanged for other
surfactants that are not capable to extract a membrane protein
from amembrane (Figure 2). Amphipathic polymers, amphipols,
proved to be very efficient in stabilizing and even refolding of
GPCRs expressed as inclusion bodies (Banères et al., 2011; Popot
et al., 2011; Mary et al., 2014). Some types of amphipols are suited
for solution-state NMR studies of membrane proteins (Planchard
et al., 2014) and there is also a recent report of using amphipols
for crystallization of a 7TM-protein bacteriorhodopsin in LCP
(Polovinkin et al., 2014). In the future, amphipols might get
more pronounced role in GPCR structural studies. We have
already mentioned bicelles that can be used both for crystal-
lization (Rasmussen et al., 2007) and for NMR studies (Werner
et al., 2007; Yoshiura et al., 2010). GPCRs incorporated into lipo-
somes can be studied by solid-state NMR (e.g., CXCR1; Park et al.,
2012b). Nanodiscs are lipid bilayers stabilized by the surrounding
scaffold protein. They provide stabilizing environment for both
biophysical (Bayburt et al., 2007; Bokoch et al., 2010) and NMR
studies of membrane proteins (Raschle et al., 2009; Hagn et al.,
2013).

Recently, a very interesting approach was demonstrated,
which avoids use of detergents or any other surfactants in GPCR
studies. Namely, Perez-Aguilar et al. (2013) computationally
designed a water-soluble form of human μ opioid receptor and
managed to overexpress this engineered soluble protein with a
yield of ∼20 mg per L of a shake flask E. coli culture (Perez-
Aguilar et al., 2013). For this, they had to mutate 53 exterior
residues in the transmembrane region of the receptor mainly to
the hydrophilic ones. The resulting receptor variant was not only
water soluble, but it showed α-helical secondary structure and
affinity for the antagonist very similar to the native receptor.

Purification

Due to their abundance in the natural sources, bovine and squid
rhodopsins could be crystallized immediately after extraction
with detergents from the fractionated membranes without any
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further purification (Okada et al., 2000; Murakami and Kouyama,
2008). This is not possible for heterologously expressed GPCRs.
After solubilization they always need some robust purification
protocol prior to structural studies.

In many cases, thiol groups of free cysteine residues in recep-
tor molecules are blocked with iodoacetamide to prevent protein
aggregation by intermolecular disulfide-bond formation. High-
affinity orthosteric and allosteric ligands – especially antago-
nists and inverse agonists – generally increase receptor stabil-
ity, so GPCRs are almost always solubilized and purified in
their presence. Furthermore, covalent agonists have been devel-
oped for β2-adrenoceptor and used in crystallographic studies
(Rosenbaum et al., 2011; Weichert et al., 2014). They covalently
and irreversibly bind to an engineered cysteine residue in an
orthosteric binding site and, together with a G-protein-mimetic
nanobody, stabilize the receptor in an active conformation. We
also remind that the retinal isomers are natural covalent ligands
to (rhod)opsin.

Detergents are exchanged stepwise when protein is immo-
bilized on an affinity chromatographic column or during size
exclusion chromatography. Special care should be taken to min-
imize buffer volumes used in washing and detergent exchange as
this might wash away co-purified lipids that additionally stabilize
the solubilized receptor.

Affinity Chromatography
Immobilized metal-ion affinity chromatography is commonly
used as the first chromatographic step in GPCR purification.
For that, polyhistine-tag (His-tag) is introduced at the N- or C-
terminal part of the expression construct. Deca histidine-tag is
the most common one, although octa (e.g., Shiroishi et al., 2011;
Granier et al., 2012; Manglik et al., 2012) and hexa (e.g., Warne
et al., 2003; Kruse et al., 2012; Park et al., 2012b; Huang et al.,
2013) histidine-tags have also been used successfully. Both Ni2+–
NTA and Co2+–CMA matrices showed to be efficient in IMAC
of different GPCRs. They both tolerate detergents in amounts
used for solubilization, but Co2+–CMA (TALON resin) shows
less non-specific binding and higher elution purity (Bornhorst
and Falke, 2000), so it is preferred for purification of GPCRs with
lower expression levels. In addition, batch mode increases GPCR
binding to IMAC resins.

There are only several instances of GPCRs purified for crys-
tallization for which IMAC was not the first chromatographic
step. ConA affinity chromatography, which can separate gly-
cosylated from non-glycosylated proteins, have been used in
Schertler’s group for the enrichment of bovine rhodopsin iso-
lated from ROS membranes (Edwards et al., 2004) as well as for
the squid rhodopsin purification in Ishiguro’s group (Shimamura
et al., 2008). In case of human A2A receptor expressed in P.
pastoris, ConA affinity chromatography was used as the second
chromatographic step to remove contaminating glycosylated pro-
teins (Hino et al., 2012).

Standfuss et al. (2007, 2011), Deupi et al. (2012) and Singhal
et al. (2013) used Rho1D4-antibody resin for binding of bovine
rhodopsin mutants after solubilization from the mammalian
cells. The monoclonal Rho1D4-antibody is highly specific for
the nine C-terminal rhodopsin residues (TETSQVAPA), so this

C-terminal amino acid sequence (1D4- or Rho9-tag) can also
be used as an affinity-tag for purification of integral mem-
brane proteins (Wong et al., 2009). An engineered N-terminal
FLAG-tag (DYKDDDDA or DYKDDDDK) was employed in
isolation of β2-adrenoceptor (Kobilka, 1995) by FLAG M1 anti-
body affinity chromatography for a number of crystal structures,
either in the two chromatographic steps (Rasmussen et al., 2007,
2011a,b; Zou et al., 2012) or only in the initial one (Bokoch
et al., 2010; Rosenbaum et al., 2011). Having two different affin-
ity tags (e.g., FLAG- and His-tags) at two ends of a GPCR
molecule is in general an advantage. By using the two dif-
ferent affinity chromatographic methods in purification, one
secures that the purified construct is intact at both N- and C-
terminus. Along these lines, a FLAG M1 antibody affinity resin
was applied in the second purification step after initial Ni-NTA
IMAC isolation of several GPCRs (Granier et al., 2012; Kruse
et al., 2012; Manglik et al., 2012; Zhang et al., 2012; Yin et al.,
2015).

If there is an available resin with immobilized ligand for the
GPCR of interest, ligand-affinity chromatography can be applied
as an important purification step. Moreover, it can separate
properly folded protein with preserved ligand-binding properties
from misfolded and unfolded GPCRmolecules. One of the oldest
ligand-affinity resins is alprenolol-resin developed for purifica-
tion of adrenoceptors. It has been used in purification for crystal-
lographic studies of human β2-adrenoceptor (Rasmussen et al.,
2007, 2011b) and turkey β1-adrenoceptor (Warne et al., 2008).
Furthermore, ligand-affinity chromatography has been applied
as the first chromatographic step in purification of M2 receptor
(aminobenztropine-resin; Haga et al., 2012) and NTS1 receptor
expressed in E. coli (protease cleavable pD-NT-resin; Egloff et al.,
2014a,b).

Ion-Exchange Chromatography
Although not as general as purification methods based on the
affinity-tags, ion-exchange chromatography was used in purifi-
cation of several GPCRs. Bovine rhodopsin isolated from ROS
(Edwards et al., 2004) as well as its thermostabilized mutant
expressed in mammalian cells (Standfuss et al., 2007) were
both purified on an anion-exchange MonoQ resin. Shimamura
et al. (2008) used inverse purification on anion-exchange DEAE-
cellulose for purification of squid rhodopsin. Because methyla-
tion destroyed the receptors antigenicity toward FLAG-antibody,
the methylated human β2-adrenoceptor had to be purified on the
Q sepharose anion exchange resin (Bokoch et al., 2010). Cation
exchange SP sepharose was used in the last purification step
before crystallization of rat NTS1 receptor expressed in E. coli
(Egloff et al., 2014b). Similarly, the last step before crystallization
of human M2 receptor was binding to a hydroxyapatite column
and exchange of detergents (Haga et al., 2012).

Size-Exclusion Chromatography
Even though SEC is often considered a polishing purification step
before structural studies, it has not been used so much in GPCR
purification as it might be expected. The majority of GPCR struc-
tures have been determined from crystals formed in LCP. In meso
LCP crystallization is more robust in comparison to the in surfo
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methods and tolerates higher amounts of protein impurities and
aggregates (Kors et al., 2009). SEC has been used as a final step
before in surfo crystallization of the bovine rhodopsin mutants
(Standfuss et al., 2011; Deupi et al., 2012; Singhal et al., 2013)
as well as human A2A receptor in complex with agonist (Lebon
et al., 2011b). Purification of macromolecular complexes involv-
ing human β2-adrenoceptor (Rasmussen et al., 2007, 2011b; Ring
et al., 2013), A2A receptor (Hino et al., 2012) or M2 recep-
tor (Kruse et al., 2013) were also finalized with SEC. In a few
other cases, SEC was used primarily to purify the GPCR sample
after proteolytic cleavage (Granier et al., 2012; Kruse et al., 2012;
Manglik et al., 2012; Zhang et al., 2012; Zou et al., 2012) or degly-
cosylation (Yin et al., 2015). In preparation of CRF1 receptor for
the LCP crystallization (Hollenstein et al., 2013) as well as CXCR1
for NMR studies (Park et al., 2012b), there was only one IMAC
purification step before the final SEC purification.

Proteolytic Cleavage
Affinity tags are very useful in purification, but they can interfere
with the structural studies. These very flexible regions might pre-
vent crystallogenesis or produce intense and overlapping NMR
signals. Also, the native GPRCN- and C-termini might be impor-
tant for functional expression, but their flexibility might have the
same negative effects as affinity tags. Hence, in purification proce-
dures of many GPCRs, these flexible parts are removed by action
of proteases (reviewed in Waugh, 2011).

Vergis and Wiener (2011) made an exhaustive systematic
study of detergent sensitivities of the most common proteases.
They found that thrombin was the only protease with practically
intact activity in all detergents tested. Indeed, thrombin has been
used for removal of GST from the CXCR1 construct expressed
in E. coli for NMR studies (Park et al., 2012b). Although very
active in a variety of detergents, thrombin is not an optimal pro-
tease for cleavage of recombinant GPCR constructs. It is purified
from bovine plasma, so it lacks affinity tag which could provide
easier removal after cleavage. In addition, it can show unpre-
dictable non-specific cleavage in certain conditions (Jenny et al.,
2003). On contrary, TEV protease and HRV 3C protease are
highly specific, both can easily be produced “in-house” with dif-
ferent affinity tags and show reasonable activities in detergents
commonly used in structural studies (Vergis and Wiener, 2011).
Indeed, TEV protease and, to a lesser extent, HRV 3C protease
(also in its commercial form as PreScission protease) have been
used for removal of affinity tags (His- or FLAG-tag in almost all
GPCR constructs used for crystallographic studies), fusion part-
ners (like GFP, in human H1 receptor; Shimamura et al., 2011)
or flexible N-terminal region important for GPCR expression,
but interfering with its crystallization (Rasmussen et al., 2007;
Rosenbaum et al., 2011; Granier et al., 2012; Kruse et al., 2012;
Manglik et al., 2012; Zhang et al., 2012). Carboxypeptidase A was
used to remove octa histidine-tag at the C-terminus ofmouse opi-
oid μ and δ receptors (Granier et al., 2012; Manglik et al., 2012),
while the very long and flexible C-terminal proline repeats of
squid rhodopsin have been cleaved off by endoproteinase Glu-C
from Staphylococcus aureus V8 (V8 protease) before extract-
ing the rhodopsin from the rhabdomic microvillar membranes
(Murakami and Kouyama, 2008, 2011; Shimamura et al., 2008).

Deglycosylation
As already discussed, N-linked glycosylation might be very
important for proper folding and functionality of GPCRs. On the
other hand, glycan heterogeneity and flexibility can prevent for-
mation of ordered GPCR crystals. If certain glycosylation sites are
not crucial for GPCR folding, they can be removed from the pro-
tein construct by point mutations or truncations. Otherwise, if
there is a designed protease cleavage site, the glycosylated flexi-
ble N-terminal part of a GPCRmolecule can be cleaved off by the
protease (Rasmussen et al., 2007; Rosenbaum et al., 2011; Granier
et al., 2012; Kruse et al., 2012; Manglik et al., 2012). In most
other cases, GPCRs expressed in insect cells were deglycosylated
by peptide-N-glucosidase F (PNGase F), an amidase that cleaves
between an asparagine side chain and an N-acetylglucosamine
moiety bound directly to it. It should be noted that the glyco-
sylated asparagine is modified to aspartate after deglycosylation
with PNGase F.

Although deglycosylation is a generally preferred way of
preparing GPCR samples for crystallization, in some instances
high-quality crystals of the glycosylated GPCRs were obtained,
including bovine and squid rhodopsins, S1P1 receptor (Hanson
et al., 2012), SMO (Wang et al., 2014), mGlu5 receptor (Doré
et al., 2014) and the two fusion constructs of A2A receptor (Xu
et al., 2011b; Liu et al., 2012b). Moreover, the glycanmoieties were
identified in the published crystal structures of bovine rhodopsin,
S1P1 receptor and SMO. Glycans can be involved in crystal con-
tacts, so uniform glycosylation might even promote formation of
higher-quality crystals. This was demonstrated for the thermosta-
bilized bovine rhodopsin for which removing of all glycosylation
sites resulted in crystals of lower diffraction quality (Standfuss
et al., 2007).

Protein Engineering for Structural
Studies

Except for rhodopsin isolated from bovine ROS membranes, all
other GPCRs had to be modified for successful crystallization
(Figure 1). These modifications include: (i) thermostabilizing
and detergent-stabilizing point mutations, (ii) point mutations
that increase expression levels, (iii) mutated glycosylation sites,
(iv) truncations and deletions of flexible parts as well as (v) inser-
tion of a water soluble fusion partner. It is not easy to predict
an effect of each modification, so the optimal construct has to be
found experimentally.

Truncations and Deletions
Flexible parts in a GPCR molecule impair crystallization.
Fortunately, they can be conveniently predicted (Yang et al.,
2005; Ishida and Kinoshita, 2008). Class B, C, and F GPCRs
possess large N-terminal extracellular domains that were omit-
ted from the crystallization constructs. Significant portions of
unstructured extracellular and/or intracellular tails were also
deleted in the majority of crystallized GPCRs. Apart from bovine
rhodopsin, only four GPCRswere crystallized with intact both N-
and C-termini (Chien et al., 2010; Haga et al., 2012; Kruse et al.,
2013; Srivastava et al., 2014; Zhang et al., 2014a). ICL 3 of class
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A GPCRs is usually unstructured. Therefore, it was shortened
and/or substituted with a fusion protein, with notable exceptions
of bovine and squid rhodopsins, β2-adrenoceptor cocrystallized
either with Fab fragment (Rasmussen et al., 2007) or with Gs
protein and nanobody (Rasmussen et al., 2011b), A2A receptor
crystallized either with Fab fragment (Hino et al., 2012) or as ther-
mostabilized variants (Doré et al., 2011; Lebon et al., 2011b) and,
finally, the N-terminal fusions of human NOP and δ receptors
(Thompson et al., 2012; Fenalti et al., 2014). It should be kept
in mind that significant modifications of an ICL or C-terminal
truncation prevent coupling with intracellular effector proteins
in most cases.

Thermostabilizing Point Mutations
Stability of detergent-solubilized GPCRs remains a main chal-
lenge in their structural studies. If human receptor is not stable
enough, one can screen for more stable orthologs. This is one of
the reasons why protein from turkey erythrocytes was chosen for
studies of β1-adrenoceptor. Similarly, GPCRs from rat andmouse
were used instead of the human orthologs (Table 1). High-affinity
ligands and/or antibodies, either nanobodies (Rasmussen et al.,
2011a; Kruse et al., 2013; Ring et al., 2013; Weichert et al., 2014)
or Fab fragments (Rasmussen et al., 2007; Bokoch et al., 2010;
Hino et al., 2012), can provide stabilization for structural studies
and lock the receptor in a particular conformation. In addition,
a heterotrimeric Gs protein together with nanobody (Rasmussen
et al., 2011b) as well as short polypeptide fragments derived from
a Gtα subunit (Scheerer et al., 2008; Choe et al., 2011; Standfuss
et al., 2011; Deupi et al., 2012; Park et al., 2013; Singhal et al.,
2013) or arrestins (Szczepek et al., 2014) might have the same
effect. Another way (or necessity) is stabilizing a GPCRby protein
engineering.

The first successful thermostabilizing mutation was a ratio-
nally engineered disulfide bridge in a molecule of bovine
rhodopsin (Xie et al., 2003) resulting in crystal structures of
several rhodopsin mutants (Standfuss et al., 2007, 2011; Deupi
et al., 2012; Singhal et al., 2013). Based on the rhodopsin struc-
ture, Stevens’ group designed a stabilizing E1223.41W mutation
[Ballesteros–Weinstein numbering (Ballesteros and Weinstein,
1995) used in superscript] in human β2-adrenoceptor (Roth et al.,
2008). By stabilizing an interface between transmembrane helices
3, 4, and 5, this mutation was not only useful in obtaining
new crystal structures of β2-adrenoceptor complexed with sev-
eral inverse agonists and antagonists (Hanson et al., 2008;Wacker
et al., 2010), but it was also successfully transferred to some other
class A GPCRs enabling structure determination of CXCR4 (Wu
et al., 2010), D3 (Chien et al., 2010), 5-HT1B (Wang et al., 2013a)
and 5-HT2B (Wacker et al., 2013) receptors. Another successful
rational design examples are introduction of a salt bridge into
turkey β1-adrenoceptor, inspired by the structure of thermally
more stable human β2-adrenoceptor and included into the ultra-
thermostable β1-adrenoceptor variant (Miller and Tate, 2011), as
well as introduction of a salt bridge and three additional stabi-
lizing mutations, partially based on the CXCR4 structures, into
CCR5 (Tan et al., 2013).

A very successful approach for increasing thermostability of
GPCRs was a systematic alanine scanning mutagenesis where

each amino acid residue was mutated to alanine (or to leucine,
if it had already been alanine). It was applied for turkey β1-
adrenoceptor (Serrano-Vega et al., 2008; Warne et al., 2009),
human A2A receptor stabilized both in the antagonist (Magnani
et al., 2008; Doré et al., 2011) and agonist (Lebon et al., 2011a,b)
binding conformations, NTS1 receptor (Shibata et al., 2009;
White et al., 2012), CRF1 receptor (Hollenstein et al., 2013) and,
most recently, for mGlu5 (Doré et al., 2014) and FFA1 receptor
(Hirozane et al., 2014; Srivastava et al., 2014). Following expres-
sion, either in E. coli or in transiently transfected HEK293T cells,
each mutant was solubilized in detergent solution and tested for
thermostability by a radioligand binding assay. The only excep-
tion to this approach is FFA1 receptor (Hirozane et al., 2014).
Mutants of FFA1 receptor were expressed in human FreeStyle293
(Life Technologies) cells following transient cotransfection with
mammalian virus-like particles and the thermostabilizing muta-
tions were identified in a binding assay based on SEC coupled
with liquid chromatography–mass spectroscopy (SEC/LC-MS).

The most stabilizing mutations detected in alanine scanning
mutagenesis are further combined in several additional screen-
ing rounds by subsequently adding each mutation. Only mutants
giving additive stabilization are selected for further rounds. The
resulted mutants are not only thermostabilized, but are also
locked in a specific conformation determined by a nature of lig-
and used. Subsequent leucine scanning mutagenesis identified
some additional stabilizing mutations in turkey β1-adrenoceptor
(Miller and Tate, 2011). The stabilizing point mutation found for
turkey β1-adrenoceptor were successfully transferred into highly
similar human β1- and β2-adrenoceptors (Serrano-Vega and
Tate, 2009). This shows that thermostabilizing mutations found
in one GPCR can be transferred into another one if sequence sim-
ilarity between the two receptors is high enough. Formore distant
GPCRs that does not have to be true.

Directed evolution is an alternative approach for finding
GPCR variants with high functional expression and significantly
improved thermal and detergent stability (Sarkar et al., 2008;
Dodevski and Plückthun, 2011; Schlinkmann et al., 2012a,b; Scott
and Plückthun, 2013). It was applied in Plückthun’s lab and ulti-
mately enabled structural determination of the functional NTS1
receptor variants expressed in the inner membrane of E. coli
(Egloff et al., 2014b). After expression of an extensiveDNA library
of receptor variants in E. coli, the fluorescent ligands are bound to
the receptors and the best expressers are enriched in FACS. This
can be combined with subsequent radioligand binding to mea-
sure thermal stabilities (Dodevski and Plückthun, 2011) or used
to assess detergent stabilities in a highly innovative method of cel-
lular high-throughput encapsulation, solubilization and screen-
ing (Scott and Plückthun, 2013). In the later approach, each
E. coli cell expressing a GPCR mutant is encapsulated with the
detergent-resistant polysaccharide matrix. After detergent solu-
bilization, a whole cellular content, including solubilized receptor
and the corresponding plasmid DNA, stays inside the polysac-
charide capsule. Binding of a fluorescently labeled ligand enables
FACS enrichment with the most detergent-stable receptors and,
at the same time, enrichment of the DNA carrying the related
gene. The sorted genes are further amplified in PCR and subjected
to new selection (and mutagenesis) rounds.
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Aswe are getting more understanding of GPCR structures and
effects of individual mutations, computational methods of ther-
mostabilizing mutation predictions are under way (Bhattacharya
et al., 2014).

Other Point Mutations
N-glycosylation sites which are not required for protein expres-
sion and proper folding can be removed by changing the involved
asparagine residue(s) to aspartate (Haga et al., 2012), glutamate
(Rasmussen et al., 2007), glutamine (Kruse et al., 2012), ala-
nine (Doré et al., 2011; Lebon et al., 2011b), glycine or serine
(Zhang et al., 2012), or even cysteine (in order to form the engi-
neered disulfide bridge; Xie et al., 2003). C1163.27L substitution
in turkey β1-adrenoceptor (Parker et al., 1991; Warne et al.,
2008) andM962.67T/M98T substitutions in human β2-adrenergic
receptor N-terminally fused with T4L (Zou et al., 2012) enhance
functional expression in insect cells. The palmitoylation site in
turkey β1-adrenoceptor was mutated to alanine to increase sam-
ple homogeneity for in surfo crystallization (Warne et al., 2009).
Nevertheless, the equivalent modification was not needed for
other GPCRs that were crystallized with not truncated palmitoy-
lation sites and palmitoyl moieties were even identified in crystal
structures of β2-adrenoceptor (Cherezov et al., 2007), 5-HT2B
receptor (Liu et al., 2013; Wacker et al., 2013) and in almost all
bovine and squid rhodopsin structures. If a covalent ligand is
available, a point mutation might be necessary to allow for the
chemical reaction between the ligand and protein, as exempli-
fied by β2-adrenoceptor, for which H932.64C mutation has been
generated (Rosenbaum et al., 2011). The point mutations were
also applied to improve purification yield (Zhang et al., 2014b)
or to facilitate crystallization (Fenalti et al., 2014). Of course,
some point mutations were introduced only to study structure–
function relationship of the modified receptors or to switch a
receptor into particular conformational state (Wu et al., 2010;
Standfuss et al., 2011; Deupi et al., 2012; Singhal et al., 2013).

Fusion Partners
Soluble protein fusion partners inserted into a GPCR molecule
can have a dual role. Primarily, they increase a hydrophilic surface
of a GPCR chimera which is involved in intermolecular contacts
in a crystal. Furthermore, a fusion partner inserted into a receptor
loop can conformationally stabilize GPCR molecule and reduce
molecular flexibility. Increased hydrophobicity and reduced flex-
ibility can both facilitate and speed up crystallization. In general,
fusion partners do not increase thermostability. Nevertheless, the
chimeric constructs were exclusively used for crystallization in
lipidic mesophases, so additional stabilization by point mutations
was not necessary for most of them.

The first such structure was that of human β2-adrenoceptor
with the cysteine-free (C54T/C97A) mutant of T4L inserted
instead of a large portion of ICL 3 (Cherezov et al., 2007). As
always a case with fusion partners, T4L insertion point had to
be extensively screened before finding the optimal chimeric con-
struct (Rosenbaum et al., 2007). Insertion of T4L into ICL 3
of a GPCR was subsequently used for obtaining crystal struc-
tures of many class A GPCRs (Table 2; Figure 5). T4L was also
attached at the truncated N-terminus of β2-adrenoceptor (Zou

et al., 2012). Moreover, this construct was used for crystallization
of β2-adrenoceptor in complexes with agonists and nanobody
(Ring et al., 2013; Weichert et al., 2014) as well as for the piv-
otal complex with Gs protein (Rasmussen et al., 2011b; Figure 1).
Class B CRF1 receptor (Hollenstein et al., 2013) and class C
mGlu5 receptor (Doré et al., 2014) were both crystallized with
T4L inserted into the ICL 2. Quite recently two new versions of
T4L have been developed and used for crystallization of mus-
carinic M3 receptor (Thorsen et al., 2014). Namely, the original

TABLE 2 | G protein-coupled receptors crystallized as chimeric proteins
(sorted by the fusion partner and the attachment sites).

T4L in ICL 3
β2-adrenoceptor (Cherezov et al., 2007; Hanson et al., 2008;
Wacker et al., 2010; Rasmussen et al., 2011a; Rosenbaum et al., 2011)
not thermostabilized variant of A2A receptor expressed in insect cells
(Jaakola et al., 2008; Xu et al., 2011b)
D3 receptor (Chien et al., 2010)
CXCR4 (Wu et al., 2010)
H1 receptor (Shimamura et al., 2011; Shiroishi et al., 2011)
M2 receptor bound to an antagonist (Haga et al., 2012)
M3 receptor (Kruse et al., 2012)
μ receptor (Manglik et al., 2012)
κ receptor (Wu et al., 2012)
mouse δ receptor (Granier et al., 2012)
NTS1 receptor expressed in insect cells and crystallized in LCP
(White et al., 2012)
PAR1 (Zhang et al., 2012)
S1P1 receptor (Hanson et al., 2012)
FFA1 receptor (Srivastava et al., 2014)

T4L in ICL 2
CRF1 receptor (Hollenstein et al., 2013)
mGlu5 receptor (Doré et al., 2014)

T4L at N-terminus
β2-adrenoceptor (Zou et al., 2012)
β2-adrenoceptor in complex with Gs protein and nanobody
(Rasmussen et al., 2011b)
β2-adrenoceptor in complexes with agonist and nanobody
(Ring et al., 2013; Weichert et al., 2014)

mT4L in ICL 3
M3 receptor (Thorsen et al., 2014)

dsT4L in ICL 3
M3 receptor (Thorsen et al., 2014)

BRIL in ICL 3
A2A receptor (Liu et al., 2012b)
5-HT1B receptor (Wang et al., 2013a)
5-HT2B receptor (Wacker et al., 2013)
P2Y12 receptor (Zhang et al., 2014a)
SMO (Wang et al., 2014; Weierstall et al., 2014)

BRIL at N-terminus
NOP receptor (Thompson et al., 2012)
glucagon receptor (Siu et al., 2013)
SMO (Wang et al., 2013b, 2014)
mGlu1 receptor (Wu et al., 2014)
human δ receptor (Fenalti et al., 2014)

Rd in ICL 3
CCR5 (Tan et al., 2013)

PGS in ICL 3
OX2 receptor (Yin et al., 2015)
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FIGURE 5 | Variety of fusion partners used for crystallization of GPCRs.
A flexible T4L molecule consists of an N-terminal (cyan) and a C-terminal lobe
(blue) connected via a helix C (pink); helix A (green) precedes the N-terminal lobe
(A–D). Disulfide bonds (yellow spheres) decrease molecular flexibility in dsT4L
(C). On the other hand, molecular size of T4L was reduced by deleting the
N-terminal lobe in mT4L (D). The insertion sites of the fusion partners into ICL 3
are exactly the same for all three M3 receptor constructs (B–D). Both T4L and

BRIL (red) were used as N-terminal fusion partners (A,E). Structures of the BRIL
chimeras show clearly the sodium-ion allosteric site (E,F). In the Rd (orange)
chimera, a Zn2+ ion substitutes the naturally occurring Fe2+/3+ (G). PGS
(green) was identified as a fusion partner most recently (H). For all structures, C
atoms of the orthosteric ligands are represented as orange spheres. PDB IDs:
4GBR (A), 4DAJ (B), 4U14 (C), 4U15 (D), 4N6H (E), 4EIY (F), 4MBS (G) and
4RNB (H).

cysteine-free T4L contains two lobes connected with a flexible
hinge. Such a flexible T4L structure is not an optimal feature
for crystallogenesis. In a newly designed ‘disulfide-stabilized’ T4L
(dsT4L) four mutations have been introduced to establish two
disulfide bridges in order to reduce conformational flexibility.
In ‘minimal’ T4L (mT4L), the whole N-terminal lobe was sub-
stituted by a small linker thus reducing both molecular size and
flexibility (Figure 5).

In addition to T4L, some other potential fusion partners were
determined (Chun et al., 2012). The thermostabilized BRIL was
utilized for crystallization of a number of GPCRs, either as N-
terminally attached or substituting the ICL 3 (Table 2). In two
instances where T4L or BRIL chimeras did not result in crystals,
homogenous samples or crystallization constructs that are stable
enough, Rd (Tan et al., 2013) and PGS (Yin et al., 2015) appeared
as valid alternatives.

Several GPCRs have been crystallized as different chimeras
or both with a fusion partner and without any fusion protein,
either as a thermostabilized variant or in a complex with Fab
fragment or nanobody. Examples for these are β2-adrenoceptor,
A2A receptor, NTS1 receptor, SMO and M3 receptor. This shows
that different strategies in designing crystallization constructs can
be equally successful. Crystallization of the ultra-thermostable
mutant of turkey β1-adrenoceptor in LCP (Miller-Gallacher et al.,
2014) demonstrated that a fusion partner is not required for

LCP crystallization of GPCRs. It is worth noting that chimeras
of A2A receptor with BRIL inserted into a ICL 3 and that of
human δ receptor with BRIL at the N-terminus both resulted in
the highest-resolution GPCR crystal structures published so far
(at 1.8 Å resolution), revealing the sodium-ion allosteric site (Liu
et al., 2012b; Fenalti et al., 2014; Figure 5).

In designing the expression construct one should not forget
to include tags important for expression and incorporation into
the membrane, especially when native N-terminal part is absent
from the construct or if one uses E. coli for expression. For exam-
ple, cleavable hemagglutinin signal peptide significantly increased
functional expression of β2-adrenoceptor in insect cells (Guan
et al., 1992), therefore it was added to the majority of GPCR
crystallization constructs expressed in insect cells. Some GPCRs
showed higher expression in yeast when yeast α-factor secre-
tion signal was included in the expression construct (Yurugi-
Kobayashi et al., 2009). This was true for A2A receptor (Hino
et al., 2012), but not for H1 receptor for which functional expres-
sion was fivefold higher when expressed without α-factor signal
sequence (Shiroishi et al., 2011). MBP at the N-terminus and
TrxA at the C-terminus directed expression of rat NTS1 receptor
into E. coli inner membrane (Egloff et al., 2014b), while having
GST at the N-terminus of human CXCR1 enabled expression
of this chemokine receptor as inclusion bodies in E. coli (Park
et al., 2012b). Inclusion of GFP, as for H1 receptor expressed
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in P. pastoris (Shimamura et al., 2011; Shiroishi et al., 2011),
facilitates characterization of a GPCR sample by measuring GFP
fluorescence.

Characterization

A construct for structural studies has to satisfy several criteria:
(i) it should be expressed in sufficient amounts; (ii) it should
be stable enough after solubilization; and (iii) it should make a
homogenous sample after purification. To find the most suit-
able one, many constructs have to be characterized in a high-
throughput manner.

Ligand-binding assays (reviewed in Fang, 2012) are usu-
ally methods of choice for measuring expression levels, recep-
tor stability in different conditions or enrichment by purifi-
cation. Because the ligand binds specifically to the receptor,
it characterizes only molecules capable for ligand binding and
excludes the misfolded ones. Moreover, it does not necessi-
tate purifying sample, so it can be performed on whole cells,
membrane preparations or detergent-solubilized GPCRs. Very
sensitive radioligand-binding assays were mostly used for that
purpose, but nowadays assays based on fluorescent ligands, as
homogeneous time resolved fluorescence (Zwier et al., 2010)
or fluorescence anisotropy titration (Huwiler et al., 2010), are
becoming more in use. Alternatively, when labeled ligands are
not available for the studied receptor, surface plasmon resonance
spectroscopy can be applied instead to assess ligand-binding
(Patching, 2014).

Including a fluorescent fusion tag, like GFP, can further facil-
itate analysis (Drew et al., 2006, 2008). Expression levels can
directly be measured on whole cells or a detergent-solubilized
sample and in-gel fluorescence, substituting a more traditional
immunoblotting, gives additional information about size of the
expressed GPCRmolecule and its possible degradation. Here, we
have to be careful, since it was shown that there is no correla-
tion between fluorescence signal corresponding to total receptor
expression and amount of functional receptor determined by
radioligand binding (Shiroishi et al., 2012; Thomas and Tate,
2014). An alternative way of determining the amount of prop-
erly folded receptor molecules is by measuring cellular surface
expression either with a fluorescently labeled ligand or with flu-
orescently labeled antibody that binds to an extracellular part of
a receptor or to an engineered N-terminal tag (e.g., FLAG-tag).
Both approaches have been used in high-throughput flow cytom-
etry screening of GPCR variants (Hanson et al., 2007; Scott and
Plückthun, 2013).

Homogeneity of the sample after solubilization can be mon-
itored by FSEC (Kawate and Gouaux, 2006), either by utilizing
intrinsic tryptophan fluorescence in purified samples or fluores-
cence of a fused GFP molecule, in which case a crude whole-cell
lysates can also be used. By measuring a peak height for aliquots
of the same sample incubated at different temperatures, FSEC
can also be used to monitor thermostability of a GPCR sample
(Hattori et al., 2012). Thermostability of a pure sample can be
determined in the differential scanning fluorimetry based on the
dye for which fluorescence increases after its covalent binding to

the denatured protein in water solution (Alexandrov et al., 2008)
or LCP (Liu et al., 2010).

Of course, purity of the final GPCR sample should always be
examined in polyacrylamide gel electrophoresis and, if possible,
the protein molecular weight and presence of posttranslational
modifications checked by mass spectrometry (Ho et al., 2008). If
applicable, the construct chosen for structural studies should also
be characterized for its coupling with the cytosolic interacting
partner (Thomsen et al., 2005; Siehler, 2008).

Flexibility of crystallization fusion constructs can be estab-
lish in a limited proteolysis assay (Rosenbaum et al., 2007).
High-throughput FRAP was utilized to predict crystallizability of
GPCR constructs in LCP (Cherezov et al., 2008; Xu et al., 2011a).
Namely, rate of molecular diffusion of fluorescently labeledmem-
brane proteins in LCP is positively correlated to its crystallo-
genesis, so LCP-FRAP can serve as efficient pre-crystallization
screening.

Special Considerations for NMR
Studies

G protein-coupled receptors are challenging targets for solu-
tion NMR: (i) they need to be solubilized by detergents or
other membrane-mimicking systems, which can easily increase
their effective molecular weight to over 100 kDa, causing very
broad lines and low signal amplitudes; (ii) internal receptor
dynamics in the micro- to millisecond range may lead to fur-
ther line broadening; (iii) GPCRs are largely α-helical and have
very low spectral dispersion; (iv) many GPCRs are marginally
stable in detergents; and (v) the introduction of isotopes is dif-
ficult in most GPCR expression systems that yield functional
receptors. In particular, the latter point represents a serious
limitation.

Each NMR active nuclei in the protein is a potential reporter
of the local conformational changes and dynamics behavior of the
protein. The more reporters we have the more complete picture
about the receptor we can build, provided we can resolve and
assign individual peaks. A particular attention deserves deuter-
ation of the sample as it dramatically improves the relaxation
behavior of the protein leading to sharper peaks and improved
signal to noise ratio.

Depending on the expression system used, different labeling
schemes can be employed, ranging from uniform labeling in E.
coli to labeling single type of amino acids in eukaryotic expres-
sion systems to covalently attaching NMR-active labels after the
expression and purification.

Uniform 15N, 13C, and 2H labeling can be achieved effectively
in E. coli. Indeed, the only receptor structures solved by NMR
so far have been obtained from proteins produced in E. coli or
in an E. coli cell-free expression system: the bacterial GPCR-like
sensory rhodopsin (Gautier et al., 2010) and proteorhodopsin
(Reckel et al., 2011) studied by solution NMR as well as the
human GPCR CXCR1 (Park et al., 2012a,b) studied by solid-state
NMR. The E. coli production of the 15N, 13C labeled CB2 receptor
and subsequent solid-state NMR studies have also been reported
(Kimura et al., 2014). However, due to the requirement of the
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Milić and Veprintsev Production of GPCRs for structural studies

sample to be incorporated in the liposomes, the sensitivity of the
experiment was insufficient to record resolved 2D spectra.

Although this remains to be explored, the GPCRs engineered
by molecular evolution approach for increased stability and
improved expression in E. coli (Sarkar et al., 2008; Dodevski
and Plückthun, 2011; Schlinkmann et al., 2012a,b; Scott and
Plückthun, 2013; Egloff et al., 2014b) may be very promising
targets for NMR studies.

In contrast to the few receptors expressed in E. coli, the
overwhelming majority of crystallized eukaryotic GPCRs have
been obtained in functional form from eukaryotic expression
systems, especially insect cells, which provide a more devel-
oped protein folding, modification and membrane insertion
machinery. Isotope labeling is difficult in eukaryotic expression
systems, since NMR-active isotopes need to be introduced as
isotope-labeled amino acids or by non-native chemical modi-
fications. So far, labeling by deuterium has been achieved for
rhodopsin produced in a worm C. elegans (Salom et al., 2014),
but not in more common eukaryotic expression systems, which
severely limits the achievable resolution and sensitivity of NMR
spectra.

Earlier NMR studies on rhodopsin were limited to using
31P at the phosphorylation sites and 19F probes covalently
attached via cysteine (Klein-Seetharaman et al., 1999; Getmanova
et al., 2004). Such probes offer favorable relaxation behavior
and only one or very few observed signals for the ease of
interpretation. The first GPCR to be labeled for NMR using
single amino acids (glycine, lysine, or tryptophan) was also
rhodopsin expressed in HEK293S cells (Eilers et al., 1999; Klein-
Seetharaman et al., 2002, 2004). It is worth mentioning that in
the case of lysine, one out of potentially eight backbone peaks
was observed and assigned to the flexible C-terminus of the
receptors.

Similar approaches were used to characterize the changes
in dynamic behavior of the well-studied β2-adrenoceptor in
response to ligand binding. Detection of 19F resonances from two
trifluoroethanethiol-labeled cysteine residues located on the cyto-
plasmic side revealed a two-state equilibrium in slow chemical
exchange (>2 ms) that is modulated by the type of ligand (Liu
et al., 2012a). Agonists lead to conformational rearrangements
in transmembrane helix 6 and 7, while arrestin-biased ligands
strongly affect transmembrane helix 7.

The alternative to fluorine labels was to use favorable relax-
ation properties of methyl side chain groups of methion-
ine. The labeled moiety was conjugated via chemical liga-
tion to a specific location on the extracellular face of the
receptor. Shifts in resonances of one 13C-methyl-tagged lysine
side chain in β2-adrenoceptor revealed an allosteric cou-
pling from the ligand to the extracellular surface (Bokoch
et al., 2010). More recently, all methionines in the protein
were labeled by adding 13C-methyl methionine to the drop-
out media during expression in insect cells (Kofuku et al.,
2012; Nygaard et al., 2013). The number of methionines was
reduced by mutagenesis to three or four to obtain inter-
pretable spectra, which showed chemical shift changes that
depended on ligand efficacy, correlated between the ligand
binding site and the intracellular side, and were sensitive to

the binding of a G-protein-mimetic antibody (Nygaard et al.,
2013).

The yeast expression system could be used to produce protein
labeled for NMR. Potentially, even deuteration, at least partial,
is possible. Unfortunately, as only A2A and H1 receptors were
expressed in P. pastoris for crystallographic studies (Shimamura
et al., 2011; Singh et al., 2012), no reports about expression of
labeled receptors are published.

Recently, Salom et al. (2014) reported triple 15N, 13C, and 2H
labeling of rhodopsin expressed in transgenic C. elegans. This
approach might find broader application in expression of other
GPCRs for NMR studies.

Conclusion

Overall, large-scale production of GPCRs for crystallographic
studies is very well established nowadays. Insect cells are used
mostly, but other expression systems might play more impor-
tant role in the future. Mild detergents, like DDM or LMNG,
mixed with CHS and combined with high-affinity ligands gen-
erally provide enough receptor stability for LCP crystallization.
Also, modification of GPCRs by protein engineering and use of
antibodies as crystallization chaperones increases their crystal-
lizability. Unfortunately, it is still not possible to design from
scratch a protein construct that will give high-quality crys-
tals. Therefore, high-throughput experimental screening of large
number of potential crystallization constructs is unavoidable for
now.

On the other hand, NMR of GPCRs is a very promising area
of research that remains challenging due to the difficulties in pro-
duction of milligram amounts of isotopically labeled receptor.
With the exception of a few receptors which could be produced
fully labeled in E. coli, studies will be limited to the detection
of a few specifically labeled amino acids or chemically intro-
duced groups. Certainly, the favorable relaxation properties of
methyl groups and fluorine already allowed obtaining valuable
insights in the dynamic properties of GPCRs. Potentially, the
backbone NMR studies, which are inherently more sensitive to
the conformational changes then side chains, will give us richer
information about the dynamics of the receptors. Of course,
additional challenges such as long-term protein stability, mini-
mizing the size of the detergentmicelle, and potentially restricting
conformational flexibility of the receptors and improvements in
the sensitivity of the NMR data collection methods will have to
be addressed to make progress in the NMR studies of GPCR
dynamics.

Authors’ Note

While the article was under review, the crystal structures of
human CXCR4 in complex with a viral chemokine antagonist
vMIP-II (Qin et al., 2015), and of human cytomegalovirus GPCR
homolog US28 in complex with the chemokine domain of human
CXC3CL1 (Burg et al., 2015) were published. The T4L-fused
CXCR4 and vMIP-II – both with a cysteine point mutation –were
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Milić and Veprintsev Production of GPCRs for structural studies

co-expressed in insect Sf9 cells and trapped in the complex by
an engineered disulfide bond between the two binding part-
ners (Qin et al., 2015). Two different US28 constructs and
the chemokine domain of CXC3CL1 were expressed sepa-
rately in mammalian HEK293S GnTI- cells using BacMam bac-
ulovirus transduction. A ternary complex between the chemokine
domain, the N- and C-terminally truncated US28 and an alpaca
nanobody gave better diffracting crystals in comparison to the
full-length US28 in complex with the chemokine domain only
(Burg et al., 2015).
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