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Growing evidence shows that intrinsic circadian clocks are tightly related to

cardiovascular functions. The diurnal changes in blood pressure and heart rate are

well known circadian rhythms. Endothelial function, platelet aggregation and thrombus

formation exhibit circadian changes as well. The onset of many cardiovascular diseases

(CVDs) or events, such as myocardial infarction, stroke, arrhythmia, and sudden

cardiac death, also exhibits temporal trends. Furthermore, there is strong evidence

from animal models and epidemiological studies showing that disruption of circadian

rhythms is a significant risk factor for many CVDs, and the intervention of CVDs may

have a time dependent effect. In this mini review, we summarized recent advances

in our understanding of the relationship between circadian rhythm and cardiovascular

physiology and diseases including blood pressure regulation and myocardial infarction.
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Introduction

Circadian rhythms are biological processes displaying endogenous oscillations of about 24-h. These
rhythms are widely observed in animals, plants, bacteria, and even cultured cells (Harmer et al.,
2001). They are driven by a group of genes called clock genes. In mammals, the core clock
genes consist of Bmal1 (Brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1),
CLOCK (Circadian LocomotorOutput Cycles Kaput), Per (Period), andCry (Cryptochrome). They
form a tightly regulated systemwith interlocking feedback and feed-forward loops (Figure 1) (Yang
et al., 2013). BMAL1 and CLOCK proteins, or its paralog NPAS2 (neuronal PAS domain protein
2), form a heterodimer, bind to E-box elements in Per and Cry promoter regions and activate
their transcription. Upon accumulation in the cytoplasm, PER and CRY proteins translocate to
the nucleus where they repress the BMAL1:CLOCK/NPAS2 regulatory complex, thereby shutting
down their own transcription. This core loop is interconnected with additional positive and neg-
ative regulatory loops involving nuclear receptors, such as RORα (RAR-related orphan receptor
alpha), REV-ERBα (NR1D1, nuclear receptor subfamily 1, group D, member 1), and PPARs (Per-
oxisome proliferator-activated receptors). Additionally, these clock genes control numerous target
genes (termed clock controlled genes, CCGs), thus regulating the circadian rhythms of various
biochemical and physiological processes (Chen and Yang, 2014).

The circadian clock exists as the central clock in the suprachiasmatic nucleus (SCN) in the
hypothalamus, and its peripheral tissues serve as the peripheral clock. The SCN receives light
input from the retina, and then conveys the photic information into neural and/or humoral
signals that orchestrate multifarious behavioral and biological rhythms, such as sleep-wake,
hunger, body temperature, and hormone secretion cycles (Kohsaka et al., 2012). Although
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FIGURE 1 | Transcriptional feedback loops of the mammalian

circadian clock. In the core loop (purple background),

BMAL1/CLOCK heterodimer activates transcription of the Per and

Cry genes via binding to the E-box elements in their promoter

regions. The resulting PER and CRY proteins heterodimerize,

translocate to the nucleus and interact with the BMAL1/CLOCK

complex to inhibit their own transcription. In addition, ROR activates

and REV-ERB represses RORE-mediated transcription, forming the

secondary autoregulatory feedback loops. This clock mechanism also

controls rhythmic expression of numerous genes, called clock

controlled genes (CCG), to perform biochemical or physiological

roles in a circadian manner.

the SCN synchronizes internal time in various tissues, growing
evidence from in vitro and ex vivo experiments has proved that
the peripheral clock can function autonomously without cen-
tral or systemic cues (Kowalska and Brown, 2007; Takeda and
Maemura, 2011).

Circadian Clock in Cardiovascular System

Circadian expression of clock genes in mouse heart (Young et al.,
2001) and aorta (McNamara et al., 2001) were first described in
2001. Recently, Zhang et al. (2014) used a high temporal resolu-
tion of RNA-seq data and found that 6 and 4% of protein cod-
ing genes showed circadian rhythms in transcription in mouse
heart and aorta, respectively. Ex vivo experiments displayed var-
ied functions of mouse heart (Durgan et al., 2007) and aorta
(Keskil et al., 1996; Prasai et al., 2013) that depended on the
time the tissues were collected. In addition, human hearts were
found to express clock genes in a time sensitive manner as well
(Leibetseder et al., 2009). Furthermore, the observations of gene
cycling were extended to cultured cells. In rat cardiomyocytes,
the presence of 2.5% of fetal calf serum in culture medium is
sufficient to maintain rhythmic expression of core clock genes
Bmal1, Rev-erbα, and Per2 and energy metabolic genes pyru-
vate dehydrogenase kinase 4 and uncoupling protein 3 (Durgan
et al., 2005). Functional clocks are also expressed in cultured
endothelial cells (Takeda et al., 2007) and vascular smoothmuscle

cells (Nonaka et al., 2001). To study the role of circadian clocks in
cardiovascular system, several tissue specific clock gene deletion
mouse models were recently generated. For instance, cardiomy-
ocyte deletion of Bmal1 results in abnormal electrocardiography

with prolonged RR and QRS intervals (Schroder et al., 2013). The
hearts from knockout mice were more susceptible to arrhyth-

mia. Bmal1 deletion in endothelial cells (Westgate et al., 2008)

or vascular smooth muscle cells (Xie et al., 2015) compromised
the diurnal variation of blood pressure. These findings are con-

sistent with the presence and importance of intrinsic clocks in

cardiovascular system.
On the other hand, although all cell types in the cardiovascular

system have intact molecular clocks, these peripheral clocks need
to coordinate with the central clock to synchronize responsive-

ness of the heart and blood vessels to diurnal variations in their

environment. The disruption of normal day-night cycles, such as
jet lag, leads to desynchronization between central and peripheral

clocks, heterogeneity of entrainment kinetics between different

organs, and dysregulation of clock genes (Kiessling et al., 2010).
Because circadian clocks control a large number of tissue spe-

cific CCGs (Zhang et al., 2014), the disruption of this mechanism

will initiate a chain reaction to result in perturbation of a wide
range of biochemical and physiological outputs, potentially con-
tributing to the incidence of cardiovascular diseases (CVDs). For
example, using amouse model of pressure overload–induced car-
diac hypertrophy, Martino et al. found that rhythm disturbance

Frontiers in Pharmacology | www.frontiersin.org 2 April 2015 | Volume 6 | Article 71

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Chen and Yang Circadian rhythms in cardiovascular system

by housing mice under 10-h light: 10-h dark conditions adversely
affected cardiac structure and function as well as altered expres-
sion of clock genes and cardiac remodeling genes (Martino et al.,
2007). Interestingly and importantly, restoration of a normal
24-h diurnal rhythm could rescue these changes, suggesting that
maintaining a normal rhythm is crucial to cardiovascular health.

Circadian Regulation of Blood Pressure

Day-night variations in blood pressure (BP) and heart rate (HR)
are among the best known circadian rhythms of physiology. In
humans, there is a 24-h variation in BP with a sharp rise before
awakening, the highest BP value is around midmorning (Millar-
Craig et al., 1978). Concomitantly, many cardiovascular events,
such as sudden cardiac death, myocardial infarction and stroke,
display diurnal variations with an increased incidence in the
morning (Muller et al., 1985, 1987; Elliott, 1998; Reavey et al.,
2013). These events, as well as kidney albuminuria and progres-
sion to end-stage renal diseases, are relatively common in patients
whose blood pressure fails to decline during the night, so-called
non-dippers (Takeda and Maemura, 2010). Inverse dippers—BP
rises instead of decreases at night—showed even higher cardio-
vascular mortality (Kario et al., 2001). These time-dependent
effects are not just consequences of the sleep/wakefulness cycle
or the rhythms in neuroendocrine constituents, but are also
believed to be attributed to the intrinsic properties of the hearts
and blood vessels whose functions show significant fluctuations
during the course of the day (Durgan and Young, 2010; Paschos
and Fitzgerald, 2010).

Studies in genetic manipulated mice have suggested the
involvement of intrinsic circadian clock in BP rhythm regulation.
One of the most interesting findings is the dissociation between
behavior and BP regulation (Figure 2). As the closest phyloge-
netic neighbor of ROR and REV-ERB, nuclear receptor PPARγ

regulates the circadian rhythms of BP and heart rate via direct
interaction with Bmal1 gene (Wang et al., 2008b; Yang et al.,
2012). Although both vascular and global PPARγ knockout mice
responded to light well and displayed rhythmic behavior pattern
under regular light/dark conditions, the diurnal variations of BP
was dampened or even abolished in these knockout mice. This
striking dissociation between physiology and behavior strongly
suggests that intrinsic clocks inside the blood vessels contribute
to their functions that fluctuate in a 24-h cycle. Several other core
clock genes were also reported to regulate BP in various ways.
Global deletion of Bmal1 in mice abolishes the circadian rhythm
of BP, which is accompanied by hypotension likely due to the
reduced production of catecholamines (Curtis et al., 2007) or the
lack of Bmal1 in vascular smooth muscle cells (Xie et al., 2015).
By contrast, double deletion of Cry1/2 genes in mice give rise to
salt-sensitive hypertension (Masuki et al., 2005).

It is worthwhile to note that the intrinsic circadian regula-
tion of BP in humans remains to be determined. Kerkhof et al.
failed to detect a significant 24-h variation of blood pressure in
human when individuals were subjected to a 26-h constant light
condition, while the heart rate exhibited a significant circadian
pattern (Kerkhof et al., 1998). On the contrary, Scheer et al. found
that, independent of environmental and behavioral changes, the
endogenous circadian system modulates diurnal BP variation in

FIGURE 2 | Dissociation between behavior and BP regulation in

circadian-disrupted mice (Yang et al., 2012). PPARγ knockout mice (KO)

and their littermate controls (Ctrl) were kept under regular light/dark cycles.

Locomotor activity (A), mean arterial pressure (B) and heart rate (C) were

recorded using radiotelemetry. Both KO (blue box) and control mice display

obvious day/night variation in locomotor activity. However, KO mice cannot

maintain normal variations in BP and heart rate (red boxes) as control mice.

*p < 0.05; ns, not significant.
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humans (Scheer et al., 2010), while circadian misalignment by
scheduling a recurring 28-h “day” for 8 days will induce hyper-
tension and other adverse cardio-metabolic implications (Scheer
et al., 2009).

Conventionally, most of the hypertensive patients were treated
with anti-hypertensive medications in the mornings. Based on
the consideration of the day-night variation of BP and the pre-
vious studies showing BP lowering effect of low dose of aspirin
at bedtime (Hermida et al., 2003, 2009), Hermida et al., com-
pared the potential differential reduction of CVD morbidity and
mortality risk by a bedtime vs. upon-awakening hypertension
treatment schedule in a large-scale (2156 untreated hyperten-
sive subjects) and long-term (median follow-up of 5.6 years)
study. They found that the patients who took at least one
regular antihypertensive medication at bedtime gained better
BP control and exhibited a significant reduction in CVD risk
(Hermida et al., 2010). Although their results were impressive,
independent antihypertension studies and intensive studies on
hypertension-related complications are required to confirm the
time-dependent effects of antihypertensive drugs and to establish
chronotherapy to manage in hypertension.

Circadian Rhythms and Myocardial
Infarction

Circadian rhythms in timing of onset and tolerance tomyocardial
infarction (MI) have been well established. It has been reported
that the occurrence of MI is two to three times more frequent in
the morning than at night (Muller et al., 1985; Culic, 2014). In
the early morning, the increased systolic BP and HR results in
an increased energy and oxygen demand by the heart, while the
vascular tone of the coronary artery rises in the morning, result-
ing in a decreased coronary blood flow and oxygen supply. This
mismatch between supply and demand elicits the high frequency
of the onset of MI. In addition, plasminogen activator inhibitor-1
(Kurnik, 1995) andmany platelet surface activationmarkers such
as GPIb and P-selectin (Scheer et al., 2011) displayed a circadian
pattern with high levels in the morning, which is coincident with
the morning peak of thrombus formation and platelet aggrega-
tion (Tofler et al., 1987; Scheer and Shea, 2014). The resulting
hypercoagulability partially underlies the morning onset of MI.
Disruption of circadian rhythm like shiftwork and jetlag has been
well established to be a risk factor for many CVDs, including
MI (Knutsson et al., 1999). Even a 1 h shift, such as the transi-
tion from regular time to daylight saving time, can significantly
increase the chances of MI occurring (Janszky and Ljung, 2008).

A series of cardiac functions related to the heart remodeling
after MI are also known to have circadian variation. The early
healing after MI relies on coordinated removal of necrotic tis-
sues through an early inflammatory phase (Frangogiannis, 2012),
followed by replacement and remodeling of the myocardium
and extracellular matrix deposition (Liehn et al., 2011). As
remodeling progresses toward the maturation phase, the heart
undergoes size, shape and structure changes, which lead to
ventricular dilation, dysfunction, and ultimately failure (Liehn
et al., 2011). Most recently, Alibhai et al. (2014) demonstrated
that short-term disruption of diurnal rhythms after myocardial

infarction adversely affected the early inflammatory phase of left
ventricular remodeling, altered the innate immune infiltration
and scar formation, and eventually led to exacerbated maladap-
tive cardiac remodeling in mice. In contrast, maintaining normal
rhythms throughout the course of the disease better preserved
cardiac structure and function. Although no animal model can
completely reflect patient experience, maintenance of normal
diurnal rhythm during the recovery phase after MI should still
aid in a coordinated and effective infarct healing response and
improve patient outcome.

Moreover, clock genes may also exert non-clock roles in the
cardiovascular system, which should be taken into account when
interpreting the effect of circadian disruption. For instance, acti-
vation of an adenosine receptor Adora2b acts via Per2, but not
other clock genes, to induce an energy utilization switch from
fatty acid to glucose in cardiomyocytes, which promotes glycoly-
sis and protects against cardiac ischemic injury (Eckle et al., 2012;
Yang and Fitzgerald, 2012).

Circadian Rhythms and other
Cardiovascular Diseases

Numerous animal models and human epidemiological stud-
ies also proved the adverse effects of circadian disruption in
other CVDs. Mouse hearts in rhythm-disruptive environments
are prone to malfunctions with altered clock gene cycling and
reduced contractility (Martino et al., 2007). Clock gene dele-
tion or mutation in mice dampened cardiovascular circadian
rhythms accompanied by dilated cardiomyopathy (Lefta et al.,
2012), arterial stiffness (Anea et al., 2010), or endothelial dysfunc-
tion (Viswambharan et al., 2007; Wang et al., 2008a; Anea et al.,
2009). Impaired cholesterol metabolism and increased develop-
ment of atherosclerosis was also verified in CLOCK mutant mice
on a western as well as a normal diet (Pan et al., 2013). Aor-
tic grafts from Bmal1 knockout mice transplanted into wild type
mice developed robust arteriosclerosis without affecting systemic
hemodynamics (Cheng et al., 2011). This data suggests that the
intrinsic circadian clocks in blood vessels exert significant roles
as an autonomous influence in arteriosclerotic diseases.

On the other hand, CVDs affect clock gene expression as well.
For example, in salt sensitive rats, high salt diet induced cardiac
hypertrophy is associated with attenuated rhythmic expression of
core clock genes (Mohri et al., 2003). Aortic constriction induced
pressure overload, which decreased the amplitude of circadian
expression of clock genes in the rat heart (Young et al., 2001;
Durgan et al., 2005). In a type 2 diabetic rat model, cardiac clock
genes exhibited a phase shift with a 3 h delay, suggesting a loss
of normal synchronization in diabetic hearts (Young et al., 2002).
However, in high fat diet induced obese mice, vascular tissues are
less sensitive to pathological disruption of circadian clocks than
adipose tissue (Prasai et al., 2013). This evidence raises the pos-
sibility that although all cardiovascular cell types possess func-
tional circadian clocks, this mechanism may be regulated in a
cell-type specific manner. Desynchronization between different
organs (e.g., heart and aorta) or cell types (e.g., VSMCs and ECs)
could occur during specific physiological/pathological situations
and may give an increased chance of CVDs.
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Moreover, the day-night variations of blood pressure, heart
rate and baroreflex sensitivity (a homeostatic mechanism for
maintaining blood pressure) also coincide with diurnal variabil-
ity in many other CVDs or events, such as cardiac arrhythmias,
atherosclerosis and sudden death (Portaluppi et al., 2012; Yang
et al., 2013). The timing of sudden cardiac death displayed circa-
dian variability. It has a circadian pattern prominent in the early
morning similar to that described in patients with coronary artery
disease (Muller et al., 1987). Both atrial and ventricular arrhyth-
mias appear to exhibit circadian patterning as well, with a higher
frequency during the day than at night (Portaluppi et al., 2012). In
hospital, many arrhythmias are observed as a consequence of MI.
More complicatedly, circadian disruption not only impairs car-
diovascular functions, but has also been linked to other diseases
such as obesity, diabetes, immune disorders, mental illness that
may affect each other (Harrington, 2010). Therefore, controlling
or prevent the diseases that are related both to circadian rhythm
and to cardiovascular functions becomes very important.

Conclusion

Cardiovascular disease is the leading cause of death in many
industrialized countries. Intensive effort has been made to

understand the basic mechanisms. One field of investigation in
recent years is the study of circadian rhythms. Increasing evi-
dence has shown adverse effects of circadian disruption in the
cardiovascular system. It becomes more and more evident and
important in themodern age, particularly in developed countries,
due to frequent disruptions to normal rhythms caused by shift
work, artificial light, transmeridian air flight, and social activities
(Boggild and Knutsson, 1999; Knutsson and Boggild, 2000).

The circadian rhythms not only affect health, but also drug
efficiency. It’s not surprising that some drugs for treating CVDs
have been reported to exhibit time dependent effects since there’s
eminent circadian function of heart and blood vessels driven by
both systemic and intrinsic clocks. Although several other mech-
anisms outside the cardiovascular system, such as chronophar-
macokinetics (Musiek and Fitzgerald, 2013), have been sug-
gested, the circadian clock within the heart and blood vessels
should not be overlooked. Time dependent effects should be
investigated when developing new drugs for CVDs.
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