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Therapeutic applications of circadian
rhythms for the cardiovascular
system
Elena V. Tsimakouridze, Faisal J. Alibhai and Tami A. Martino*

Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada

The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for
example the diurnal variation of heart rate, blood pressure, and timing of onset
of adverse cardiovascular events such as heart attack and sudden cardiac death.
Over the past decade, the circadian clock mechanism has emerged as a crucial
factor regulating these daily fluctuations. Most recently, these studies have led to a
growing clinical appreciation that targeting circadian biology offers a novel therapeutic
approach toward cardiovascular (and other) diseases. Here we describe leading-edge
therapeutic applications of circadian biology including (1) timing of therapy to maximize
efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered
by testing for genomic, proteomic, metabolomic, or other factors at different times
of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that
target the circadian mechanism with potential clinical applications (new chronobiology
drugs). Cardiovascular disease remains a leading cause of death worldwide and new
approaches in the management and treatment of heart disease are clearly warranted
and can benefit patients clinically.
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Introduction

Cardiovascular disease is the leading cause of death worldwide (Public Health Agency of Canada,
2009; World Health Organization [WHO], 2011; Mozaffarian et al., 2014; Townsend et al., 2014).
Available therapies have had only limited success improving long-term survival of patients. In
recent years there have been a flurry of studies demonstrating time-of-day variations in drug
toxicity and efficacy (reviewed in Smolensky and D’Alonzo, 1988; Smolensky and Peppas, 2007),
daily cardiovascular gene and protein expression (reviewed in Martino and Sole, 2009; Durgan
and Young, 2010; Paschos and FitzGerald, 2010), and there are reports of new pharmacologi-
cal compounds targeting the circadian mechanism (reviewed in Chen et al., 2013; Kojetin and
Burris, 2014). These have led to novel opportunities to investigate and apply the important field
of chronobiology on clinical cardiology, and medicine in general.

The underlying foundation for cardiovascular chronotherapy stems from observations that bio-
logical processes in humans (and other mammals) exhibit 24-h daily rhythms, and these are con-
trolled bymolecular circadian clocks in the brain, heart, and other organs (Figures 1A,B). There are
many excellent reviews on the circadian system (reviewed in Hastings et al., 2003; Roenneberg and
Merrow, 2005; Dardente and Cermakian, 2007; Mohawk et al., 2012). Cardiovascular physiology
appears to follow a rhythm as well; heart rate (HR), blood pressure (BP), and cardiac contractility
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FIGURE 1 | The circadian timing system. (A) Light stimulus is relayed by
the eye to the suprachiasmatic nucleus in the brain, which in turn
synchronizes the heart and other organ clocks to the day and night
environment. (B) These signals entrain the molecular clock mechanism,
which keeps 24-h time in tissues and cells via transcription-translation
feedback loops. BMAL1 and CLOCK are transcribed and translated. BMAL1
and CLOCK heterodimers bind to E-box enhancer elements to promote
transcription of cryptochrome (CRY), period (PER), nuclear receptor
subfamily 1, group D, member 1/2 (rev-erbα/β; nr1d1/2), and other clock
controlled genes (ccg). Proteins CRY and PER are phosphorylated by casein

kinase 1δ/ε (CK1δ/ε) in the cytoplasm, which translocate to the nucleus to
repress CLOCK and BMAL1 mediated transcription. Additional loops exist
whereby REV-ERBα/β negatively regulates bmal1 transcription by binding to
RRE (REV-ERB/retinoic acid receptor-related orphan receptor (ROR) response
element). This mechanism regulates 24-h transcription of clock controlled
genes which in play a crucial role in diurnal cardiovascular physiology.
(C) Therapeutic applications of circadian rhythms include chronotherapy by
timing treatment to daily rhythmic processes, chronobiomarkers of differing
rhythmic profiles between health and disease, and new chronobiology drugs
targeting the circadian clock mechanism.

all peak in the wake hours and reach a nadir during sleep
(reviewed in Martino and Sole, 2009; Durgan and Young, 2010;
Paschos and FitzGerald, 2010). Indeed, many cardiovascular
functions that oscillate over the 24-h period are influenced by
the circadian clock mechanism as well as daily fluctuations
in the neurohormonal milieu (reviewed in Bray and Young,
2008; Sole and Martino, 2009; Gamble et al., 2014). Timing
of onset of cardiac pathologies also follows a rhythm (e.g.,
onset of myocardial infarction [MI, or heart attack; Muller
et al., 1985), and sudden cardiac death (Muller et al., 1987)].
These time-of-day variations in cardiovascular physiology and
pathophysiology have led to a growing clinical appreciation
that endogenous circadian rhythms may be an important fac-
tor to consider in treating disease. Here, we review the cur-
rent knowledge regarding therapeutic applications of circadian
rhythms for the cardiovascular system (Figure 1C), specifically
(1) timing of therapy (chronotherapy), (2) circadian biomark-
ers (chronobiomarkers), and (3) how modifiers of the circa-
dian clock mechanism may be useful in the treatment of heart
disease.

Chronotherapy

Rationale
Chronotherapy is an important therapeutic application of cir-
cadian rhythms for the cardiovascular system. The rationale for

chronotherapy is that it offers translational benefit by consid-
ering factors such as the underlying circadian rhythms in drug
pharmacology, specifically pharmacokinetics (i.e., drug absorp-
tion, distribution, metabolism, and excretion) and pharmaco-
dynamics (i.e., affinity and specificity for target receptor bind-
ing, downstream intracellular signaling). Chronotherapy also
takes into account the patients’ underlying physiology and dis-
ease pathology (reviewed in Labrecque and Belanger, 1991;
Reinberg, 1991; Paschos et al., 2010; Musiek and Fitzgerald,
2013). That the majority of the best-selling drugs and World
Health Organization essential medicines target the products of
circadian genes provides a mechanistic basis for understanding
chronotherapy (Zhang et al., 2014), and provides further support
for the clinical application of chronotherapy. Specific examples
applied to the treatment of cardiovascular disease are discussed in
further detail below. We also created a blog featuring published
chronotherapy studies for cardiovascular and other diseases1.

Chronotherapy Decreases Adverse
Cardiovascular Remodeling
In our recent pre-clinical study in mice, we showed that
chronotherapy can have direct benefits on the heart in car-
diovascular disease models (Martino et al., 2011). Mice with
pressure-overload induced cardiac hypertrophy were adminis-
tered the short-acting angiotensin converting enzyme inhibitor

1http://chronobioapp.blogspot.ca/

Frontiers in Pharmacology | www.frontiersin.org 2 April 2015 | Volume 6 | Article 77

http://chronobioapp.blogspot.ca/
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Tsimakouridze et al. Translational chronocardiology

(ACEi) captopril at either sleep-time or wake-time. We found
that only sleep-time administration improves cardiac function,
and reduces cardiac remodeling, as compared to wake-time cap-
topril and placebo-treated animals. Mechanistically, captopril
given at sleep-time appears to target the peak in the renin-
angiotensin-system gene profiles in the heart (Martino et al.,
2011). Thus this study demonstrates the direct beneficial effects
of chronotherapy for cardiac hypertrophy in the murine model.
The important clinical implications are that ACEis given at bed-
time can benefit myocardial remodeling in hypertensive patients,
or after MI, or in congestive heart failure. Indeed, clinically,
ACEis are one of the most commonly prescribed drugs given to
hypertensive patients and also for ischemic heart disease (Pfeffer
et al., 1992; AIRE, 1993; Ambrosioni et al., 1995; Kober et al.,
1995; Yusuf et al., 2000; Fox and EURopean trial On reduction of
cardiac events with Perindopril in stable coronary Artery disease
Investigators, 2003; Nissen et al., 2004).

Chronotherapy Benefits Daily BP and HR
Rhythms
Diurnal BP rhythms are an important part of healthy cardiovas-
cular physiology, and thus are also a key target for chronother-
apeutic strategies. Indeed, it is well-known that daily BP profiles
are characterized by a dramatic BP surge that occurs around the
time of wakening, followed by a progressive fall (∼10%) to reach
a nadir during sleep (Floras et al., 1978; Millar-Craig et al., 1978).
Conversely, loss of the nocturnal BP fall (non-dipper profile)
adversely affects the heart (Verdecchia et al., 1990; Ohkubo et al.,
2002; Dolan et al., 2005; Fagard et al., 2009), and chronotherapy
to improve the nocturnal BP profile is beneficial. There are many
studies that take a chronotherapeutic approach to regulate 24-
h BP profiles in hypertensive patients. This includes treatment
with ACEis, angiotensin receptor blockers (ARBs), β-blockers,
acetylsalicylic acid (aspirin), and combination therapies at spe-
cific times of day or night. These studies are summarized in
Table 1.

Intriguingly, HR also exhibits a rhythm that peaks in the
day and is lowest at night (Clarke et al., 1976). The effects of
chronotherapy on HR are not as well investigated as with BP
profiles, however, several studies have indicated a time-of-day
influence of β-blockers on HR. (1) In healthy subjects, the β-
blocker propanolol exhibits a significantly faster time to peak
effect on HR if taken in the morning (8 A.M.) as compared
to late at night (2 A.M; Langner and Lemmer, 1988). (2) The
suppressive effect of propranolol on the rise in HR during exer-
cise is significantly greater if the drug is taken in the morning
versus at night (Fujimura et al., 1990). (3) In patients with sta-
ble coronary disease, myocardial ischemic episodes associated
with HR increases are more likely to occur during the day time
than at night; propranolol reduces the proportion of these daily
HR-related episodes (Andrews et al., 1993). (4) In hypertensive
patients, the β-blocker bisoprolol reduces the 24-h ambulatory
HR if the drug is taken in the morning (Mengden et al., 1992).
(5) Lastly, experimental studies in rodents help confirm that
HR is differentially influenced by some β-blockers depending
on the time of drug application; propanolol causes a near max-
imum decrease in HR when given in the light period (rodent

sleep time) as compared to the dark period (rodent wake time;
Lemmer et al., 1985). Collectively these findings illustrate the
importance of maintaining daily BP and HR profiles, and the
clinical applicability of chronotherapy to benefit cardiovascular
physiology.

Aspirin Chronotherapy and Timing of Acute
Cardiovascular Events
In an exciting recent chronotherapy study, it was found that
evening administration of low-dose aspirin reduces morning
platelet reactivity, via COX-1 dependent pathways, as compared
with taking aspirin upon awakening (Bonten et al., 2014). This
finding is consistent with earlier reports of a circadian rhythm
in platelet surface markers (Scheer et al., 2011), and in platelet
aggregability (Andrews et al., 1996). Collectively these studies
are clinically important because acute cardiovascular events (e.g.,
MI) are most likely to occur in the early morning hours vs. other
times of day or night (Muller et al., 1985), and platelet reactivity
likely contributes to this early morning peak. Thus it is postu-
lated that aspirin chronotherapy taken at bedtime instead of on
awakening, as a preventative measure in healthy subjects and by
patients with cardiovascular disease, can reduce the incidence
of adverse cardiac events during the high-risk morning hours
(Bonten et al., 2014). That daily low-dose aspirin reduces the peak
frequency of MIs in the morning and overall risk across the 24-
h cycle (Ridker et al., 1990), provides further support for this
notion.

It is worth noting that several factors important for thrombo-
sis and fibrinolysis in MI, in addition to platelet reactivity and
cycling, also exhibit daily rhythms and could provide additional
targets for chronotherapy for treatment of acute cardiovascular
events. These factors include plasminogen activator inhibitor-
1 (PAI-1 a key inhibitor of fibrinolysis; Angleton et al., 1989;
Scheer and Shea, 2013), tissue factor pathway inhibitor and factor
VII (Pinotti et al., 2005), and plasma fibrinogen (Bremner et al.,
2000). Moreover, several experimental rodent studies mechanis-
tically link these coagulation pathways directly to the circadian
clock mechanism. That is, transcription of the anti-coagulant
factor thrombomodulin is regulated by the mechanism factors
CLOCK and BMAL2 heterodimers (Takeda et al., 2007), and
PAI-1 transcription is regulated by CLOCK and BMAL pro-
teins (Schoenhard et al., 2003). Endothelial responses to vascu-
lar injury also appear to be regulated by the clock mechanism
(Westgate et al., 2008). In terms of clinical translation, time-
of-day variation in the efficacy of thrombolytic therapy in MI
has been reported, which shows a marked early morning resis-
tance and significantly better results later in the day (Reisin et al.,
2004). Taken together, these and earlier studies provide support
for cardiovascular chronotherapy to limit the pathogenesis and
improve treatment following the onset of acute cardiovascular
events.

Nocturnal Hemodialysis (NHD) Benefits
Cardiovascular Disease
Cardiovascular disease is a significant cause of death in patients
with end-stage renal disease (Harnett et al., 1995; Collins et al.,
2007), and left ventricular hypertrophy contributes to the high
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mortality rates in patients given conventional daytime hemodial-
ysis (CHD) treatment (Harnett et al., 1994). Intriguingly, NHD,
renal replacement therapy during sleep) offers better BP con-
trol (Pierratos et al., 1998; Raj et al., 1999), and is accompanied
by regression of left ventricular hypertrophy (Chan et al., 2002),
as compared to patients given conventional daytime therapy. In
addition to decreasing the nighttime BP, NHD also decreases
24-h mean arterial BP compared to CHD (Chan et al., 2003).
These findings of a chronotherapeutic benefit are further cor-
roborated by a randomized controlled clinical trial demonstrat-
ing that frequent NHD improves systemic BP and reduces left
ventricular mass compared with CHD (Culleton et al., 2007).
Mechanistically, the beneficial effects of NHD are associated with
changes in myocardial mechanics in patients, and experimen-
tally correlated with unique cardiac gene expression signatures
in rodent studies in vivo (Chan et al., 2012). These studies
demonstrate chronotherapeutic benefit for the heart, in patients
with end-stage renal disease, by chronotherapeutically converting
from CHD to NHD treatment.

Nocturnal Therapy for Obstructive Sleep
Apnea Benefits the Heart
Obstructive sleep apnea (OSA) is a common sleep disorder,
with cardiovascular consequences (e.g., through increased sym-
pathetic activation, etc. as has been well reviewed in Bradley
and Floras, 2003; Somers et al., 2008; Bradley and Floras, 2009;
Kasai and Bradley, 2011; Ayas et al., 2014; Floras, 2014). OSA
is a target for chronotherapy, as several studies have revealed
that sleep time treatment with continuous positive airway pres-
sure (CPAP) attenuates some of the adverse effects on the
cardiovascular system. For example, CPAP therapy decreases
the risk of non-fatal and fatal adverse cardiovascular events in
severe OSA patients (apnea-hypopnea index >30 h) as com-
pared to untreated patients, as demonstrated in a 10 years
long term follow-up study (Marin et al., 2005). In another
study, it was shown that CPAP therapy improves ejection
fraction, lowers systolic BP, and reduces HR in heart failure
patients with OSA (Kaneko et al., 2003). Also, CPAP treat-
ment decreases cardiovascular-related deaths in OSA patients,
as compared to an untreated OSA group, as was demon-
strated over a follow-up period of 7.5 years (Doherty et al.,
2005). Thus these studies underscore the notion that time-of-day
therapies, such as nocturnal CPAP treatment, benefits cardio-
vascular physiology, and reduces pathophysiology in patients
with OSA.

Chronobiomarkers

Definition
A second area for therapeutic application of circadian rhythms
is in the development of time-of-day biomarkers for heart
disease. The National Institutes of Health defines biomark-
ers as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic interven-
tion” (Biomarker Definitions Working Group, 2001). Classic

biomarkers of cardiovascular disease relate to patient state (e.g.,
lifestyle risk factor profiles such as diet, exercise, and smok-
ing) or biological processes (e.g., molecular gene and pro-
tein levels; reviewed in Jaffe et al., 2006; Maisel et al., 2006;
Pletcher and Pignone, 2011). However, in contrast to these
classic biomarkers which are measured during the daytime,
chronobiomarkers provide a novel approach because clinical
sampling is done at different times of day or night. Thus chrono-
biomarkers (unlike classic biomarkers) take into consideration
the time-of-day rhythms important for body physiology and
molecular processes. It is worth noting that timing of sam-
pling is also relevant to translational research, since experiments
on rodents are routinely performed during the working day
when the animals are in their sleep period (rodents are noc-
turnal) with the intent of comparison to the human daytime.
Sampling tissues and detecting biomarkers at different times
across the day and night cycle can allow for better correlation
with humans. New frontiers investigating molecular chrono-
biomarkers, with application to the clinical setting, are described
below.

Genomic Chronobiomarkers
Genomic chronobiomarkers are the most identifiable type of
biomarker because the circadian clock mechanism is transcrip-
tional in nature. That is, many labs have shown that the circadian
mechanism underlies gene expression in the heart (and other)
organs, and thus investigating how these gene patterns change in
heart disease could lead to de novo chronobiomarker discoveries.
The first large scale study examining rhythmic gene expression
in the heart was by Storch et al. (2002), and revealed that ∼8%
of genes (mRNA) in the murine heart exhibit circadian varia-
tions by microarray and bioinformatics analyses. Of note, this
study was done under circadian (constant dark) conditions to
elucidate clock controlled genes. However, since humans (and
clinical medicine) exist in a 24-h light and dark and not circadian
environment, we also demonstrated that ∼13% of murine car-
diac genes (mRNA) exhibit rhythmic expression under normal
day and night cycles, by microarray and COSOPT bioinfor-
matics analyses (Martino et al., 2004). Most recently rhythmic
mRNA profiles have also been shown in human heart tissue for
the core clock genes (per1, per2, and bmal1; Leibetseder et al.,
2009).

Interestingly, chromatin remodelers play a role in orches-
trating time-of-day gene expression, by regulating rhythms in
the epigenome (reviewed in Aguilar-Arnal and Sassone-Corsi,
2014), such as the histone deactylases termed silent infor-
mation regulator 1 (SIRT1; Nakahata et al., 2008), and his-
tone deacetylase 3 (HDAC3; Alenghat et al., 2008), and the
histone methyltransferase termed mixed lineage leukemia 1
(MLL1; Katada and Sassone-Corsi, 2010). These are recruited
to the promoters of clock controlled genes in a circa-
dian manner, and rhythmic expression of clock controlled
genes is altered in the absence of these chromatin modi-
fiers (Alenghat et al., 2008; Nakahata et al., 2008; Katada
and Sassone-Corsi, 2010). Moreover, the epigenetic markers
of histone acetylation and methylation also exhibit rhyth-
mic oscillations over 24 h (Etchegaray et al., 2003; Vollmers
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et al., 2012). In terms of therapeutic potential, pharmacological
modulation with SIRT1 activators reduces histone acetylation
and decreases the amplitude of circadian gene expression in mice
(Bellet et al., 2013).

Since rhythmic gene expression underlies the vital car-
diac processes, we also investigated whether time-of-day
gene expression signatures could be utilized as de novo
biomarkers of heart disease (i.e., chronobiomarkers). In a
proof-of-concept study, we identified 300 mRNA chrono-
biomarkers, using a murine model of cardiac hypertrophy
(transaortic constriction, TAC), microarrays, and a novel
bioinformatics algorithm termed Delta Gene (Tsimakouridze
et al., 2012). For example, the mitochondrial metabolism genes
uncoupling protein 3 (Ucp3) and pyruvate dehydrogenase
kinase 4 (Pdk4) exhibit significantly increased expression in
TAC hearts in the light period (animals asleep) but not dark
period (animals awake). Conversely, the apoptosis pathway
gene BCL2/adenovirus E1B interacting protein 3 (Bnip3)
exhibits increased expression in the dark. Moreover, we fur-
ther demonstrated that day/night gene rhythms change over
the course of the disease, and that later profiles can be pre-
dictive of heart failure. For example, decreased sleep-time
expression of Ucp3 and increased wake-time expression of
Bnip3 are simultaneously observed with progression to heart
failure. (Tsimakouridze et al., 2012). Further optimization
for clinical translation in heart disease would of course need
to be considered, such as blood sampling instead of tissue,
and the development of gene chips targeting specific dis-
ease profiles. Nevertheless, these early studies demonstrate
the novelty and feasibility of such an approach, for genomic
chronobiomarkers with application to clinical molecular
diagnostics.

Proteomic Chronobiomarkers
A second approach is to characterize the proteomic chrono-
biomarkers instead of the genetic markers. This is important
because it is the proteins, and not the mRNA, that underlie many
crucial biological processes in health and disease. In support of
this approach, we demonstrated that ∼8% of the murine car-
diac proteome exhibits significant changes in abundance over
the 24-h day and night cycle, by using 2-dimensional differ-
ence in gel electrophoresis and liquid chromatography mass
spectrometry (Podobed et al., 2012, 2014). Moreover, a role
for the circadian clock mechanism is indicated in regulating
time-of-day protein abundance, as differences in protein pro-
files are observed in the hearts of cardiomyocyte-specific clock
mutant mice (Podobed et al., 2014). This includes many rate
limiting enzymes important for key metabolic pathways in the
heart (Podobed et al., 2014). As a proof-of-concept for appli-
cation to heart disease, we demonstrated that protein chrono-
biomarkers have characteristic disease signatures in our murine
model of TAC-induced cardiac hypertrophy (Podobed et al.,
2012, 2014; Tsimakouridze et al., 2012). It is worth noting
that although our studies report day/night protein signatures
of heart disease, these studies rely on sampling directly from
the heart tissue. For routine biomarker testing a more min-
imally invasive technique would need to be developed, such

as detecting time-of-day protein biomarker signatures in the
blood. To demonstrate the feasibility of less invasive testing,
we showed time-of-day de novo chronobiomarkers in murine
blood plasma samples, using surface-enhanced laser desorp-
tion/ionization mass spectrometry (Martino et al., 2007). In terms
of translation, one interesting example illustrating the clinical
potential of time-of-day biomarkers in heart disease comes from
studies by Dominguez-Rodriguez et al. (2006), who show that
nighttime serum melatonin levels are predictive of a subse-
quent adverse cardiovascular event in patients with ST-segment
elevation MI. Thus taken together, these studies demonstrate
significant clinical potential for protein chronobiomarkers for
the diagnosis, prognosis, and personalized treatment of heart
disease.

Metabolomic Chronobiomarkers
The circadian clock regulates metabolism in the body (Turek
et al., 2005; Paschos et al., 2012) and in the heart (reviewed
in Young, 2006; Durgan and Young, 2010) and thus there is
significant opportunity to investigate the circadian metabolome
for chronobiomarkers of health and disease. For example, the
liver metabolome exhibits rhythmic oscillations and disrupt-
ing the circadian clock mechanism alters these profiles (Eckel-
Mahan et al., 2012). In another study in humans, it was
demonstrated that ∼15% of metabolites in plasma and saliva
samples are rhythmic and under circadian control (Dallmann
et al., 2012). One clinical application is in the measurement
of internal body time-of-day, which may be exploited to max-
imize efficacy and minimize toxicity of drugs therapies (e.g.,
for chronotherapy; Ueda et al., 2004). In this regard, the
Ueda group designed a molecular-timetable of the murine
blood metabolome, quantifying hundreds of clock controlled
metabolites, using a liquid chromatography mass spectrome-
try approach (Minami et al., 2009). This same group sub-
sequently applied their molecular metabolite timetable con-
cept to successfully estimate internal body time in humans
(Kasukawa et al., 2012). The CircadiOmics website provides
a consolidated model that integrates these metabolomic data
with genomics and proteomics, to better understand time-of-
day coordination of physiology/pathophysiology (Patel et al.,
2012). Indeed, taken together these data reveal the conve-
nience and feasibility of adopting time-of-day testing for clin-
ical use. It is tempting to speculate that additional “-omics”
approaches, such as lipidomics or breathomics, could also be
developed in the future as valuable clinical tools for personalized
medicine.

New Frontiers for Chronobiology
Drugs

Recently, there has been a new focus on the creation of phar-
macological compounds designed to target the REV-ERB and
ROR nuclear receptors in the circadian mechanism, with clin-
ical applications (reviewed in Kojetin and Burris, 2014). For
example, administering REV-ERB agonists to mice alters their
circadian behavior and hypothalamic gene expression, leading to
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the notion that these drugs may be useful in the treatment of
metabolic disorders (Solt et al., 2012). Since REV-ERB also plays
a key role in regulating mitochondrial content and the oxidative
capacity of skeletal muscle, it is postulated that pharmacologic
activation of REV-ERB may also be used to treat skeletal mus-
cle diseases (Woldt et al., 2013). Moreover, it was recently shown
that REV-ERB agonists can regulate sleep architecture and emo-
tion in mice, and thus they may be useful in the treatment of
sleep disorders and anxiety (Banerjee et al., 2014). There are new
pharmacological agents that modulate other components of the
circadian clock mechanism as well (e.g., reviewed in Chen et al.,
2013); some of these hold considerable promise for offsetting the
adverse effects of shift work (e.g., Walton et al., 2009; Meng et al.,
2010; Pilorz et al., 2014). Most recently it was demonstrated that
human peripheral blood mononuclear cell clocks are entrained
by glucocorticoids, and that pharmacologic treatment directed at
these peripheral targets could also help counteract the deleteri-
ous effects of shift work (Cuesta et al., 2014). Although the new
chronobiology drugs have not yet been examined in heart disease,
it is tempting to speculate that they may be useful, especially in
light of their influences on muscle metabolism, on sleep, and on
circadian phase, that they may benefit cardiovascular physiology
and pathophysiology.

Conclusions and future directions

In terms of future directions in basic science, use of murine
transgenic models and pharmacologic approaches will undoubt-
edly provide new pre-clinical insights into how targeting the
circadian mechanism can contribute to the diagnosis and man-
agement of heart disease. In terms of clinical chronotherapy,
the US public clinical trials database (ClinicalTrials.gov., 2015)
already lists seven studies when the search term “cardiovascu-
lar chronotherapy” is used, and 18 studies for “chronotherapy”
in general, attesting to the clinical promise that chronothera-
peutic treatments may hold. There are also significant oppor-
tunities to discover de novo chronobiomarker tests, for prod-
uct development by biotechnology sectors, and for establishing
routine applications in chronobiology, and sleep clinics. Thus
therapeutic consideration of circadian rhythms for the cardio-
vascular system is an exciting new area with significant clinical
potential.
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