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Chronic pain patients receiving opioid drugs are at risk for opioid-induced hyperalgesia

(OIH), wherein opioid pain medication leads to a paradoxical pain state. OIH involves

central sensitization of primary and secondary afferent neurons in the dorsal horn and

dorsal root ganglion, similar to neuropathic pain. Gabapentin, a gamma-aminobutyric

acid (GABA) analog anticonvulsant used to treat neuropathic pain, has been shown in

animal models to reduce fentanyl hyperalgesia without compromising analgesic effect.

Chronic pain patients have also exhibited lower opioid consumption and improved pain

response when given gabapentin. However, few human studies investigating gabapentin

use in OIH have been performed in recent years. In this review, we discuss the potential

mechanisms that underlie OIH and provide a critical overview of interventional therapeutic

strategies, especially the clinically-successful drug gabapentin, which may reduce OIH.
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Introduction

Effective attenuation of pain is of the utmost importance in patient care. Opioid medications are
commonly used in perioperative pain management in addition to providing relief for back (Chu
et al., 2006) and burn patients (Holtman and Jellish, 2012). Paradoxically, increased use of these
medications has revealed side effects including opioid dependence, tolerance, and opioid-induced
hyperalgesia (OIH). OIH is characterized by a paradoxical state of heightened pain sensation in
which both pain threshold and pain tolerance decrease (Kim et al., 2014). Moreover, this effect is
seen not only in the chronic user but also surgical populations receiving opioids intraoperatively
(Ballantyne, 2006; Akbari, 2012; Lee et al., 2013a,b).

OIH is similar to opioid tolerance in that opioid drugs exhibit diminished efficacy with
time, such that increasing dosage is required to provide a consistent level of analgesic effect
(Chu et al., 2006; Akbari, 2012). However, OIH differs from opioid tolerance in that dose
increases are accompanied by an increase in pain sensitivity and higher pain scores (Ballantyne,
2006; Compton et al., 2010; Akbari, 2012). OIH is also accompanied by allodynia, pain
caused by a stimulus that does not normally provoke pain (Fishbain et al., 2009; Motoc
et al., 2011; Bravo-Hernández et al., 2012). It is thought that the analgesic and hyperalgesic
effects of opioids exist at the same time, but the analgesic effects normally predominate,
masking the hyperalgesia that is present (Ballantyne, 2006). While the precise mechanism
of OIH is still being researched, the interplay between n-methyl-D-aspartate (NMDA) and
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µ glutaminergic receptors is a particularly probable mechanism,
substantiated by these receptors’ proximity to one another on
primary afferent glutamate neurons within the mesencephalic
periaqueductal gray region—a major pain pathway (Rodríguez-
Muñoz et al., 2012).

Human studies have revealed that several commonly used
opioid drugs including fentanyl, remifentanil, and morphine
have the ability to induce OIH (Lenz et al., 2011; Motoc et al.,
2011; Bravo-Hernández et al., 2012; Raffa and Pergolizzi, 2013).
Remifentanil induces hyperalgesia and opioid tolerance in a
dose-dependent manner (Richebé et al., 2011). An infusion of
remifentanil (0.1µg/kg/min) induced acute opioid tolerance in
rat models subjected to the cold pressor (CP) test, where a rate of
0.08µg/kg/min prevented tolerance from developing (Kim et al.,
2014). Human patients receiving higher intraoperative doses of
remifentanil (0.3 ± 0.2 and 0.4µg/kg/min) exhibited decreased
time until rescue opioids were required as well as increased
opioid use within the 24–48-h postoperative period (Joly et al.,
2005; Kim et al., 2014). In particular, the study saw higher
visual analog scale scores in the remifentanil group as compared
to the placebo group; however this difference was no longer
significant 2–24 h after surgery. NMDA-antagonists, α2-agonists,
non-steroidal anti-inflammatory drugs, and GABA analogs,
along with opioid rotation have previously been shown to lessen
OIH (Koppert and Schmelz, 2007; Vorobeychik et al., 2008;
Akbari, 2012; Holtman and Jellish, 2012; Pasero and McCaffery,
2012). In this review, we focus on gabapentin as a method for
treatment of remifentanil and fentanyl induced-hyperalgesia.

Suggested Mechanisms of Opioid Induced
Hyperalgesia

Central pain sensitization, NMDA receptor activity, and spinal
dynorphin release have all been implicated as the source of
OIH (Daeninck and Bruera, 1999; Gardell et al., 2002; Koppert
and Schmelz, 2007; Gupta et al., 2011). OIH is comparable to
neuropathic pain in both its neuro-inflammatory qualities and
central sensitization processes. In neuropathic pain and OIH
alike, there is ascending central hyperexcitability and diminished
descending supraspinal inhibition, causing increased sensitivity
to nociceptive inputs (Compton et al., 2010).

NMDA and µ-Opioid Receptor Interactions
NMDA receptor activity has quickly gathered attention as one
of the mechanisms involved in the propagation of hyperalgesia.
As µ-opioid receptors are bound, nitric oxide (NO)-mediated
NMDAR potentiation leads via Src-regulated recruitment of
PKC and Gα subunits, to an increase in NMDA Ca2+ channels
(Garzon et al., 2008; Rodríguez-Muñoz et al., 2012). This
NMDAR increase leads in turn to an upregulation of the NO
synthase cascade and negative functional regulation of morphine
algesia, as well as to protein kinase C-mediated phosphorylation
of opioid receptors (Koppert and Schmelz, 2007; da Cunha
Leal et al., 2010; Rodríguez-Muñoz et al., 2012). Increased
NMDAR activation may also downregulate glutamate reuptake
mechanisms, leading to central sensitization (Vorobeychik et al.,
2008; da Cunha Leal et al., 2010; Lenz et al., 2011; Tompkins and

Campbell, 2011; Wilson et al., 2011; Holtman and Jellish, 2012;
Juba et al., 2013).

Patients receiving NMDA receptor antagonists including
ketamine (da Cunha Leal et al., 2010) and MgSO4 alongside
opioids have exhibited recovery of opioid analgesic effect, further
substantiating these proposed mechanisms (Figure 1) (Daeninck
and Bruera, 1999; Gupta et al., 2011; Colvin and Fallon, 2010;
Pasero and McCaffery, 2012; Lee et al., 2013a).

However, other classical studies have shown nitric oxide to
inhibit rather than potentiate NMDARs in cortical neurons.
The proposed mechanism for this NO inhibition involves
reaction with the GluN2A subunit C399 and two cysteine
groups (Takahashi et al., 2007). These seemingly disparate
results are partially explained in studies of the frequency at
which presynaptic neurons are stimulated. Frequent neuronal
stimulation leads to potentiation of the NMDA receptors while
a lesser frequency leads to opposing inhibition and nitrosation
of NMDA receptors. Such a hypothesis demonstrates both
the complexity and sensitivity of NMDAR-µ-opioid receptor
interactions within the opioid user (Garthwaite and Boulton,
1995).

Spinal Dynorphin Release
Opioid-associated pain may also result from neuroplastic
changes in the rostral ventromedial medulla (RVM). A study
by Gardell et al. performed a microinjection of lidocaine into
the RVM or bilateral lesion of the dorsolateral funiculus.
The injection abolished tactile and thermal hypersensitivity,
indicating the RVM modulates nociceptive input. The same
study correlated chronic morphine exposure with upregulation
of immune reactivity for calcintonin gene-related peptides and
spinal dynorphin (Gardell et al., 2002). The role of spinal
dynorphin in attenuating pain is not yet clear, however, a recent
study correlates activation of spinal bradykinin receptors by
elevated spinal dynorphin with maintenance of inflammatory
hyperalgesia (Bannister et al., 2014).

Proposed Gabapentin Mitigating
Mechanisms

Gabapentin, a GABA analog commonly used as an
anticonvulsant, has also been used in the treatment of
neuropathic pain caused by diabetes, chronic illness, and a
wide variety of surgeries, to great effect. When given prior to
and after surgery, gabapentin has been shown to significantly
decrease postoperative pain scores. Gabapentin has also proven
effective against postoperative nausea and vomiting within the
first 24 h when given alongside dexamethasone, and significantly
reduced the rate of postoperative sore throat in another study.
Perioperative use of gabapentin was also correlated with a
reduction in opioid consumption and the associated side effects
while contributing few side effects of its own, namely nausea
and dizziness. The side effects of gabapentin were seen most
commonly in the chronic user, and were of concern mainly for
elderly populations where such side effects might increase the
risk of falling. Gabapentin’s side effects were not increased in
opioid-abusing patients on concurrent methadone use and at
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FIGURE 1 | Opioids bind to µ-opioid receptors triggering nitric

oxide-mediated potentiation of N-methyl-D-aspartate receptors

(NMDAR) and lead, via SRC-regulated recruitment of PKC and Gα

subunits, to an increase in NMDA Ca2+ channels. This enhanced

NMDAR activity leads in turn to an upregulation of the nitric oxide synthase

cascade-a negative functional regulator of morphine algesia, as well as to

protein kinase C-mediated phosphorylation of opioid receptors and

downregulation of glutamate reuptake mechanisms. Together, these changes

bring about central sensitization to pain and an increased need for opioid

medications, sustaining the cycle. Patients receiving NMDAR antagonists

such as ketamine and MgSO4 alongside opioids exhibited recovery of opioid

analgesic effect.

risk for OIH (Compton et al., 2010; Chang et al., 2014). Such a
drug which effectively and more safely attenuates nociceptive
pain is of great interest to those searching for an effective method
for treating and reducing OIH.

Although it is a GABA analog, gabapentin does not bind
to GABAA or GABAB receptors, block GABA uptake or
metabolism, or have any direct action on the GABAnergic system
(Chang et al., 2014). While several studies have demonstrated
the efficacy of gabapentin in reducing postoperative hyperalgesia
and allodynia, the exact mechanism by which it alleviates pain
is poorly understood. Suggested pharmacologic mechanisms
involve its effect on two pathways: α-2δ Ca2+ channels, and the
interleukin-10-Heme Oxygenase-1 signaling pathway, both of

which play distinct roles in the processing of pain (Zoidis et al.,
2005; Chang et al., 2014; Bao et al., 2014; Suto et al., 2014)1.

Voltage Gated Calcium Channels
Central sensitization resulting from increased activity of
afferent nociceptive neurons has been shown to be a key
contributing factor in heightened pain sensitivity. Gabapentin
reduces central sensitization through attenuating lesion-induced
hyperexcitability of posterior horn neurons. The drug binds
postsynaptically to α-2δ subunits of dorsal horn neurons’ voltage-
gated calcium channels (VGCCs) which are upregulated in

1 http://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/075350_ORIGINAL%

20APPROVAL_PACKAGE.pdf
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neuropathic pain states (Chang et al., 2014; Li et al., 2014). Once
bound, gabapentin inhibits the post-Golgi forward trafficking
of the subunit to the surface of the cell, thus reducing VGCC
expression (Zoidis et al., 2005). However, the magnitude of this
reduction varies by subject, with one study reporting as few as
32% of patients seeing successful pain relief. Such variance in
VGCC reduction suggests a possible reason for gabapentin’s low
overall efficacy as well as its success in attenuating nociceptive
pain in certain patients (Li et al., 2014).

In successful cases, the downregulated VGCC activity and
reduced excitatory glutamate release led to decreased activity of
the 4-isoxazolepropionic acid (AMPA) receptor and decreased
norepinephrine release within the brain (Chang et al., 2014).
AMPA receptors facilitate synaptic transmission in the central
nervous system and the locus coeruleus (LC). In the study
conducted by Suto et al. this action on AMPA receptors was
explored further using a mouse model after peripheral nerve
injury. The researchers were particularly interested in the effect
of gabapentin on the LC, suspecting the importance of the
LC in activating descending inhibition. Specifically, the study
found that neurons providing descending inhibition within
this area were excited by gabapentin’s action on astrocytes
which increased glutamate tone within the LC. This increase
in glutamate was induced via glutamate transporter-1 (GLT-
1)-dependent mechanisms. Activation of the LC neurons was
blocked when AMPA glutamate receptor antagonists were locally
applied, confirming the importance of the AMPA receptor. This
increase in glutamate was not seen within the spinal cord (Bao
et al., 2014). Also of note, gabapentin was found to decrease
GABA within the LC, a major site of descending pain inhibition,
rather than the spinal dorsal horn (Pertovaara, 2006; Yoshizumi
et al., 2012).

Several derivatives of gabapentin, including those with
greater affinity for the α-2δ Ca2+ channels, have been used
experimentally to support this method of action for the
attenuation of neuropathic pain by gabapentin. N-type (Cav2.2)
VGCCs are of particular interest due to their role in transducing
electrical activity into other cellular functions (Zoidis et al.,
2005). An experiment involving the novel gabapentin derivative
GABA adamantane (AdGABA) demonstrated AdGABA’s efficacy
in antagonizing pentylenetetrazole- and semicarbazide-induced
tonic convulsions in addition to exhibiting analgesic activity in
mice. As with gabapentin, AdGABA acts on the α-2δ subunit
of voltage gated calcium channels, but with three-fold increased
strength and affinity (Suto et al., 2014) AdGABA’s increased
affinity for this receptor and its downstream effects demonstrate
the importance of the α-2δ subunit in pain processing and central
sensitization.

A second derivative of gabapentin, 2-(aminomethyl)
adamantane-1-carboxylic acid (GZ4), had similar effects on
N-type Cav2.2 channel currents, only in the presence of the α-2δ
subunit (Zoidis et al., 2005; Suto et al., 2014). Administration
of AdGABA and GZ4 resulted in the inhibition of excitatory
neurotransmitters such as glutamate and reduced the presence
of hyperalgesia and allodynia (Zoidis et al., 2005). These
experiments demonstrate the importance of gabapentin’s
interactions with the α-2δ subunit of VGCCs in reducing

hyperalgesia, however, this is not the only mechanism through
which the drug exhibits its analgesic effect.

Interleukin-10 and Heme Oxygenase-1 Pathway
Recent studies have shown that the analgesic qualities of
gabapentin may not be limited to the interaction at voltage
gated calcium channels, but may also include interactions with
the interleukin (IL)-10-heme oxygenase-1 (HO-1) signaling
pathway. IL-10 is a key immunoregulatory cytokine with anti-
inflammatory properties. The cytokine assists in regulating
inflammation by suppressing the expression of pro-inflammatory
cytokines, chemokines, and adhesion molecules, in addition to
regulating antigen-presenting and co-stimulatory molecules in
monocytes/macrophages, neutrophils, and T-cells. IL-10 induces
heme oxygenase-1 in macrophages through an activated protein
kinase cascade (Zoidis et al., 2014). The action of the heme
oxygenase system is to induce the heme catabolic pathway.
The heme catabolic pathway comprises of HO and biliverdin
reductase, and generates products of heme degradation including
carbon monoxide, iron, and biliverdin/bilirubin. The HO system
plays an important role in controlling tissue homeostasis
during inflammation by inhibiting pro-inflammatory cytokine
synthesis and prompting anti-apoptotic processes (Asadullah
et al., 2003; Zoidis et al., 2014). Several studies have shown
the importance of the HO system in the attenuation of
neuropathic pain. In a mouse model of sciatic nerve injury,
carbon monoxide (CO)-releasing molecules and HO-inducing
treatments have been shown to increase the anti-nociceptive
effect of µ-opioids such as morphine in addition to inhibiting
spinal microglial activation. CO-releasing and HO-inducing
molecules were utilized due to their demonstrated ability to
activate the cyclic guanosine monophosphate-PKG pathway,
which is responsible for morphine’s local antinociceptive effects
(Abraham and Kappas, 2008). Gabapentin has been shown to
positively influence interactions between both the IL-10 and
HO-1 pathways (Compton et al., 2010; See Footnote 1).

Gabapentin used in conjunction with morphine has been
shown to enhance the anti-nociceptive effect of IL-10 and
HO-1 signal transduction pathway through inhibition of
spinal inflammation in a preclinical neuropathic pain model.
Significantly increased IL-10 levels were present with the co-
administration of gabapentin and morphine as compared to
morphine alone, supporting the role of gabapentin in this
pathway. Furthermore, the use of anti-IL-10 antibody or zinc
protoporphyrin, an HO-1 inhibitor, partially blocked the effect
of gabapentin on morphine. These results implicate neuro-
inflammation as a common mechanism in both neuropathy-
induced and opioid-induced glial activation (See Footnote 1).

Case Reports of Gabapentin Efficacy

Although the mechanisms of gabapentin as well as opioid–
induced hyperalgesia are not completely understood, the efficacy
of gabapentin in attenuating OIH has been documented in
several case studies. Compton et al. evaluated OIH and
the effects of gabapentin in relieving experimental pain in
methadone maintained patients. A 2400mg PO dose was
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administered daily over a 1-week period, and pain was
evaluated using a standardized CP test. The experimental
group showed statistically significant improvements in pain
threshold and tolerance compared to the control group at
peak as well as trough methadone levels. The study concluded
that when used in clinically tolerated doses, gabapentin
significantly improved CP pain responses in methadone-
maintained patients (Compton et al., 2010). This experiment
provided evidence supporting the use of gabapentin in
treating OIH.

Another study by Cuignet et al. evaluated gabapentin’s ability
to reduce OIH in burn patients receiving opioids. Patients were
treated with 800mg of gabapentin three times per day for 21
days. Pain levels were evaluated using a visual analog scale. In
the earlier stages of the study, both experimental and control
groups had similar pain scores. However, during the rest of the
treatment phase, the pain scores became significantly smaller in
the gabapentin group as did the required opioid dosage (Hervera
et al., 2012). A reduction in opioid dosage with the use of
gabapentin would also mean a reduced risk of developing OIH
and allodynia.

Hauer et al. evaluated the effect of gabapentin in two
separate cases of infants suffering from neurological impairment
resulting from an injury to the central nervous system
accompanied and possibly sustained by significant pain. These
case reports identified pain sources as nociceptive, peripheral
neuropathic, central neuropathic, and visceral hyperalgesic in
nature. Significant improvement in apnea following empiric
treatment with gabapentin was observed. In both cases, the

initial gabapentin dose was 2.5mg/kg with titration occurring
every 4–7 days with the option to titrate more rapidly once
dosage tolerance was confirmed (Cuignet et al., 2007). The
reports proved gabapentin’s role in the treatment and attenuation
of hyperalgesia under altered neurologic states and amongst
different age groups.

Conclusion

OIH will remain an important issue so long as chronic opioid
usage remains prevalent in pain control. As such, clinicians
should exercise caution in prescribing opioids, and may consider
prescribing alternative therapies for pain relief if available. As
discussed in prior studies, the use of adjunctive therapies such
as gabapentin may be applicable if OIH is suspected. Gabapentin
strongly binds to the α-2δ subunit of dorsal horn VGCCs,
downregulating their activity and diminishing the propagation
of pain signals along afferent neurons. Gabapentin also leads to
increased IL-10 and HO-1 pathway activation, promoting anti-
inflammatory activity at sites of spinal neuron insult. At this
time, the efficacy of gabapentin in mitigating OIH has been
demonstrated in animal models and some human case studies.
However, few large scale standardized patient studies have
been performed to corroborate these findings. We propose the
design and implementation of standardized studies investigating
gabapentin use in pain patients receiving opioid medications
to further elucidate mechanisms underlying OIH as well as to

establish a statistical basis for gabapentin use as an adjuvant
therapy.
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