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Reversible phosphorylation of amino acid side chains in proteins is a frequently used
mechanism in cellular signal transduction and alterations of such phosphorylation
patterns are very common in cardiovascular diseases. They reflect changes in the
activities of the protein kinases and phosphatases involving signaling pathways.
Phosphorylation of serine, threonine, and tyrosine residues has been extensively
investigated in vertebrates, whereas reversible histidine phosphorylation, a well-known
regulatory signal in lower organisms, has been largely neglected as it has been generally
assumed that histidine phosphorylation is of minor importance in vertebrates. More
recently, it has become evident that the nucleoside diphosphate kinase isoform B
(NDPK-B), an ubiquitously expressed enzyme involved in nucleotide metabolism, and a
highly specific phosphohistidine phosphatase (PHP) form a regulatory histidine protein
kinase/phosphatase system in mammals. At least three well defined substrates of
NDPK-B are known: The β-subunit of heterotrimeric G-proteins (Gβ), the intermediate
conductance potassium channel SK4 and the Ca2+ conducting TRP channel family
member, TRPV5. In each of these proteins the phosphorylation of a specific histidine
residue regulates cellular signal transduction or channel activity. This article will therefore
summarize our current knowledge on protein histidine phosphorylation and highlight its
relevance for cardiovascular physiology and pathophysiology.

Keywords: protein histidine phosphorylation, nucleoside diphosphate kinase B, phosphohistidine phosphatase,
heterotrimeric G-proteins, caveolae, SK4 channel, heart failure, atherosclerosis

Histidine Phosphorylation—Histidine Kinases and
Phosphohistidine Phosphatases, a General Perspective

Phosphorylation is a most ubiquitous post-translational modification that plays an essential
role in the regulation of cellular function is. In higher eukaryotes the most common forms of
phosphorylation of proteins involve serine/threonine or tyrosine protein kinases and counteracting
phosphatases. Both types of enzymes can be regulated by cellular signaling events.

In prokaryotes, but also in fungi and plants, phosphorylation of proteins on histidine residues
is very common. The most widespread occurrence of histidine phosphorylation is in the two-
component histidine kinase system. The histidine kinase is a membrane-bound sensor that on
perceiving an extracellular signal undergoes autophosphorylation on a histidine residue. In the
simplest two-component histidine kinase systems, this phosphoryl group is then transferred directly
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FIGURE 1 | Structures of the three forms of phosphohistidine: (A) 1-phosphohistidine; (B) 3-phosphohistidine; (C) 1,3-diphosphohistidine.

to an aspartate residue in a response regulator protein that
catalyzes the reaction. The response regulator is often a
transcription factor that is activated on phosphorylation to
enhance expression of genes that provide the cellular response to
the external stimulus (Attwood, 2013).

Phosphohistidine has a number of attributes that make it
different from the phosphoester phosphoamino acids. The
phosphoryl group is bonded to the imidazole ring of the
amino acid via a phosphoramidate bond. Since the imidazole ring
contains two nitrogens, there are three forms of phosphohistidine,
1- or 3-phosphohistidine or 1,3-diphosphohistidine (see
Figure 1). The two forms of monophosphohistidine are both
known to occur in cellular proteins (Walinder, 1969b; Chen
et al., 1977; Fujitaki et al., 1981), however the diphospho form
has only been reported in chemically phosphorylated proteins.
Unlike the phosphoester phosphoamino acids, all forms of
phosphohistidine are unstable in acidic conditions, which has
made the discovery and analysis of this type of phosphorylation
technically challenging and the identification of novel proteins
carrying a stable phosphohistidine are rare events (Lott et al.,
2006). Nevertheless, by the use of special settings in tandem mass
spectrometry (Kleinnijenhuis et al., 2007) and the description of
anti-phosphohistidine antibodies (Kee and Muir, 2012; Kee et al.,
2013), the detection of more proteins specifically phosphorylated
on histidine residues appears more likely in the future.

In prokaryotes it is now recognized that that both
serine/threonine and tyrosine kinases, as well as their cognate
phosphatases also occur (for reviews, see Bakal and Davies,
2000; Pereira et al., 2011; Chao et al., 2014). Although no strong
evidence for the existence of two-component histidine kinase
systems in higher eukaryotes has been presented sequence
databases indicate the existence of proteins in higher eukaryotes
that are analogous to parts of these systems (Attwood, 2013).

It has been known for more than 50 years that protein
histidine phosphorylation does occur in mammalian cells (Boyer
et al., 1962; Deluca et al., 1963; Peter and Boyer, 1963). Such
phosphorylation was reported in a variety of tissues: liver (Smith

et al., 1973; Hegde and Das, 1987; Motojima and Goto, 1994;
Noiman and Shaul, 1995); brain, lung and kidney (Noiman and
Shaul, 1995); platelets (Crovello et al., 1995); trachea epithelium
(Muimo et al., 2000); muscle (Rose et al., 1975). Many of
these proteins are enzymes that autophosphorylate an active site
histidine residue to form a kinetically competent phosphoenzyme
intermediate that subsequently transfers the phosphoryl group
to a substrate, e.g., phosphoglycerate mutase (Rose et al., 1975),
pyruvate phosphate dikinase (Spronk et al., 1976), and nucleoside
diphosphate kinase (NDPK; Walinder, 1969a). Thus many of the
proteins that contain phosphohistidine are of this type and are not
substrates of separate protein histidine kinases.

If histidine phosphorylation is an important post-translational
modification inmammalian cell signaling, onewould expect there
to be phosphohistidine phosphatases. Matthews showed that
some of the phosphoserine/phosphothreonine phosphatases, PP1,
PP2A, and PP2C (Kim et al., 1993) are also phosphohistidine
phosphatases, which utilize phosphohistidine-containing
histone H4 at least as well as their phosphoserine-containing
phosphoprotein substrates. These phosphatases are widely
expressed in plant tissue, as well as mammalian tissue (Wong
et al., 1993; Matthews and MacKintosh, 1995). More recently,
a specific mammalian phosphohistidine phosphatase (PHP)
has been discovered (Ek et al., 2002; Klumpp et al., 2002) and
crystallized (Busam et al., 2006). This enzyme occurs in many
mammalian tissues (Klumpp et al., 2002; Zhang et al., 2009). It is
most highly expressed in mouse brain and in human epidermal
cells, but also highly expressed in mouse and human heart and
skeletal muscle (Zhang et al., 2009). It dephosphorylates of all
forms of phosphohistidine (Attwood et al., 2010).

Although repeatedly described as enzymatic activity (Smith
et al., 1973, 1974; Chen et al., 1974, 1977; Wei and Matthews,
1991; Besant and Attwood, 2000; Tan et al., 2004) mammalian
histidine kinases remained largely unidentified and are only
partially characterized so far.

One of the first phosphoproteins to be identified that contained
phosphohistidine was NDPK (Walinder, 1969a; Walinder et al.,
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FIGURE 2 | Molecular targets of NDPK-B and PHP and their
proposed functions in physiology and pathophysiology. Three
proteins, the cation channels SK4 and TRPV5 as well as the β-subunit of
heterotrimeric G-proteins are substrates for NDPK-B-mediated
phosphorylation on defined histidine residues (His). All three
phosphohistidines are also substrates to dephosphorylation by PHP.
Whereas the phosphorylation of classically regulates the open-probability
of the channels, the phosphorylated G-protein β-subunit takes part in a

phosphorelay activating heterotrimeric G-proteins. Apparently, by a
complex formation with NDPK-C and caveolins (Cav), NDPK-B
additionally contributes to caveolae formation and the composition of
signaling complexes, e.g., G-protein-coupled receptor (GPCR) containing
complexes, at the plasma membrane. Whereas the channels’ activities
are linked to the indicated physiological and pathophysiological events,
evidence for a contribution of the phosphorelay to the regulation of
cardiac cAMP formation and thus contractility has been provided.

1969). Walinder et al. (1969) showed that the phosphohistidine
in NDPK was an intermediate in the phosphoryl transfer reaction
between NTP and NDP catalyzed by the enzyme. More recently,
it was discovered that NDPK can also act as a protein histidine
kinase. NDPK-A was shown to phosphorylate a histidine residue
in ATP-citrate-lyase (Wagner and Vu, 1995) whilst NDPK-
B phosphorylates histidine residues in the β-subunit (Gβ) of
heterotrimeric G-protein βγ-dimers (Gβγ; Cuello et al., 2003),
the intermediate-conductance potassium-channel SK4 (encoded
by the KCNN4 gene; Srivastava et al., 2006) and the Ca2+-
conducting channel, TRPV5 (Cai et al., 2014) (Figure 2). As
such, NDPKs are the best characterized mammalian histidine
kinases, although little is known about the details of how they
recognize their substrate proteins and catalyze the phosphoryl
transfer reaction. Two of the protein substrates of NDPK-B, Gβ

and SK4, play important roles in cardiovascular function and
disease.

Regulation of Cardiac Contractility by
NDPK-B/βγ Complex Formation

The notion that the interaction of NDPK-B with Gβγ-dimers
and the histidine phosphorylation of Gβ is involved in cAMP
formation in cardiac myocytes and thus the regulation of

cardiac contractility became already evident in the first reports
describing this interaction. Stable cell clones of immortalized
neonatal rat cardiac myocyte-derived H10 cells overexpressing
NDPK-B showed an enhanced Gαs-dependent activation
of adenylyl cyclase (AC), which was however not seen in
cells overexpressing the histidine kinase deficient NDPK
mutant NDPK-B-H118N (H118) or NDPK-A (Cuello et al.,
2003; Hippe et al., 2003). In membranes of these H10
cells, an increase in the content and activity of NDPK-B,
as well as the formation of NDPK-B/Gβγ-complexes, was
detected. This gain in functional NDPK-B/Gβγ-complexes
was paralleled by an increase in intermediately phosphorylated
Gβ-subunits.

Adenovirus-mediated overexpression of wild-type Gβγ-
dimers, but not that of Gβγ-dimers in which the phosphorylated
His266 of Gβ was mutated to leucine (GβH266Lγ), in the
NDPK-B-overexpressing H10 cells further increased Gβ

phosphorylation and Gαs-dependent cAMP formation
(Hippe et al., 2007). GβH266Lγ, like wild-type Gβγ, was
integrated into heterotrimeric G-proteins in neonatal and
adult rat cardiomyocytes. However, compared to wild-type
Gβγ, overexpression of GβH266Lγ suppressed basal cAMP
formation, the cAMP-dependent Ser16-phosphorylation of
phospholamban and contractility. A similar decrease in basal
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cAMP production occurred when the formation of NDPK-
B/Gβγ-complexes was inhibited by siRNA-mediated NDPK-B
knockdown (Hippe et al., 2007). Interestingly, in contrast
to intermediately phosphorylated NDPK-B on His118, Gβ

phosphorylated on His266 is a substrate for PHP and thus might
be regulated also by this enzyme (Mäurer et al., 2005). Based on
these data it was concluded that NDPK-B/Gβγ-complexes allow
for the receptor-independent activation of G-proteins by using
ATP as energy source to locally form GTP from GDP with an
intermediate phosphorylation of G protein subunits at His266
(Hippe et al., 2007).

The importance of the NDPK-B/Gβγ-complex formation for
cardiac contractility in zebrafish embryos has been verified by
morpholino-mediated knockdown. Depletion of NDPK-B or Gβ

resulted in a decrease in cardiac contractility which was associated
with a reduction in the expression of the other complex partner.
Moreover, the protein levels of the AC-regulating Gαs- and Gαi-
subunits as well as the caveolae scaffold proteins caveolin-1
and -3 were reduced (Hippe et al., 2009). These changes were
accompanied by reduced cAMP levels in the heart. Interestingly,
a similar reduction of G-proteins, caveolin-1 and cAMP content
was evident in embryonic fibroblasts from NDPK-A/-B double-
knockout-mice. Re-expression of human NDPK-B, but not of
NDPK-A, rescued this phenotype (Hippe et al., 2009). As a loss
of the Gs-protein at the plasma membrane should not only affect
basal but also β -adrenoceptor (βAR)-induced cAMP synthesis
and cardiac contractility, the requirement of NDPK-B for basal
and βAR-stimulated cAMP synthesis was further analyzed by
comparing wild-type NDPK-B and its catalytically inactive H118
mutant in several cellular models, including rat cardiomyocytes.
Both, re-expression of human wild-type and H118 induced the
re-appearance of Gs and caveolin-1 at the plasma membrane
and thus enhanced the βAR-induced cAMP formation of NDPK-
B—depleted cells to a similar extent. In contrast, the catalytically
inactive H118 was less potent and less effective in rescuing basal
cAMP production (Hippe et al., 2011a). NDPK-B thus apparently
regulates Gs function by two different mechanisms. The NDPK-
B-dependent phosphorelay reaction specifically allows for a
receptor-independent, basal Gαs activation and cAMP synthesis
(Cuello et al., 2003; Hippe et al., 2003, 2007). The complex
formation of NDPK-B with heterotrimeric Gs is additionally
required for the stabilization of the Gs-protein content at
the plasma membrane and thus contributes to β AR-induced
cAMP formation by regulating the amount of the pivotal
transducer Gs.

Regulation of Caveolae Formation by
NDPK-B

Caveolae are flask-shaped invaginations in the plasma membrane
which are highly enriched by scaffold proteins of the caveolin
and cavin families. They take part in compartmentalization and
organization of signal transduction processes. In cardiomyocytes,
βARs, heterotrimeric G-proteins and AC isoforms reside in
caveolae (Insel et al., 2005; Insel and Patel, 2009). As the depletion
of NDPK-B was associated with a loss of the expression of the
caveolin isoforms-1 and -3 as well as heterotrimeric G-proteins in

zebrafish embryos (Hippe et al., 2009), an interaction of NDPK-
B with caveolins and thus, involvement in caveolae formation
appeared likely. Similarly, in embryonic fibroblasts from the
respective knockout-mice, the membrane content of caveolin-1
and NDPK-B was found to be mutually dependent on one
another and a co-immunoprecipitation of caveolin-1 and NDPK-
B corroborated the direct association of the two proteins (Hippe
et al., 2011b). Ultrastructural analysis revealed a reduction of
surface caveolae in NDPK-B-deficient cells which was associated
with a decrease in the plasma membrane bound caveolin-1.
In accordance with this mutual dependence between NDPK-
B and caveolin, a decrease in the plasma membrane content
of NDPK-B was observed in caveolin-1-deficient cells (Hippe
et al., 2011b). As these alterations could be rescued by re-
expression of either NDPK-B or caveolin-1 the data indicate
a disturbed transport of caveolin-1- and NDPK-B-containing
protein complexes from intracellular membrane compartments
to the plasma membrane if one of the components is missing.
Indeed, NDPK-B has been identified as part of the coat-protein-
complex-II (COPII) required for vesicle transport from the
endoplasmic reticulum to the Golgi apparatus (Kapetanovich
et al., 2005). NDPK-B promoted the assembly of both the
Sec23/24p and Sec13/31p constituents of the mammalian COPII
machinery and thereby likely facilitated COPII assembly in
living cells. Therefore, the authors suggested that NDPK-B is
part of a scaffold-protein-complex along which ER exit sites are
organized.

Caveolin-1 is also critical to other signaling cascades, e.g.,
the activation of the vascular endothelial growth factor (VEGF)-
VEGF receptor type 2 (VEGFR-2)-cascade in endothelial cells
(Sonveaux et al., 2004; Chidlow et al., 2009). Therefore, a
recent report demonstrating that NDPK-B is required for VEGF-
induced angiogenesis and contributes to the correct localization of
VEGFR-2 and VE-cadherin at the endothelial adherens junctions
(Feng et al., 2014) is interesting with regard to the importance
of the NDPK-B/caveolin-1 interaction. Depletion of NDPK-B in
zebrafish embryos and in cultured human endothelial cells caused
malformations specifically in vessels formed by angiogenesis
and impaired VEGF-induced sprouting. In accordance, NDPK-
B deficient mice displayed reduced angiogenic reponses in two
models of pathological vessel remodeling. Indeed, a recent
abstract (Gross et al., 2015) reports that NDPK-B depletion
in cultured human endothelial cells strongly reduced caveolin-
1 and caveolae content at the plasma membrane and thereby
impaired the VEGF-induced opening of adherence junctions.
Taken together, the data indicate that NDPK-B might be required
in for the functionality of many processes requiring a localization
of protein complexes in caveolae and is therefore of importance
for cardiovascular diseases.

Alteration of Subcellular NDPK
Localization and Function in Heart Failure

Heart failure (HF) induces complex remodeling processes
in cardiomyocytes and changes in G-protein-signaling are a
hallmark in this remodeling process. Chronic sympathetic
stimulation results in a desensitization of βARs including reduced
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expression of β1ARs and up-regulation of inhibitory G-protein-
coupled receptor-kinases (GRKs; Brinks and Koch, 2010; Santulli
and Iaccarino, 2013). Concomitantly, the expression and activity
of the inhibitory Gi-proteins is increased by about 30% in end-
stage HF (Post et al., 1999; El-Armouche et al., 2003). This
is apparently associated with shift from a prevalence of Gαs-
mediated AC-stimulation to Gαi-mediated inhibition (He et al.,
2005). Together with the enhancement of protein phosphatase
activity in HF, these alterations in cAMP signaling result in
reduced phosphorylation of key cardiac Ca2+-handling proteins
which are well established contributors to the reduced ventricular
contractility that is characteristic of the disease (Schmidt et al.,
1999).

The plasma membrane content of NDPK-A, -B, and -C are
increased in patients with end-stage HF (Lutz et al., 2001,
2004). Chronic activation of βARs increases the association
of these NDPKs to the sarcolemmal cardiomyocyte membrane
whereas β-blocker treatment of HF patients obviously reduces
the presence of NDPK at the plasma membrane (Lutz et al.,
2003). It was speculated (Lutz et al., 2001), that the increase
sarcolemmal NDPK content contributes to the prevalence of
Gαi protein signaling and thus the well-known reduction in
cAMP formation in HF. A recent abstract (Abu-Taha et al., 2013)
indicates that the expression of NDPK-C in cardiomyocytes is of
importance for this phenomenon. NDPK-C exhibits enzymatic
activity and is able to form heterohexamers with NDPK-
A and NDPK-B (Gilles et al., 1991; Erent et al., 2001). It
shares 72% homology with NDPK-A and NDPK-B, but has an
additional hydrophobic N-terminal domain, which can serve as
a membrane anchor (Morera et al., 1995; Webb et al., 1995). It
is generally less abundantly expressed than the major isoforms
NDPK-A and NDPK-B (Erent et al., 2001), but it is highly
enriched at the cardiac plasma membrane of patients with
end-stage HF and its content in these preparations reached
the levels of NDPK-A and NDPK-B (Lutz et al., 2004; Abu-
Taha et al., 2013). The new data revealed that it is the
only isoform out of NDPK-A, -B, and -C, the expression of
which is up-regulated in human HF as well as in animal
and cellular models of chronic adrenergic stimulation (Abu-
Taha et al., 2013). It directly interacts with heterotrimeric G-
proteins and preferentially associates with cardiac Gαi in human
HF. Apparently, NDPK-C targets NDPK-heterooligomers and
thus also NDPK-B to the plasma membrane and mediates the
interaction with G-proteins. Future research should address
whether NDPK-C is also involved in the histidine kinase activity,
phosphotransfer reactions as well as the interaction with caveolins
and caveolae formation.

NDPK-B-Mediated Activation of SK4
Channels in the Vasculature is Required for
Neointima Formation

Three types of Ca2+-activated potassium-channels, large (BK),
intermediate (SK4), and small (SK3) conductance Ca2+-activated
K+-channels are expressed in the vasculature (Wei et al.,
2005; Feletou, 2009; Tharp and Bowles, 2009). BK-channels are

preferentially found in vascular smoothmuscle cells (VSMC). SK-
channels are primarily expressed in the endothelium contributing
to the control of vascular tone and blood pressure (Si et al.,
2006; Kohler and Ruth, 2010). Unlike other cell types, VSMC
are not terminally differentiated and respond to physiological as
well as pathophysiological stimuli with alterations in their gene
expression profile. During vasculoproliferative diseases, such as
atherosclerosis and restenosis, VSMC cells undergo a phenotypic
modulation characterized by suppression of contractile genes,
increased proliferation, and migration. Interestingly, SK4 is one
of those genes the expression of which is up-regulated during
the phenotypic change from the contractile to the synthetic
phenotype of VSMCand SK4-channels were functionally detected
in proliferating VSMC (Toyama et al., 2008). In ApoE−/−-
mice, a genetic model of atherosclerosis, the expression of SK4-
channels was additionally increased in macrophages and T-
lymphocytes that infiltrated the atherosclerotic lesions. In line
with these findings, application of the selective SK4-inhibitor
TRAM-34 reduced the development of atherosclerosis in these
mice (Toyama et al., 2008). Also neointimal hyperplasia and
stenosis after vascular injury is sensitive to TRAM-34 treatment
(Kohler et al., 2003; Tharp et al., 2008) which data further
suggest that the activation of SK4-channels is required for VSMC
proliferation.

The activity of SK4-channels is regulated by the intracellular
Ca2+ concentration. Ca2+ binds sites to calmodulin that
is constitutively associated with the channel C-terminus,
thereby increasing channel open-probability (Xia et al., 1998;
Adelman et al., 2012). As mentioned before, NDPK-B is able
to phosphorylate His358 in SK4. Although it is mechanistically
not clear how this phosphorylation results in the activation
of the channel, its open-probability is enhanced. In addition
to the phosphorylation, the presence of phosphatidylinositol
3-phosphate [PI(3)P] is required for full activation of the
channel, although the activity of NDPK-B is not dependent
on the phospholipid nor does it bind to PI(3)P (Benagiano
et al., 2003). The counteracting histidine phosphatase PHP also
interacts with the channel and is apparently able to form a local
de-/phosphorylation teeter-totter with NDPK-B (Srivastava et al.,
2006, 2008; Wieland et al., 2010). Therefore, the phosphorylation
and dephosphorylation of His358, the local lipid composition
where the channel is inserted in the membrane as well as the
Ca2+-concentration in vicinity to the channel are together
fine-tuning its activity.

Recent evidence suggest that the activation of SK4 by NDPK-
B in VSMC is required for neointima formation (Zhou et al.,
2015) Using a mouse model of vessel remodeling, i.e., a guide-
wire caused injury of one the carotid arteries; it was shown that
NDPK-B-deficient mice were similarly protected from neointima
formation in injured arteries as SK4-deficient mice. Patch clamp
analysis in freshly isolated VSMC from the injured and non-
injured vessel demonstrated the expression of SK4 only in
VSMC from the in neointima of the injured vessel but not
in VSMC of the quiescent, healthy vasculature. The current
measurement (ISK4) indicated a constitutive activation of the
SK4-channel in proliferating VSMCs of the wild-type but not of
the NDPK-B-deficient mice. As this activation was completely
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inhibited by PHP, the phosphorylation of His358 in the de
novo expressed SK4-channels by the constitutively expressed
NDPK-B is pivotal to VSMC proliferation. A potential underlying
mechanism is the driving of Ca2+-influx. In proliferating VSMC,
TRPC channels and T-type Ca2+-channels are the main channels
responsible forCa2+-influx (House et al., 2008). In contrast to BK-
channels, which are voltage-dependent, the voltage-independent
SK4-channels can maintain channel opening even at strong
negative membrane potentials. An increase in ISK4 due to
the constitutive activation of the channel by NDPK-B will
shift the membrane potential to more negative values. Such
a hyperpolarization enhances the Ca2+-influx through TRPC
and/or T-type Ca2+-channels. The resulting increase in the
intracellular Ca2+-concentration likely triggers the activation of
transcription factors and the induction of mitogenic immediate
early genes (Bi et al., 2013).

Small molecules that inhibit the histidine kinase activity of
NDPK-B (Buxton, 2008), interfere with its interaction with SK4
or increase PHP activity might thus offer new therapeutic options
for the treatment vascular diseases such as post angioplasty
restenosis. They might even be effective in the treatment of
atherosclerosis. Neointima thickening in atherosclerosis does
not only involve proliferation and migration of VSMC, but
also activation of inflammatory cells (Libby, 2002; Niessner
et al., 2006). Monocytes infiltrate the plaques, differentiate
into macrophages and produce oxidative stress, proteases,
and cytokines (Libby, 2002). Plasmacytoid dendritic cells in
plaques activate infiltrating T-lymphocytes, which in turn
further stimulate macrophages (Benagiano et al., 2003; Niessner
et al., 2006). The treatment of ApoE–/–-mice with the selective
SK4-channel blocker TRAM-34 significantly reduced not only
proliferation and migration of VSMC, but also inhibited the
infiltration of plaques by inflammatory cells (Toyama et al., 2008),
indicating that T-lymphocyte activation in mice also requires
activation of SK4-channels. Interestingly, the SK4 channel activity
was reduced by 50% also in T-cells of NDPK-B-depleted mice
and this caused a strong inhibition of cytokine production.
As SK4−/−-mice are protected from developing severe colitis
in mouse models of inflammatory bowel disease (Di et al.,
2010a) and CD4-positive T-lymphocytes from NDPKB−/−-
and SK4−/−-mice show similar profiles of cytokine production
(Di et al., 2010a,b), it is very likely that the constitutive

activation of SK4-channels is also required for inflammatory
responses. Therefore, two important pathological processes in
atherosclerosis, the proliferation of VSMC aswell as inflammation
and oxidative stress due to T-cell activation in the plaque, are likely
to be targeted by such small molecules. Although such specific
inhibitors are not known of today, they might be identified by
screening compound libraries for example for inhibition of NDPK
activity.

Conclusion

Although well known as an important regulatory event in many
organisms, the role of protein histidine phosphorylation in
mammals has long gone unrecognized. However, with the recent
identification of NDPKs as protein histidine kinases, PHP as
a specific counteracting phosphatase and the description of
important substrates as Gβγ, SK4, and TRPV5, an understanding
of the importance of NDPK-mediated protein histidine
phosphorylation in the regulation of mammalian cell function
is emerging, with the promise of much more to be discovered. As
pointed out herein, two of these substrates Gβγ and SK4, both
targeted by NDPK-B as protein histidine kinase, have important
roles in the physiology and pathophysiology of the cardiovascular
system. The apparent contribution of the NDPK-B/Gβγ- and the
NDPK-B/SK4-interaction to HF and atherosclerosis, respectively,
give raise to the assumption that interference with the histidine
kinase activity of NDPK or even more specifically, the inhibition
of the interaction of the NDPK-B with its target proteins by small
molecule inhibitors might offer avenues for future treatments of
cardiovascular diseases.
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