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Phosphorylation waves drive the propagation of signals generated in response to
hormones and growth factors in target cells. cAMP is an ancient second messenger
implicated in key biological functions. In mammals, most of the effects elicited by cAMP
are mediated by protein kinase A (PKA). Activation of the kinase by cAMP results in the
phosphorylation of a variety of cellular substrates, leading to differentiation, proliferation,
survival, metabolism. The identification of scaffold proteins, namely A-Kinase Anchor
proteins (AKAPs), that localize PKA in specific cellular districts, provided critical cues
for our understanding of the role played by cAMP in cell biology. Multivalent complexes
are assembled by AKAPs and include signaling enzymes, mRNAs, adapter molecules,
receptors and ion channels. A novel development derived from the molecular analysis of
these complexes nucleated by AKAPs is represented by the presence of components of
the ubiquitin-proteasome system (UPS). More to it, the AKAP complex can be regulated
by the UPS, eliciting relevant effects on downstream cAMP signals. This represents a
novel, yet previously unpredicted interface between compartmentalized signaling and the
UPS. We anticipate that impairment of these regulatory mechanisms could promote cell
dysfunction and disease. Here, we will focus on the reciprocal regulation between cAMP
signaling and UPS, and its relevance to human degenerative and proliferative disorders.

Keywords: cyclic AMP, PKA signaling, proteasome, ubiquitination, AKAP

cAMP Signaling

Since the discovery of cyclic adenosine 3′,5′-monophosphate (cAMP) in the late 1950s, significant
advances have been made to better understand the link between the cAMP and the regulation of
downstream signaling and cellular homeostasis. The principal elements of the cAMP cascade have
been intensively studied, both at functional and structural side, delineating a complex and finely
regulated network of signaling scaffolds and regulatory proteins (Walsh andVanPatten, 1994). cAMP
levels are tightly regulated through the balance between two classes of enzymes: the adenylyl cyclases
(ACs) and the cyclic nucleotide phosphodiesterases (PDEs). The main effector of cAMP is protein
kinase A (PKA), whose role is fundamental in the propagation of the signal downstream to target
substrates/effectors (Taylor et al., 2005). The duration and the amplitude of the propagating signal
are controlled by a combination of different classes of ACs, protein kinases, PDE, phosphatases (PPs)
and scaffold proteins (Figure 1).

G protein–coupled receptors (GPCRs) constitute a large family of membrane proteins that
transduce signals from the extracellular microenvironment to inside cell (Rosenbaum et al., 2009).
The binding of extracellular ligand to its cognate GPCR at the cell membrane activates AC, which
in turn generates cAMP at discrete points along the plasma membrane. The mammalian ACs
are encoded by nine independent genes differentially expressed in several cell types and tissues
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FIGURE 1 | GPCR stimulation and cAMP signaling. Ligand-induced activation of a GPCR dissociates heterotrimeric G proteins and activates the adenylyl
cyclase (AC) through Gαs subunit (Rosenbaum et al., 2009). AC converts ATP into cAMP. cAMP binding to regulatory (R) subunits of AKAP-assembled PKA
dissociates the holoenzyme and activates the catalytic (C) subunits (Taylor et al., 2005). Phosphorylation of cellular substrates by C evokes plenty of biological
responses. Phosphodiesterases (PDEs) converts the cAMP in 5′-AMP and decrease cAMP signaling (Maurice et al., 2014). Dephosphorylation of substrates by
protein phosphatases (PPs) contributes to attenuate the signal (Zhang et al., 2013).

(Iyengar, 1993). The cAMP-generating activity of ACs is
stimulated by the interaction with the stimulatory α subunit
of the G-proteins (Gαs). In the absence of ligand, Gαs forms
a heterotrimeric complex with the β and the γ subunits. Once
activated, the GPCR causes the dissociation of heterotrimeric
G-proteins, with consequent activation of ACs by the Gαs
subunit (Cooper and Tabbasum, 2014). Continuous or repeated
pulses of hormone stimulation downregulate GPCR activation.
This phenomenon, called receptor desensitization (Reiter and
Lefkowitz, 2006), includes two phases: (1) acute desensitization,
which involves the recruitment of β-arrestin to the activated
GPCR, impairing the coupling between the receptor and
G-proteins; (2) long-term desensitization which consists in the
internalization and lysosomal degradation of the receptors (Sibley
and Lefkowitz, 1985; Bouvier et al., 1989; Moore et al., 2007).
Although stimulation by Gαs is the major mechanism of AC
activation, different isoforms of ACs can receive signals from a
variety of sources, as kinases (PKA, PKC and Calmodulin kinase)
or Ca2+, supporting and integrating distinct signal transduction
pathways (Timofeyev et al., 2013; Zhang et al., 2013).

The cAMP-PDEs are enzymes that hydrolize the 3′,5′
phosphodiester bond in the second messenger cAMP, producing
5′-AMP (Maurice et al., 2014). By reducing the levels of cAMP,
PDEs regulate the duration and amplitude of the cyclic nucleotide
signaling. PDEs are encoded by 21 genes that generate 11
different families (PDE 1–11) that share structural similarities,
but different substrate specificity, regulatory mechanisms and
kinetics (Maurice et al., 2014). PDEs can hydrolyze cAMP
(PDE4, PDE7, and PDE8), cGMP (PDE5, PDE6, and PDE9)
or both cyclic nucleotides (PDE1, PDE2, PDE3, PDE10, and
PDE11; Francis et al., 2011). The N-terminal regulatory region
of PDEs controls the subcellular localization of the enzymes
(Kenan et al., 2000). The differential distribution of PDEs within
the cell generates intracellular microdomains of the second
messenger that locally enhance the sensitivity and specificity of
the signals carried out by cAMP (Lomas and Zaccolo, 2014). In
this context, the use of cAMP biosensors, such as those utilizing
fluorescence resonance energy transfer (FRET), contributed to
dissect and visualize compartmentalized pools of cAMP that
are generated in response to GPCR stimulation (Stefan et al.,
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2007). The establishment of the so-called “signalosome” is
based on the protein–protein interaction network among the
unique combinations of cyclic nucleotides generators (AC),
effectors (PKA, EPAC, and cAMP-gated ion channels), degrading
PDEs and scaffolds proteins (A-Kinase Anchor Proteins,
AKAPs).

Compartmentalized cAMP-PKA Signaling

In eukaryotes, most of the effects elicited by cAMP depend on the
activation of PKA. This kinase consists of a tetramer composed of
two regulatory (R) and two catalytic (C) subunits. The binding
of cAMP to R subunit dissociates the PKA holoenzyme and
releases the active C subunit, which in turn phosphorylates a
wide array of cellular substrates, controlling different aspects
of cell physiology (Taylor et al., 2008). The biochemical and
functional features of PKAholoenzymes are largely determined by
the structure, properties and relative abundance of the R subunits.
The analysis of the kinetics of PKA activation/de-activation cycles
contributed to understand the mechanisms of cAMP action on
the effector kinase (Knighton et al., 1991). PKA stimulation by
cAMP is followed by a refractory phase where a coordinated
activation of Ser/Thr PPs, PKA inhibitors (PKIs) and changes in
the ratio between R and C subunits eventually attenuate the signal
(Armstrong et al., 1995; Canettieri et al., 2003).

The localization of PKA in the cell is mediated by scaffolding
proteins, namely A-kinase anchoring proteins (AKAPs). AKAPs
belong to a group of structurally different proteins that share
the common feature to target the PKA holoenzyme in close
proximity of its substrate (Michel and Scott, 2002). Each AKAP
contains a PKA-binding motif that binds the R subunit of
PKA and a targeting domain that directs the kinase to specific
subcellular compartments. Biochemical and structural studies
identified a conserved PKA-binding domain of AKAPs that forms
an amphipathic helical wheel composed of 14–18-residues (Carr
et al., 1992). The helical wheel binds with high affinity the
N-terminal docking/dimerization (D/D) domain of the PKA-R
dimer (Newlon et al., 1999, 2001). In particular, the hydrophobic
residues of the helical wheel are located in the interior face, while
charged residues align on the exterior surface. Although most of
the AKAPs bind to RII subunit (Herberg et al., 2000; Carnegie and
Scott, 2003), several RI-specific AKAPs have been characterized
(Huang et al., 1997; Angelo and Rubin, 1998; Means et al., 2011;
Burgers et al., 2012). The residues determining binding specificity
of AKAPs to RI and RII have been partially defined (Alto et al.,
2003). Disruption of the amphipathic helical wheel abrogates the
binding to R subunits, both in vitro and in vivo (Welch et al.,
2010). By modulating the dissemination of cAMP signals inside
the cell, AKAPs control important biological responses, such as
hormone secretion, metabolism, differentiation, cell growth and
survival, synaptic transmission, learning and memory (Rubin,
1994; Alto et al., 2002; Tasken and Aandahl, 2004). AKAPs
form a macromolecular complex, named transduceosome, that
assembles components of cAMP generating systems (receptors
and ACs), effectors (PKA and Epac) and attenuating enzymes
(PDEs and PPs). This implies that complexes nucleated by AKAPs
create intracellular domains where distinct signaling pathways

converge and are locally attenuated or amplified, optimizing the
biological response to extracellular stimuli (Feliciello et al., 2001,
2005; Dell’Acqua et al., 2006; Welch et al., 2010).

Feed-backward Regulation of cAMP-PKA
by the UPS

The ubiquitin-proteasome system (UPS) is emerging as an
important control mechanism of cell growth, survival and
metabolism. Degradation of a protein via UPS involves
modification of the substrate protein by the covalent attachment
of multiple ubiquitin molecules. The ubiquitin-tagged protein
is eventually degraded through the proteasome (Ciechanover,
2005). Defects of the UPS may represent the trigger of several
important human disorders (Wang and Hill, 2015; Dantuma and
Bott, 2014; Ortega and Lucas, 2014; Schmidt and Finley, 2014).
The ubiquitylation is mediated by the attachment of ubiquitin
to the ε-amine of lysine residues of target proteins. This process
requires a series of ATP-dependent enzymatic steps catalyzed
by E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3
(ubiquitin ligating) enzymes (Ciechanover, 2003). The result
of this sequential cascade of events is the covalent attachment
of ubiquitin molecules to lysine residues on the target protein.
These modifications can involve either a single ubiquitin (mono-
ubiquitylation) or a chain of ubiquitin (poly-ubiquitylation;
Ramanathan and Ye, 2012). Poly-ubiquitylation of a substrate is
mostly related to protein degradation through the proteasome
(Ciechanover, 2005). By modulating the protein levels, the UPS
influencesmany cellular processes. Polyubiquitylated proteins can
also follow a non-degradative pathway (De Bie and Ciechanover,
2011). Thismechanismmay control the intracellular trafficking of
the target protein or its activity (Bonifacino andWeissman, 1998).
In this case, de-ubiquitinating enzymes (DUBs), by removing
the ubiquitin moieties, can restore the localization/activity of the
modified protein (De Bie and Ciechanover, 2011).

The cAMP-PKA signaling is regulated by- and can regulate
the UPS at different steps, giving rise to a complex interactive
and regulatory network that controls different aspects of cell fate
(Figure 2).

At cell membrane, the ubiquitylation and consequent
proteolysis of receptors by the UPS contributes to post-stimulus
receptor desensitization (Bonifacino and Weissman, 1998). As
example, following β adrenergic receptor 2 (β-2AR) stimulation,
the adaptor protein ARRDC3 (arrestin domain containing 3)
recruits the E3 ligase NEDD4 (neural precursor development
downregulated protein 4) close to β-2AR. Concomitant inhibition
of the deubiquitinase USP20 (Ubiquitin-specific-processing
protease 20) by PKA favors ubiquitylation and degradation of the
receptor by NEDD4 (Nabhan et al., 2010; Kommaddi et al., 2015).
Agonist-induced ubiquitylation of both receptor and β-arrestins
(β-receptor regulatory proteins) also contributes to regulate
receptor endocytosis. Internalized GPCRs can undergo to
degradation or be recycled back to the cell surface (Shenoy et al.,
2001). β-adrenergic signal transduction is the major pathway
involved in the maintenance of cardiac muscle contraction.
Reduced response to β-adrenergic stimulation and pathological
cardiac hypertrophy are hallmark of heart failure (Port and
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FIGURE 2 | Feed-back and feed-forward control of cAMP by the ubiquitin-proteasome system (UPS). In the burst phase, ubiquitylation of
cAMP-phosphodiesterases (PDEs) through the E3 ligase SCF complex contributes to modulate cAMP levels (Zhu et al., 2010). R subunits undergo to proteolysis
by the praja2-UPS pathway. Loss of R subunits sustains PKA signaling (Lignitto et al., 2011). Moreover, ubiquitylation of protein phosphatases (PPs) by cullin E3
ligases (CRL3s) further modulates phosphorylation-dependent downstream signaling (Xu et al., 2014). During the desensitization phase, agonist-induced
ubiquitylation of both receptor and b-arrestins promotes receptor endocytosis and degradation, attenuating downstream signaling (Reiter and Lefkowitz, 2006).
Gαs subunits are ubiquitylated and degraded by the UPS (Zha et al., 2015). During hypoxia, Siah2-mediated ubiquitylation and proteolysis of AKAP121 modulates
mitochondrial activity (Carlucci et al., 2008a).

Bristow, 2001; Tilley, 2011) In this context, blunted response to
agonist might be a consequence of decreased levels of Gαs subunit
(Tang et al., 2008). Accordingly, recent evidence indicates that in
hypertrophic hearts Gαs undergoes to extensive ubiquitylation
with suppression of its downstream signaling. This eventually
leads to cardiac contractility dysfunction (Jenie et al., 2013).
Gβ subunits can also become a target of the UPS, contributing
to feed-back regulation of GPCR signaling. Thus, Gβ2 binds
to DDB1 (DNA damage-binding protein 1), a core component
of CUL4B-based E3 ubiquitin ligase complex, and targets the
GPCR kinase 2 (GRK2) to ubiquitylation by the DDB1-CUL4A-
ROC1 ubiquitin ligase complex. Following GPCR activation,
PKA phosphorylates DDB1 and induces its dissociation from
Gβ2, increasing the levels of GRK2 and promoting receptor
desensitization. Deletion of Cul4a gene resulted in cardiac
hypertrophy and this phenotype can be partially rescued by
concomitant deletion of GRK2 (Zha et al., 2015). These results
unvealed a novel mechanism of feedback regulation of GPCR
signaling based on a non-canonical function of Gβ2 protein, that

acts as a component of the ubiquitin ligase complex that targets
GRK2 for degradation.

It emerged that PDEs can be regulated by the UPS. Ubiquitin
conjugation and proteasomal degradation of PDE4D by a cullin
1-containing E(3) ubiquitin ligase complex is induced through
concomitant phosphorylation of PDE4D by casein kinase 1
(CK1) and glycogen synthase kinase 3β (GSK3β). A phospho-
degron motif within the PDE4D was identified as responsible
of ubiquitin-mediated proteolysis of the enzyme. Interestingly,
protein PPs calcineurin (CaN) counteracts the effects of the
SCF complex on PDE4D stability (Zhu et al., 2010), unveiling a
complex regulatory mechanism of signal integration between PPs
and kinases involved in the control of cAMP pathway.

The UPS can also regulate the PKA stability and signaling.
praja2 is a widely expressed mammalian RING-H2 protein
with intrinsic E3 ligase activity (Yu et al., 2002). praja2 acts
as an AKAP that binds and targets PKA holoenzyme to the
cell membrane, perinuclear region and cellular organelles. Co-
localization of praja2-PKA complexeswith PKA substrate/effector
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molecules ensures efficient integration and propagation of the
locally generated cAMP to distinct target sites. In course of agonist
stimulation, praja2 couples ubiquitylation to proteolysis of the
R subunits of PKA. By decreasing the ratio between R/C levels,
praja2 sustains downstream signals carried out by PKA, positively
impacting on specialized cell functions (Lignitto et al., 2011).

As major regulators of cAMP signaling, AKAPs can be
regulated at post-translational level by the UPS. Thus, under
normoxic conditions, mitochondrial AKAP121 assembles a
multienzyme scaffold complex on the outer mitochondrial
membrane that ensures efficient propagation of cAMP and
src signals from sites of signal generation to mitochondria,
enhancing oxidative phosphorylation, mitochondria remodeling,
calcium homeostasis and cell survival (Cardone et al., 2004;
Livigni et al., 2006; Dickey and Strack, 2011; Scorziello et al.,
2013). Under hypoxic conditions, the RING E3 ligase seven in-
absentia homolog 2 (Siah2) binds to- and ubiquitylates AKAP121.
Ubiquitylated AKAP121 undergoes to proteasomal degradation.
Disappearance of AKAP121 is accompanied by a significant drop
of mitochondrial metabolic activity, leading to mitochondrial
fission and cell death (Carlucci et al., 2008a,b; Merrill et al.,
2011). In the ischemic mouse heart, infarct size and degree
of cell death were blunted by genetic knock-out of Siah2. In
hatching Caenorhabditis elegans, inhibiting Siah2 reduces life
span, highlighting a role of the UPS-AKAP-PKA axis in the
control of essential aspects of nematode aging (Kim et al., 2011).

Feed-forward Regulation of the UPS by
cAMP

Besides auto-regulatory mechanisms, cAMP can also control
the activity of E3 ligases. By modulating the ubiquitin pathway,
PKA controls the biological activity of a wide number of
cellular substrates, integrating signals generated by distinct
hormones/growth factors. As example, p300 acts as scaffold
and co-activator for transcription factors, facilitating chromatin
remodeling and gene expression. p300 controls important
biological functions, as cell proliferation, differentiation,
apoptosis, and senescence (Rack et al., 2014). In lung cancer
cells, the levels of p300 are tightly regulated post-translationally
by the cAMP signaling. Thus, agonist-induced rise of cAMP
levels promotes ubiquitin-dependent proteolysis of p300,
downregulating nuclear gene transcription (Jeong et al., 2013).
The Ca2+/Calmodulin-dependent protein kinase III (CAMKIII),
inhibits the elongation phase of translation by phosphorylating
eukaryotic elongation factor-2 (eEF-2; Heise et al., 2014).
Interestingly, CAMKIII protein levels are negatively regulated
by isoproterenol stimulation of cAMP cascade. Degradation of
the kinase requires the proteasome activity, linking the UPS to
cAMP-dependent facilitation of protein translation (Wiseman
et al., 2013).

A relevant role of cAMP-PKA axis in the epigenetic control of
gene expression has been proposed. In eukaryotic cells, histone
proteins are involved in the control of chromatin structure and
remodeling. These are important mechanism(s) that cells adopt
to regulate gene transcription (Tessarz and Kouzarides, 2014).
Histones undergo to reversible post-translational modifications,

such as acetylation. Acetylation/deacetylation cycles of histones
are essential processes underlying gene expression and are
catalyzed by families of histone acetyltransferases (HATs) and
deacetylases (HDACs and sirtuins), respectively (Dekker and
Haisma, 2009; Stasevich et al., 2014). Sirtuins have been implicated
in awide range of biological processes, such as transcription, DNA
damage repair, andmetabolism (Etchegaray et al., 2013). Sirtuin-6
(SIRT6) is a stress-induced gene that belongs toNAD+-dependent
Class III of histone deacetylases and controls the maintenance of
telomere structure and length. By deacetylating histones, SIRT6
regulates genome stability and cell viability (Tennen et al., 2010).
Loss of SIRT6 gene induces premature lethality and aging-related
degeneration (Mostoslavsky et al., 2006). A link between sirtuins
and cAMP signaling has been recently identified. Thus, cAMP
stimulates ubiquitylation of SIRT6 protein and its consequent
degradation through the proteasome. By reducing the levels of
SIRT6, cAMP sustains radiation-induced apoptosis of lung cancer
cells (Kim and Juhnn, 2015).

In neurons, cAMP-PKA signaling controls a variety of
biological cues, as neurite outgrowth, morphogenesis and
synaptic transmission and plasticity (Tasken and Aandahl,
2004). Most of the effects elicited by cAMP are mediated by a
transcriptional control of gene expression. A post-translational
mechanism of neurite extension which involves the UPS has been
recently identified. Thus, neurotrophin-induced activation of
PKA promotes praja2-dependent ubiquitylation and degradation
of the neurite outgrowth inhibitor NOGO-A. By removing the
inhibitory constrain of neurite extension imposed by NOGO-A,
PKA-UPS drives a signaling circuit that promotes and sustains
neuronal differentiation and synaptic activity (Sepe et al.,
2014). In course of neuronal differentiation, phosphorylation
of E3 ligases by PKA could also affect substrate recognition,
switching the target selectivity between proteins with opposing
functions. Thus, neurotrophin-stimulated phosphorylation
of Smad ubiquitylation regulator factor 1 (Smurf1), a key
component of TGF-β/BMP pathway, reduces degradation of
polarity protein Par6 and enhances proteolysis of growth-
inhibiting RhoA factor, eventually leading to axon outgrowth
(Cheng et al., 2011).Similarly, in cisplatin-treated cancer cells,
PKA phosphorylation of Smurf1 prevents degradation of the
pro-apoptotic protein Nur77, triggering the mitochondrial
apoptotic machinery (Lin et al., 2014).

Dephosphorylation of cellular substrates is mediated by
distinct families of protein PPs, (Zhang et al., 2013). Among PPs,
protein phosphatase 2 (PP2A) is a conserved Serine/Threonine
phosphatase that regulates a wide number of signaling pathways.
PP2A is composed of a dimeric core enzyme (structural A and
catalytic C subunits), and a regulatory B subunit. In eukaryotes, C
and A subunits of PP2A show high degree of sequence similarity,
while the regulatory B subunits are highly heterogeneous.
The assembly of the three subunits generates different PP2A
holoenzymes, whose substrate specificity and intracellular
localization are controlled by B subunits (Kiely and Kiely, 2015).
PP2A dephosphorylates a variety of substrates, including cAMP-
response element-binding protein (CREB). De-phosphorylation
of CREB by PP2A attenuates cAMP-induced gene transcription
(Wadzinski et al., 1993). PP2A is also involved in a variety
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of cell functions, as proliferation, differentiation and cell death
(Tsuchiya et al., 2014). During apoptosis, PP2A/C subunit is
post-translationally regulated by the UPS. Thus, stimulation with
tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL)
promotes the recruitment of PP2A/C, caspase-8 and Cullin3, a
subunit of the cullin family of E3 ligases, into the death-inducing
signaling complex (DISC). Within the complex, Cul3 targets
PP2A/C for ubiquitylation and degradation by the proteasome.
Downregulation of PP2A/C signaling and downstream gene
transcription may account for the activation of the apoptotic
machinery induced by TRAIL (Xu et al., 2014).

Dys-regulation of cAMP-UPS in Human
Diseases

cAMP signaling is involved in a variety of different biological
responses (Formosa and Vassallo, 2014). The complexity of the
pathway and the high number of components involved ensure
an efficient and a fine regulation of the signal transmission from
the site of generation to downstream effectors. Genetic mutations
or altered expression of any component of this sophisticated
signaling cascade may lead to dys-regulation of the signaling,
contributing to the onset and progression of human diseases.

In neurons, cAMP balance is crucial for physiological
events underlying learning, memory and loco-motor activity
(Gomez et al., 2002; Dell’Acqua et al., 2006). Several studies
confirmed the pathogenic role of deranged cAMP signaling
in neurodegenerative phenotypes (Satoh et al., 2009; Poppinga
et al., 2014). As example, Huntington’s disease (HD) is a
genetic neurological disorder characterized by alteration of
motor coordination that eventually leads to mental decline
and behavioral symptoms. HD is caused by the expansion of
a CAG repeat in the Huntington (HTT) gene, which induces
accumulation of poly(Q)-expandedmutant HTT protein (mHTT;
Labbadia and Morimoto, 2013). Accumulation of mHTT
within neurons downregulates cAMP signaling, inhibits CREB-
dependent gene transcription and profoundly affects neuronal
activity and cell survival (Jeong et al., 2012). Recent evidence
pointed to a role of mHTT in UPS-cAMP pathway. In particular,
mHTT-mediated proteasome impairment inhibits the proteolytic
turnover of R subunits within the striatum, increasing the R/C
ratio and favoring reconstitution of inactive PKA holoenzyme.
By limiting local activation of PKA, mHTT alters the stability of
several proteins and impacts on neurons and loco-motor activity.
Under these conditions, forced activation of PKA promotes
phosphorylation of components of the proteasome (Rpt6) and
rescues the impaired proteasome activity, favoring the removal of
mHTT aggregates and improving loco-motor activity (Lin et al.,
2013).

The UPS is an important control mechanism of cell growth,
survival and metabolism. Removal of tumor suppressors or

pro-apoptotic factors could, thus, play an important role in
tumor growth. Changes in the levels, subcellular targeting or
catalytic activity of the E3 ligases may exert major effect on
cell growth and survival. Accordingly, dys-regulation of the
UPS has been found in a wide array of human cancer (Landis
et al., 1989; Weinstein et al., 1991; Palmer et al., 2000). Recent
findings demonstrated that praja2, which regulates R subunit
turnover, ubiquitylates and degrades MOB1, a core component
of NDR/LATS kinase and positive regulator of the tumor-
suppressor Hippo cascade (Hergovich, 2011; Lignitto et al.,
2013). Removal of MOB1 by the praja2-UPS pathway attenuates
the Hippo cascade and sustains glioblastoma growth in vivo
(Lignitto et al., 2013). These findings uncover the existence of
an intricate interplay between GPCR-cAMP signaling, UPS and
tumor suppressor pathways in the control of cell proliferation and
tumor growth.

Concluding Remarks

In the last decades, cumulative evidence uncovered a major
role of PKA pathway in the control of important biological
activities, ranging from differentiation, growth, metabolism,
survival to more sophisticated brain activities. Derangement
of the cAMP-PKA pathway has been pathogenically linked to
the onset and progression of several neurodegenerative and
proliferative disorders. So far, most of the cAMP-PKA effects have
been attributed to phosphorylation/dephosphorylation events
occurring at distal sites of cAMP generation. Emerging data
suggest the existence of a cAMP-driven UPS circuitry that
controls the turnover/stability of key elements of metabolic and
proliferative pathways. At the same time, mounting evidence
indicates that UPS by regulating the stability of components of
the cAMP cascade controls directly the strength and duration
of cAMP-PKA signals. Dys-regulation of this intricate interface
between the cAMP and the UPS may underpin the pathogenesis
of human diseases. Therefore, efforts are needed to discover new
targets and mechanism(s) connecting the UPS to cAMP-PKA
signaling, but also to construct a network that is able to predict and
quantify the biological outcome (for example, degenerative versus
proliferative phenotypes) of human genetic mutations affecting
key elements of these transduction pathways. Understanding the
complexity of such regulatory mechanisms and exploring further
the biological significance of this kinase-ligase network will help
to design novel tools and drugs that selectively restore a perturbed
cAMP cascade in various human phenotypes.
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