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Functional magnetic resonance imaging (fMRI) is an excellent tool to study the
effect of pharmacological modulations on brain function in a non-invasive and
longitudinal manner. We introduce several blood oxygenation level dependent (BOLD)
fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and
pharmacological MRI (phMRI). Respectively, these techniques permit the assessment
of functional connectivity during rest as well as brain activation triggered by sensory
stimulation and/or a pharmacological challenge. The first part of this review describes
the physiological basis of BOLD fMRI and the hemodynamic response on which the
MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the
animal’s physiological conditions on neural activity and the hemodynamic response. The
second part of this review describes applications of the aforementioned techniques in
pharmacologically induced, as well as in traumatic and transgenic disease models and
illustrates how multiple fMRI methods can be applied successfully to evaluate different
aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint
the neural substrate of a disease beyond previously defined hypothesis-driven regions-
of-interest. In addition, fMRI techniques allow one to dissect how specific modifications
(e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI,
phMRI) and how functional connectivity (rsfMRI) between several brain regions is
affected, both in acute and extended time frames. Furthermore, fMRI techniques can be
used to assess/explore the efficacy of novel treatments in depth, both in fundamental
research as well as in preclinical settings. In conclusion, by describing several exemplary
studies, we aim to highlight the advantages of functional MRI in exploring the acute and
long-term effects of pharmacological substances and/or pathology on brain functioning
along with several methodological considerations.
Keywords: fMRI, rsfMRI, phMRI, BOLD, rodents

Abbreviations: 5-HT, serotonin; 5-HT1A-R, serotonin 1A receptor; AD, Alzheimer’s disease; ALFF, amplitude of low
frequency fluctuations; ASL, arterial spin labeling; BOLD, blood oxygenation level dependent; CBF, cerebral blood flow;
CBV, cerebral blood volume; CMRO2, cerebral metabolic rate of oxygen consumption; CT, computed tomography; DCE,
dynamic contrast enhanced; DSC, dynamic susceptibility contrast; EEG, electroencephalography; EPI, echo planar imaging;
FC, functional connectivity; FDG, fluoro-deoxy-glucose; fMRI, functional MRI; FSL, FMRIB software library; GABA, gamma
amino-butyric acid; GRASE, gradient- and spin-echo; GS, global signal; HD, Huntington’s disease; HDR, hemodynamic
response; ICA, independent component analysis; LFP, local field potential; mAChR, muscarinic Acetylcholine receptor;
MEG, magnetoencephalography; MRI, magnetic resonance imaging; NIRS, near-infrared spectroscopy; NMDA, N-methyl-
D-aspartate; ofMRI, optogenetic fMRI; pCO2, partial pressure of CO2; PD, Parkinson’s disease; PET, positron emission
tomography; phMRI, pharmacological MRI; ROI, region-of-interest; rsfMRI, resting state fMRI; SPM, statistical parametric
mapping; st-fMRI, stimulus-evoked fMRI; SSRI, selective serotonin re-uptake inhibitors.
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INTRODUCTION

Magnetic resonance imaging tools are widely used to evaluate
brain structure and function even in a single experiment. The
major advantage of MRI techniques is that they are non-invasive,
do not use radioactive agents (as opposed to PET) and do not rely
on hazardous ionizing radiation (as opposed to CT), rendering
MRI a safe imaging tool appropriate for longitudinal follow up.
MRI is based on a magnetic field and radiofrequency pulses and
most of the MRI applications use the intrinsic tissue contrast
relying on different features of 1H protons in tissue water without
the need of injecting contrast agents.

In short, the technique provides excellent soft tissue contrast,
rendering it very appropriate to investigate the brain. Apart
from giving anatomical information, MRI allows studying
other specific properties of brain tissue using Diffusion-
weighted, Diffusion Tensor, and Diffusion Kurtosis Imaging.
Additionally, metabolic information can be obtained using
Magnetic Resonance Spectroscopy or Chemical Exchange
Saturation Transfer. Moreover brain function can be assessed
by measuring cerebral perfusion, blood flow (ASL, DSC
MRI, and DCE MRI) and brain activity (Functional MRI,
rsfMRI, phMRI; [for review see for example (Denic et al.,
2011)].

These different techniques can be applied within a single
scanning session. After co-registration of the different images,
multi-parameter information can be obtained on voxel level
or from specific brain regions of interest. Although anatomical
and diffusion information allows assessing structural changes
induced by neurological disorders, functional changes might
occur even much earlier and are of great interest for early
diagnosis.

The focus of this review is to describe the use of fMRI
to evaluate the effects of pharmacological agents on neuronal
activity in small animals using different fMRI techniques.
Since its introduction over 20 years ago (Ogawa et al., 1990;
Kwong et al., 1992), fMRI has gained immense popularity to
study brain activation and brain activity patterns in health
(Di Salle et al., 1999; Logothetis, 2008; Bandettini, 2012) and
disease (Iannetti and Wise, 2007), both in humans and animal
models (Van Der Linden et al., 2007). These methods are
especially useful to document the neuro-modulatory actions of
pharmacologically active compounds. fMRI allows to determine
and localize the target area, that is, the area with the appropriate
receptors for the neuromodulator (phMRI). At the same
time the technique can estimate the effect on the targeted
brain circuitry and potentially beyond (st-fMRI) and rsfMRI.
Furthermore, longitudinal fMRI allows to unravel the effect of
pharmacological agents upon acute and chronic treatment and
one can investigate the interaction between the neuromodulator,
the brain and the resulting behavior in the same animal over
time.

In this review we try to give an overview of the vast
amount of information that can be obtained with small rodent
fMRI in pharmacology completed with an overview of specific
applications in different animal disease models and their
translation to the clinic.

fMRI METHODOLOGY

Physiological Basis of fMRI
A variety of MRI pulse sequences exist which exploit different
features of water protons in tissue. The most widely used MRI
contrasts are found in T1-, T2-, T2∗- and proton density weighted
images. The resulting images provide superior anatomical
contrast allowing qualitative and quantitative assessment of
overall brain anatomy. To study brain functioning the sequence
is adapted to acquire the BOLD contrast which is based on
the differential magnetic properties of oxygenated (diamagnetic)
and deoxygenated (paramagnetic) hemoglobin. Upon neural
activation, changes in local CBF, CBV, and CMRO2, i.e., the
hemodynamic response leads to a locally increased ratio of
oxygenated over deoxygenated hemoglobin, resulting in an
enhancement in T2(∗)-weighted signal intensity (cfr. Figure 1).
BOLD fMRI is thus an indirect measure of neuronal activity. For
a more detailed description please consult (Buxton and Frank,
1997; Logothetis and Wandell, 2004).

The hemodynamic response, is markedly slower (in the order
of seconds) than the actual neural activity elicited by neurons,
which is in the order of milliseconds (Logothetis et al., 2001;
Logothetis and Wandell, 2004). Although over recent years,
numerous variations to the well-established EPI and GRASE
pulse sequences have been developed enabling a repetition time
up to 0.500 s [for review of recently implemented fast and high-
resolution fMRI sequences (Feinberg and Yacoub, 2012)] this
strongly contrasts to other functional imaging measurements
such as EEG,MEG, NIRS which provide more direct information
and require a substantially higher temporal resolution (sampling
frequency in the range of kHz). Despite its relatively low temporal
resolution, fMRI provides the best three dimensional spatial
resolution covering the entire brain in comparison to the other
techniques mentioned above.

FIGURE 1 | Overview of the physiological basis of fMRI situating the
different techniques reviewed in this paper.
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Magnetic resonance imaging also allows to detect brain
activity based on local changes in CBF or CBV and specific
methods exist to assess these changes. One of these methods is
ASL, in which the inflowing water proton spins in the arterial
blood are magnetically tagged (inverted) serving as endogenous
tracer to observe the effects of inversion on the contrast of brain
MRI which can then be used tomeasure stimulus-evoked changes
in CBF (Williams et al., 1992; Detre and Wang, 2002).

In CBV-weighted fMRI (Mandeville et al., 1998; Smirnakis
et al., 2007; Ciris et al., 2014), injection of exogenous intravascular
contrast agent (e.g., iron oxide particles) is required to monitor
brain activity changes represented by signal intensity changes
induced by local CBV alterations (Mandeville, 2012).

Within this review we opted to describe BOLD based
fMRI techniques and applications while methods using labeling
methods or contrast injections -which are also applied in
pharmacological research (Borsook and Becerra, 2011; Jenkins,
2012)- were considered beyond the current scope.

Different fMRI Methods
Different applications of BOLD fMRI allow for the study of
neuronal activity after imposing a certain task or stimulus (st-
fMRI), during rest (rsfMRI), or as response to acute drug
challenges (phMRI). In the following sections, each of these
techniques will be discussed in detail (For an overview cfr.
Figure 1).

Stimulus-evoked fMRI allows for the investigation of neural
activity as a response to a specific stimulus or task. In most
rodent st-fMRI studies externally applied sensory-motor stimuli
are used while in human st-fMRI studies also cognitive task
can be applied. The most commonly used stimulus presentation
designs for fMRI experiments are (i) a block design and (ii)
an event-related design (Amaro and Barker, 2006). In a block
design, two ormore different conditions are alternated in order to
determine the differences between the two conditions. A control
or rest situation may be included in the presentation occurring
between the two conditions. In event related designs the time
in between stimuli can vary while also much shorter stimuli are
used. Although preclinical studies most often implement block
designs, event-related designs are becoming more and more
established (Schlegel et al., 2015).

Instead of using sensory or cognitive stimuli, BOLD fMRI can
be used to study the direct effect of pharmacological modulations
on neuronal activity (phMRI). In this case the acute injection of a
compound during the fMRI scan evokes changes in the BOLD
response in brain areas that express specific receptors for the
injected compound and also in their projection areas. In phMRI
the experimental design is dependent on the pharmacokinetic
and pharmacodynamic profile of the drug. The inability to
control, or even to know the timing and amplitude of the
stimulus renders this method considerably more challenging than
conventional st-fMRI studies where the timing depends on the
predefined paradigm (Jenkins, 2012).

Both techniques, fMRI and phMRI, can be combined
when investigating the modulatory effects of a pharmaceutical
compound on a conventional st-fMRI read-out, such as the
effects of dopaminergic drugs on cognitive tasks (Dodds et al.,

2009). Moreover, repeated phMRI studies after chronic drug
application could provide insights in the resulting adaptations
of the brain such as changes in receptor density or sensitivity.
However, additional measures (such as CBV and CBF) are
required in case the used pharmacological compound has
concomitant vaso-active properties.

Functional imaging can also be used to study FC by
monitoring BOLD signals at rest (rsfMRI). During rest, it was
shown that the BOLD signal shows spontaneous fluctuations
over time. Functional connectivity is defined as the temporal
correlation of low frequency (0.01–0.1 Hz) fluctuations of the
BOLD signal between spatially distinct brain regions (Lowe et al.,
2000). Consequently, the spontaneous low frequency fluctuations
of the BOLD signal are used as indirect marker to depict the
functional architecture of the brain.

Several applications of rsfMRI have demonstrated that the
healthy brain is organized into functional networks and that these
networks can be affected by neurological disorders. In humans,
and to some extent also in rodents, large scale ‘resting state
networks’ can be detected that include brain regions involved in
auditory processing, motor function, visual processing, memory,
and executive functioning (Damoiseaux et al., 2006; Jonckers
et al., 2011). Moreover networks anatomically homologous to
the so-called human ‘default-mode network’ (DMN), which
is activated during rest and deactivated during goal-directed
tasks (Fransson, 2005; Upadhyay et al., 2011; Lu et al., 2012;
Sierakowiak et al., 2015) and its anti-correlated ‘salience network’
(SN) are also detected in rodents (Sforazzini et al., 2014).

fMRI Data Processing and Presentation
Althoughmost fMRI processing software so far was optimized for
human data, processing strategies are usually similar in humans
and rodents. Also, an increasing number of analysis packages are
being tailored to fMRI studies of rodents (Sawiak et al., 2009;
Chavarrias et al., 2015).

Functional MRI data (fMRI, rsfMRI, and phMRI) are
typically pre-processed before the actual data analysis. The most
commonly used software packages are SPM1 and FSL2. Pre-
processing includes (1) slice timing correction and realignment
over time, (2) spatial normalization to a standardized stereotactic
space, and (3) smoothing (James et al., 2014). An important
difference between human and rodent fMRI processing is the
way group data are handled. The Montreal Neurological institute
(MNI) defined a standard brain from a large series of MRI scans
of normal controls (Evans et al., 1992). For instance, this template
is automatically provided in SPM, one of the commonly used
fMRI processing toolboxes. Although the same toolbox can be
used for rodent fMRI, the rodent data has to be normalized
to a study-specific template such as the mean of all control
animals. Alternatively, an atlas can be developed from in-house
measurements or obtained from a publically available source
[e.g., (mice)3; (mice, rats, etc.4).

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8
2http://www.fmrib.ox.ac.uk/fsl
3http://brainatlas.mbi.ufl.edu/
4http://scalablebrainatlas.incf.org/
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Resting state fMRI data pre-processing might include extra
steps such as GS regression, and temporal filtering. GS regression
serves to remove global fluctuations that mask circuit-level
organization, to remove global physiological artifacts, and
to enhance the reliability of the experimental results (Fox
et al., 2009). Temporal filtering may be included to restrict to
fluctuations between 0.01 and 0.1 Hz, which are of interest in
rsfMRI research. Nevertheless, recently an increasing number of
studies explored correlations in BOLD fluctuations beyond this
frequency band. The resulting data suggested that long-distance
connections peak at low frequency bands, whereas short-distance
connections are distributed in a relatively wider frequency range.
Moreover, the dominance of different frequencies seems to
characterize different brain networks. (Wu et al., 2008; Boubela
et al., 2013).

After pre-processing, st-fMRI and phMRI data can be
processed by different methods. Typically, a voxel-based
approach is adopted. After pre-processing, the BOLD signal
is modeled (e.g., general linear model) as the convolution of
the applied stimulation design (block or event-related design)
with the hemodynamic response function (HRF) in order to
have a better estimation of the true design-related BOLD signal
(Lindquist et al., 2009).

Finally, statistics can be performed on the model estimates
(i.e., stimulus specific BOLD responses) via parametric or non-
parametric methods resulting in statistical maps indicating areas
of activation. These maps are first created on the single subject
level (first level analysis) after which they are used in second
level analyses to perform group statistics. To define brain regions
activated by acute compound injection (phMRI) also a voxel
based approach can be applied by statistical comparison of the
repetitions before injection (baseline) with those after injection.

The aforementioned analyses techniques do not take into
account the temporal dynamics of the BOLD-signal after
sensory or pharmacological stimulation. Upcoming analysis
methods apply spectral analysis to the BOLD time series to
obtain information on the temporal behavior of the BOLD
response function [for more details see (Muller et al., 2001)].
Figure 2 shows examples of typical time courses for the different
techniques and how they are related to the applied stimulus.

Both rsfMRI and event related st-fMRI need fast MRI sequences
(e.g., TR = 2 s, i.e., one image in 2 s) to be able to acquire
BOLD fluctuations and responses to the fast consecutive stimuli,
respectively. A typical rsfMRI acquisition lasts 5–12 min. In a
block design the length of the different blocks in the paradigm
determines the required acquisition speed. Moreover the total
scan-length is dependent on the complexity of the paradigm,
increasing the number of scans needed when more stimuli are
introduced or the differences between stimuli are more subtle.
For phMRI the timing is dependent on the pharmacokinetics of
the injected compound.

For processing of rsfMRI data, various software packages
exist, supporting different processing strategies (Margulies et al.,
2010). The most widely used methods in FC analysis of resting
state data are ROI-based (Biswal et al., 1995), seed-based and
model-free, data-driven approaches such as ICA (Calhoun et al.,
2001; Beckmann and Smith, 2004). Other data-driven techniques
are clustering approaches and graph analysis [for methodological
review: (Margulies et al., 2010)] (see Figure 3). Finally alternative
processing techniques are available to map the directionality of
the connectivity, such as dynamic causal modeling (Friston et al.,
2003) and Granger causality analysis (Roebroeck et al., 2005)
which can also be applied on activity-induced fMRI data to define
regions that drive the activation. Apart from FC analysis, also
the low frequency fluctuation themselves can be affected during
disease conditions and studied using ALFF analysis. ALFF is
defined as the total power within the frequency range between
0.01 and 0.1 Hz, and thus indexes the strength or intensity of
Low Frequency Fluctuations. Measurements of ALFF are more
often applied in humans but some rodent students already report
changes in ALFF in animal models (Li et al., 2012; Yao et al.,
2012).

Important Considerations when Planning
fMRI Experiments in Rodents
Rodent fMRI studies have great potentials and can provide
an immense contribution to pharmacological research, but
it must be underscored that attention and expertise is
necessary when rodent fMRI experiments are designed and
performed. The functional status of the brain is highly

FIGURE 2 | Example of typical time courses for st-fMRI, rsfMRI, and phMRI.
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FIGURE 3 | Basic principles of rsfMRI Analysis. (A) Independent Component Analysis divides the BOLD signal of all brain-voxels in different spatially confined
independent sources, or components. Each ICA component consists of brain regions with correlated BOLD time courses. In other words, voxels of one component
represent regions that are functionally connected. (B) In voxel-based analyses, the mean BOLD signal time course of a specific seed region is extracted from a series
of EPI images. This time course is compared to the time course of all other voxels in the brain, resulting in a functional connectivity map (voxel based processing).
(C) In an ROI based approach, the mean BOLD signal time courses of multiple brain regions are compared, resulting in FC matrices showing the strength of
connectivity between each pair of brain regions (warmer colors indicate stronger functional connectivity, colder colors represent anti-correlation). These matrices can
then be used to visualize brain networks as nodes (brain regions) and edges (connections). Moreover, the brain network can be divided into modules that represent
brain circuits where similar time courses are displayed by different colors (graph approach). (Adopted from Jonckers et al., 2013b).

dependent on the physiology of the animal. Much more than
for anatomical imaging, monitoring and controlling for this
physiology is essential during rodent fMRI studies. Accounting
for physiological changes is especially important in rodent studies
since typically animals need to be anesthetized.

Moreover optimized protocols of the imaging set-up and
processing tools for rats can not always simply be duplicated for
mice since there are important differences between these rodent
species, which we outline below.

First of all, it is important to mention that most of the
reported fMRI work in rodents is performed in rats, despite

the existence of a wide array of mouse models mimicking
neurological disorders. One of the reasons behind this is the
fact that it is very challenging to acquire reproducible brain
activation upon stimulation in mice. Since the introduction of
rsfMRI, more studies usemice as an animalmodel but most of the
basic research, (i.e., optimization of analysis and unraveling the
underlying mechanisms) is still performed in rats. Nevertheless,
it is very important to take into account that conclusions drawn
in rats are not necessarily applicable in mice. Moreover, recent
advances such as the development of cryo-coils have dramatically
improved mouse fMRI (Ratering et al., 2008).
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When studying functional connectivity using rsfMRI, one
should also consider the impact of hormones and age-
related hormonal changes on brain connectivity as was
demonstrated in human studies. In a recent review, the
association between functional connectivity and endogenous sex
hormone fluctuations across the menstrual cycle in humans
was described (Weis et al., 2011). When endogenous estradiol
and progesterone levels are high, functional communication
between both hemispheres is enhanced. Also gender and overall
hormonal status throughout the lifespan of an individual has
a major impact on the functional connectivity of the brain.
Specifically, ovarian hormones (estradiol and progesterone)
may enhance both cortico-cortical and subcortico-cortical
functional connectivity, whereas androgens (testosterone) may
decrease subcortico-cortical functional connectivity but increase
functional connectivity between subcortical brain areas. Similar
investigations using rsfMRI in rodents have not been reported
yet but human studies suggest that caution is required
when examining healthy brain development and aging or
when investigating possible biological mechanisms of ‘brain
connectivity’ diseases. Therefore, the contribution of sex steroids
should not be ignored (Peper et al., 2011).

Effects of Anesthesia on the st-fMRI and phMRI
Outcome
Magnetic resonance imaging studies in rodents require the use
of anesthetic agents to minimize stress and to prevent motion
artifacts during the scans. Several anesthetics are optimized
for MRI acquisitions, but for fMRI it is utterly important to
take into account how the anesthesia affects neuronal activity
and the hemodynamic response. Moreover, distinct levels of
consciousness could result in different fMRI outcome. Finally,
when a pharmacological agent is used in phMRI, possible
interactions between the pharmacological compound and the
applied anesthetic have to be taken into account as well
(Hodkinson et al., 2012). On the other hand phMRI protocols
can be used to assess the time-dependent effects of anesthetics on
the BOLD signal. Figure 4 shows the T2∗ signal intensity changes
over time induced by a single bolus of medetomidine (Shah
et al., 2015a). These changes over time underscore the need for a
highly optimized anesthesia protocol applied in exactly the same
manner to every animal within the study (Magnuson et al., 2014).
Moreover stable conditions can be obtained by combining bolus
injections to induce anesthesia followed by continuous infusion.

A robust and reproducible BOLD response can be observed
in rats and mice anesthetized with commonly used anesthetics
for MRI, such as medetomidine, isoflurane, α-chloralose
and urethane (Austin et al., 2005; Adamczak et al., 2010).
Nevertheless, under anesthesia, more intense stimuli must be
presented to evoke a BOLD response in comparison to awake
conditions. The cerebral hemodynamic response upon sensory
stimulation shows an anesthesia-specific modulation which can
be largely explained by the effects of the anesthetics on animal
physiology. Strikingly, independent of the anesthetic used, fMRI
responses may additionally be influenced by stimulus-induced
cardiovascular changes, which may mask specific fMRI signals
associated to the stimulus (Schroeter et al., 2014).

The anesthetic agent α-chloralose is a GABA-A agonist that
binds to a site on the GABA-A receptor complex distinct from
the benzodiazepine neurosteroid and barbiturate sites (Garrett
and Gan, 1998). It has long been considered the gold standard for
fMRI due to its minor effects on cardiovascular function, and is
presumed to only minimally suppress neuronal activation. When
using α-chloralose, strong neuronal activation is induced even
with very subtle stimuli such as whisker deflection. Nevertheless,
due to its toxicity -mainly for the liver- it has been considered as
a terminal drug and its use was abandoned.

However, it was recently demonstrated that using a new
formulation in a careful application scheme this anesthetic allows
for repeated fMRI studies on the same rat (Alonso Bde et al.,
2011).

Medetomidine, which results in sedation rather than
deep anesthesia, is the anesthetic of choice for longitudinal
functional imaging studies in rats (Fukuda et al., 2013).
Medetomidine is an α2 agonist predominantly acting on
presynaptic receptors in the locus coeruleus, resulting in
decreased noradrenaline release. Medetomidine typically induces
cerebral vasoconstriction mediated by direct agonist binding to
receptors on the cerebral vessels resulting in reduced baseline
CBV and CBF (Nakai et al., 1986). The degree of vasoconstriction
depends on the dose and delivery method (topical vs. systemic).
The effects of medetomidine can easily be reverted with
Atipamezole (Scheinin et al., 1987).

Inhalation anesthetics (e.g., isoflurane) are preferred for
longitudinal fMRI experiments (Kim et al., 2010) due to fast
recovery and low mortality rates. Isoflurane acts on γ-amino
butyric acid type A (GABA-A) receptors through depression of
excitatory synaptic transmission (Larsen and Langmoen, 1998).
Importantly, most inhalation anesthetics evoke vasodilation in
a dose-dependent manner, which might obscure the actual
experimental outcome since changes in vascular properties are
very likely to affect the BOLD signal. Therefore, functional
experiments are typically performed under lower doses (1–1.5%)
as compared to structural MRI studies (2%). The dose used can
even be lowered by combining isoflurane with medetomidine.
This combination protocol has the additional advantage that the
epileptic activity, seen when medetomidine is infused for longer
than 120 min, is prevented, enabling longer experiments with
equally fast recovery than for medetomidine alone (Fukuda et al.,
2013).

Finally, propofol and urethane anesthesia, which both
enhance GABAergic transmission, are occasionally used for
fMRI experiments, in comparison to other previously described
anesthetics, the induced fMRI activation is lower under the
same stimulus intensity which impedes the detection of very
subtle functional alterations (Lahti et al., 1999; Huttunen et al.,
2008).

Effect of Anesthesia on Functional Connectivity as
Assessed by rsfMRI
Apart from affecting the BOLD response post-stimulus,
anesthetic agents could influence the correlations in intrinsic
activity used to estimate functional connectivity. Moreover, these
effects are different for rats and mice.

Frontiers in Pharmacology | www.frontiersin.org 6 October 2015 | Volume 6 | Article 231

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Jonckers et al. Functional MRI in small rodents

FIGURE 4 | Results of phMRI with a single bolus of medetomidine. This figure shows four consecutive slices of the statistical difference maps of the BOLD
signal at 10, 20, 30, 40, 50, and 60 min post-injection (medetomidine, 0.3 mg/kg, s.c.) vs. baseline. The statistical maps are shown on a T2-weighted anatomical
MRI template. The color scale at the right indicates the T-value (i.e., the strength of the T2∗ signal intensity decrease induced by medetomidine vs. baseline in all
conditions). Medetomidine induces T2∗ signal changes at 10 min post-injection vs. baseline, mainly in frontal regions and the striatum. At 20 min post-injection, the
T2∗ signal changes increase and include additional regions such as the sensory cortex, hippocampus and thalamus. Starting from 30 min post-injection,
medetomidine-induced T2∗ signal changes start to decrease and stabilize until 60 min post-injection (Shah et al., 2015a).

Medetomidine is considered as the gold standard for FC
mapping in rats based on its reliable and spatially specific
outcome (Kalthoff et al., 2013). In mice, however, medetomidine
induces decreased inter-hemispheric FC (Jonckers et al., 2011)
resulting in the need of other anesthesia protocols in these
animals (Jonckers et al., 2013a). Important dosage effects showing
decreased inter-hemispheric connectivity in the rat brain at high
dose might explain the decreased inter-hemispheric FC in mice,
which require a relatively higher dose compared to rats (Nasrallah
et al., 2014).

Rats anesthetized with isoflurane show less localized clusters
of high FC unless a low dose of 1% is used (Williams et al., 2010).
In mice, however, it is not straightforward to gain consistent
results using the same dose of isoflurane as in rats creating the

need for adapted protocols (Jonckers et al., 2013a). Interestingly,
combining a low dose of medetomidine with a low dose of
isoflurane seems to give the required results (Grandjean et al.,
2014a).

α-chloralose and urethane also allow robust detection of FC
in rats (Hutchison et al., 2010; Williams et al., 2010; Jonckers
et al., 2011) suggesting that the strongest connections are
preserved even during deeper states of anesthesia (Bettinardi
et al., 2015). Besides physiological confounds, changes in resting-
state networks may reflect a functional reorganization of the brain
at different anesthesia levels or brain states related to the level of
consciousness (Liu et al., 2013). For example Propofol shows a
dose-dependent decrease of thalamo-cortical FC (Tu et al., 2011;
Liu et al., 2013).
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Although the sensori-motor networks are detected with the
different anesthesia regimes mentioned above, lower doses seem
to be needed to preserve the DMN-like and SN. This effect may
infer that these networks support higher level consciousness since
these networks are well defined in awake rats (Upadhyay et al.,
2011). Using a low dose of isoflurane, both the DMN-like and
SNs could be detected in mice (Sforazzini et al., 2014; Liska
et al., 2015). The long range anterior–posterior connections in
the DMN-like network seem to be disturbed after medetomidine
injection but restored when the level of anesthesia is lowering
over time (Shah et al., 2015b).

The aforementioned effects of anesthesia on fMRI results
yielded several attempts to optimize awake imaging protocols
(Ferris et al., 2011). Moreover, weak functional connections
are more likely to be picked up in awake animals (Liang
et al., 2012). The drawback to awake imaging, however, is that
the brain may be in different functional states depending on
how well the conscious animals are acclimatized to the MRI
scanner environment (Upadhyay et al., 2011) and this variance
in consciousness will contribute to an increased variability in the
fMRI outcome.

Nevertheless, several groups succeeded in optimizing
training protocols, showing that rats can adapt to the scanner
environment (King et al., 2005) resulting in reliable fMRI results
(Febo, 2011) and robust reproducible resting state networks
(Zhang et al., 2010; Becerra et al., 2011).

Mice, however, seem to be more difficult to train for these
types of experiments (Jonckers et al., 2013a). The labor intensive
effort of training protocols is not always suitable in experiments
with high numbers of animals (e.g., when different groups are
compared) or when following animals over time, especially
starting from a very young age. Therefore, the application of
awake imaging in models of neurological disease will remain
limited.

The Need for Monitoring and Controlling
Physiological Parameters
Since fMRI measures signals related to the hemodynamic
response, a stable physiology of the animal during fMRI
acquisitions is of uttermost importance to enable accurate and
reproducible measurements. Therefore, physiological parameters
need to be monitored and if possible continuously adjusted.

Partial pressure of CO2 (pCO2) must be monitored
during the fMRI measurements for two major reasons. First,
increased pCO2 leads to vasodilatation and thus an increased
CBV. Increased CBV results in a reduced stimulus-induced
hemodynamic response. Second, increased pCO2 leads to a
decreased oxygen affinity of Hb (the so-called Bohr effect),
changing the ratio of oxygenated over deoxygenated hemoglobin.
Both phenomena affect the BOLD signal without any underlying
neuronal origin. In the past, pCO2 monitoring was achieved
through repetitive blood sampling. Currently, continuous and
non-invasive recordings of transcutaneous pCO2 (Mueggler
et al., 2001) or end-tidal pCO2 values with MRI-compatible
capnometry are used (Silverman andMuir, 1993; VanCamp et al.,
2005) for which linear correlations with arterial pCO2 have been
established (Zhang et al., 1997).

Body temperature is the second major modulator, as the
BOLD signal shows a strong negative correlation with body
temperature due to a decreased oxygen affinity of Hb with
increasing temperature (Hyder et al., 1994).

Moreover, the brain’s metabolism is also affected by the body
temperature of the animal. Consequently, temperature changes
can mask the true contribution of neuronal activity (Vanhoutte
et al., 2006). Since the body temperature gradually lowers in
anesthetized rodents, a feed-back mechanism with hot air or
warm water circuit is vital to keep the temperature at ±37◦C.

Apart from the aforementioned parameters, follow-up of
blood pressure, heart rate, and breathing rate are essential
as a read-out of the animal’s sedative state and will affect
the hemodynamic response. Typical values for the different
parameters are highly dependent on the anesthesia protocol
and differ between rats and mice. For example the heart rate
in awake rats is about 400 beats per minute in comparison to
600 beats per minute in mice. Also breathing rate is typically
lower in rats (±85 breaths per minute) than in mice (±150
breaths per minute) making mouse fMRI more dependent on
motion artifacts due to breathing. Especially during the fMRI
acquisition it is essential to gain a stable physiology to induce
as less variation as possible. (Bernstein, 1966; Baker et al.,
1979).

A better control of blood gas parameters and breathing rate
can be obtained by mechanical ventilation. Gated imaging, in
which the imaging sequence is triggered by the respiratory cycle,
can then be used to reduce motion artifacts caused by breathing
(Cassidy et al., 2004). New methods have been suggested that
allow recognition of artifacts and subsequent removal from the
fMRI data (Salimi-Khorshidi et al., 2014).

Finally, when acute drug effects are investigated, it is
important to take into account the systemic effect of the drug
on the physiology of the animal which in turn could influence
the BOLD signal. For example, pharmacological induction of
vasodilation with acetazolamide attenuates the activity-induced
BOLD response resulting from an increase in CBF (Bruhn et al.,
1994).

The Advantage of Hybrid Systems:
Simultaneous PET/MRI and
MRI/Electrophysiology
Apart from fMRI, PET studies can be used to assess brain
activation using the short half-life tracer [(15)O]H2O as a marker
for CBF or the radiotracer FDG [(18)F]FDG which estimates
glucose metabolism. Higher sensitivity of PET, combined with
a better contrast-to-noise ratio and spatial resolution for BOLD
fMRI underlies the rationale for combining both techniques.

Interestingly, resting state networks can be defined using both
PET and rsfMRI. Consequently, simultaneous PET/MRI systems
are gaining more and more interest (Wehrl et al., 2014), since
simultaneous studies can reveal/provide comprehensive and
complementary information to further decode brain function
and brain networks (Wehrl et al., 2013).

Combining electrophysiology with fMRI allows for the
correlation of indirect BOLD signals with the underlying
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neurological ones (Logothetis, 2002; Logothetis and Wandell,
2004; Sloan et al., 2010; Sumiyoshi et al., 2012). Evoked LFP
measured simultaneously with the BOLD response (Huttunen
et al., 2011) show the neuronal origin of the spontaneous BOLD
signal measured during rest. The low frequency fluctuations
in the BOLD signal are significantly correlated with infra-slow
LFP signals as well as with the slow power modulations of
higher-frequency LFPs (1–100Hz) at a delay comparable to
the hemodynamic response time under anesthesia (Pan et al.,
2013). Nevertheless, the combination of MRI and electrical
recording is technically challenging because the electrodes used
for recording need to beMRI compatible and theMRI acquisition
induces noise in the electrical recording. To minimize the
mutual interference of the two modalities, glass rather than
metal microelectrodes can be used and noise removal algorithms
are implemented to analyze electrophysiology data (Pan et al.,
2010).

fMRI APPLICATIONS WITH RELEVANCE
FOR PHARMACOLOGICAL RESEARCH

The non-invasive nature and possibility to translate preclinical
findings to the clinic render the multiple fMRI techniques
outlined in this review into attractive methods for a wide
variety of pharmacological applications. Indeed, phMRI can be
used to unravel underlying neurobiological mechanisms of drug
action and neurotransmitter-related disorders (Canese et al.,
2011). Moreover, phMRI enables the investigation of a specific
neurotransmitter system after administering known compounds,
e.g., investigation of dopamine D2 transmission after dopamine
reuptake inhibition (Squillace et al., 2014).

A very specific approach was proposed by Schwarz et al.
(2007a,b) based on a combination of phMRI and FC analysis of
rsfMRI data. The outcome convincingly identified connectivity
patterns underlying the central effects of the injected compound.
This approach can be extended by modulating the FC in
an antagonist–agonist framework. First, a certain connectivity
pattern is induced by acute injection of a first known compound
during the scanning session. Next, the second compound of
interest is also injected during the same scanning session
inducing a modulation of this known connectivity pattern
(Schwarz et al., 2007c; Shah et al., 2015b).

The added value of fMRI depends on the pathological
phenotype of the disorder and the most prevalent pathologies
will be discussed in detail below. The following sections will
discuss how different fMRI techniques have led to important
insights into several of the most prevalent pathologies. For
example, in neurodegenerative disorders changes in brain
function potentially precede structural degradation. Both st-
fMRI and rsfMRI can be used to study neurological changes
on a functional level, which might be of interest in terms of
early diagnosis and drug intervention before the occurrence of
irreversible damage. During and after therapeutic interventions
the same techniques can be used to determine the efficacy of a
treatment (both acutely and longitudinally) and assess recovery
of functional networks (see Figure 5 for an overview).

(rs)fMRI Studies in Pharmacologically
Induced Models
Based on the NMDA depletion theory in schizophrenia, NMDA
receptor antagonists (e.g., memantine) are used to mimic
this disorder in rodents. Typically, behavioral assessments are
generally accepted as a reliable read-out and display locomotor
hyperactivity after NMDA receptor antagonist administration.
Multimodal MRI extends the characterization of this model
showing dose-dependent pharmacological activation in the
prelimbic cortex after acute memantine administration. Sub-
chronic memantine injection revealed significant effects in the
hippocampus, cingulate, prelimbic, and retrosplenial cortices.
These are potentially vulnerable regions in schizophrenia
and are known to be involved in the mediation of specific
cognitive functions affected in schizophrenia (Tamminga,
2006).

Interestingly, FC as well as ultra-structural features, defined
with diffusion imaging, were significantly decreased in the same
regions (Sekar et al., 2010). Similar FC results were reported in a
genetic model for schizophrenia (Song et al., 2015).

Additionally, the effects of new antipsychotic drugs can be
tested using the same read-outs, enabling target validation and
early assessment of drugs (Sekar et al., 2010; Bifone and Gozzi,
2012; Song et al., 2015).

Seizures are due to abnormal, excessive, or synchronous
neuronal activity in the brain. They can be pharmacologically
induced in rats by increasing neuronal excitation, for example
by excessively activating glutamate receptors (kainic acid) or
acetylcholine receptors (pilocarpine) or by decreasing inhibition
with antagonizing GABA-A (bicuculline; Fritsch et al., 2014).

For example systemic kainic acid injection induces limbic
seizures originating from the hippocampus (Ben-Ari et al.,
1981) which can be monitored with st-fMRI (Airaksinen et al.,
2010; DeSalvo et al., 2010; see Figure 6). Moreover, BOLD
activation as a response to electrical stimulation is modulated
upon consecutive seizures (Vuong et al., 2011).

Simultaneous BOLD and electrophysiological recordings
show potential decoupling of the BOLD response from
neuronal activity in a small number of seizures defined
with electrophysiology. This may relate to a development of
recurrent seizure activity (status epilepticus), which associates
with remarkably increased cerebral metabolic rate of CMRO2.
If CMRO2 reaches the limit of the compensatory capacity of
CBF, no positive BOLD response can be detected which has
implications for the interpretation of st-fMRI data obtained
during prolonged epileptiform activity (Airaksinen et al.,
2012). RsfMRI can be used to explore how seizures modulate
the affected brain circuitry. This rsfMRI functionality was
shown in (WAG/Rij) rats –a model for human absence
seizures– where researchers reported increased cortico-cortical
correlations in rest in comparison to non-epileptic controls. This
finding is indicative of augmented FC between brain regions
which are most intensely involved in seizures (Mishra et al.,
2013).

Similar to Major Depression Disorder (MDD) in humans,
and using rsfMRI, the inbred Wistar Kyoto More Immobile
rat, an accepted model for depression, shows functional
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FIGURE 5 | Activation maps (rats no. 1–7) in response to kainic acid–induced seizures superimposed on the anatomic images. The threshold for
statistical significance was set at p < 0.05 (FWE corrected). Rats were sedated with medetomidine (figure reproduced with permission of John Wiley and Sons;
Airaksinen et al., 2010).

FIGURE 6 | Overview of the applications of fMRI methods in research explaining the outcome for each type of fMRI acquisition. Detailed examples are
given in the text.

connectivity anomalies between hippocampus, cortical, and sub-
cortical regions (Williams et al., 2014). Serotonin 1A receptor
(5-HT1A-R) knockout mice or healthy mice administered a
specific 5-HT1A-R antagonist have been used to mimic brain
serotonin depletion in depression. Both show reduced FC of the
serotonergic system (Razoux et al., 2013). Moreover, st-fMRI can
be used to assess the neural substrate of typical MDD behavioral
characteristics. Changed BOLD responses to fear stimuli in the
cortico-amygdalar network as well as the insular cortex may
be the basis for fear and aversion in depression (Huang et al.,
2011).

Treatment of depression disorders consists of increasing
the level of 5HT, for example with SSRI. The resulting acute
activation of the 5-HT system can be picked up with phMRI
(Sekar et al., 2011a,b; Klomp et al., 2012a). Interestingly, phMRI
studies show that the response to acute SSRI challenge changes in
chronically SSRI treated adult animals (Klomp et al., 2012b).

The cholinergic system is important for learning and memory
processes. Muscarinic cholinergic receptors (mAChR) are widely
affected in AD, which might be tightly correlated with cognitive
disabilities observed in those patients (Schneider et al., 2014).
Pharmacological inhibition of cholinergic functioning with the
mAcHR antagonist scopolamine leads to cognitive impairments
that are similar to the behavioral characteristics observed in
dementia (Klinkenberg and Blokland, 2010). The possibility of
non-invasively detecting alterations of the cholinergic system
in mice might greatly improve early diagnosis and treatment
strategies in AD mouse models and eventually in the clinic.
A recent study showed how phMRI and rsfMRI can be
used as tools to detect alterations in the cholinergic system
(Shah et al., 2015a). This study showed that scopolamine
induced a dose-dependent effect on FC in brain regions with
abundant mAChRs and are known to be involved in cognitive
functions (Figure 7). Moreover, some FC deficits elicited by
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FIGURE 7 | Pharmacological modulation of the cholinergic system in mice. The upper panel shows that scopolamine (1 mg/kg, s.c.) decreases FC and
milameline (1 mg/kg, s.c.) increases FC compared to saline-treated (10 ml/kg, s.c.) animals. FC is shown as a ball-and-stick representation, with the thickness of the
lines proportional to the strength of FC between each pair of brain regions. L, left; R, right; Cpu, caudate putamen; MC, motor cortex; Cg, cingulate cortex; SC,
somatosensory cortex; T, thalamus; AC, auditory cortex; HC, hippocampus; VC, visual cortex; VTA, ventral tegmental area; Resp, retrosplenial cortex. The left lower
panel shows the results of the passive avoidance test for the saline (10 ml/kg), scopolamine (1 mg/kg), milameline (1 mg/kg) treated groups and for a group treated
subsequently with scopolamine and milameline. ∗∗p < 0.05, ∗p < 0.1. The graph shows that scopolamine impairs contextual memory, while the additional injection
of milameline partially recovers scopolamine-induced memory impairments. The right lower panel shows a graph displaying the strength of FC at baseline, after the
injection of scopolamine and after the subsequent injection of milameline. FC strength ± standard error are shown for FC between the hippocampus (HC) and
thalamus (T), the cingulate cortex (CC), and retrosplenial cortex (Resp), the cingulate cortex and rhinal cortex (RC), the cingulate cortex and visual cortex (VC), the
visual cortex and retrosplenial cortex and between the visual cortex and rhinal cortex. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Scopolamine decreases all FC
compared to baseline, and milameline recovers scopolamine-induced FC impairments completely or partially (figure reproduced with permission of Springer; Shah
et al., 2015b).

scopolamine could be completely recovered by administering a
mAChR agonist milameline, while other FC deficits were not
completely recovered. This result was consistent with the merely
partial recovery of scopolamine-induced contextual memory
deficits by milameline. This study showed how phMRI and
rsfMRI can possibly be used as a non-invasive indicator of
alterations in neurotransmitter systems induced by pathology or
treatment.

Finally, the pharmacologically induced model that has been
studied most extensively by fMRI, phMRI, and rsfMRI is
addiction. The following exemplary addiction studies will
illustrate the power and biological versatility of different fMRI
techniques. First of all, fMRI can be used to pinpoint the

neural substrate for addiction. For example, acute nicotine
administration potentiates the brain reward function and
enhances motor and cognitive function. This coincides with
an increased BOLD signal in brain areas implicated in reward
signaling (Johnson et al., 2013) (i.e., the striato-thalamo-
orbitofrontal circuit, which plays a role in compulsive drug
intake, and in the insular cortex, which contributes to craving and
relapse) (Bruijnzeel et al., 2014). Second, including transgenic
mouse models in fMRI experiments could be useful in explaining
the contribution of certain receptor types in altered behavior
induced by a drug. For example, acute nicotine injection results
in increased brain activation in all cortical and subcortical regions
of nicotine-naïve mice, which is not observed in knockout mice
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for the β2-containing nicotinic receptor. This nicotine injection
triggered change in activation pattern can explain observed
behavioral effects such as altered spatial learning, conflict solving
etc., (Suarez et al., 2009).

Third, fMRI allows for the investigation of factors that
modulate addictive behaviors and their neural substrates. For
example, a differential sensitivity to cocaine is seen in female
rats not only as a result of hormonal changes during/throughout
the estrous cycle, but also in association with changes in sexual
receptivity and presence of pups (Febo et al., 2011; Caffrey and
Febo, 2014). FC analyses show connectivity effects in the brain
which depend on the amount of time that has passed since the
previous dosage of the drug, which implies that the same dose of
nicotine might have a different impact on the brain depending
on the time elapsed from the previous exposure (Huang et al.,
2015). Finally, long term effects of addiction are extensively
studied. FC analysis provided evidence of plasticity in addicted
animals learned to self-administer cocaine, consistent with results
in human drug addicts (Lu et al., 2014).

(rs)fMRI Studies in Lesion Models and
Transgenic Models
Both stroke and neurological trauma (brain trauma and
peripheral nerve injury) are clear examples of pathologies
where severe neurological damage occurs. St-fMRI and rsfMRI
can detect the resulting loss of functionality (Pawela et al.,
2010; Yao et al., 2012; Niskanen et al., 2013; Stephenson
et al., 2013; Li et al., 2014; Shih et al., 2014) and connectivity
on a functional level (van Meer et al., 2010a; Baliki et al.,
2014; Mishra et al., 2014). Interestingly, in most cases this
loss of functionality is partially recovered depending on the
lesion severity (Niskanen et al., 2013; Shih et al., 2014). The
process of recovery which relates to neuroplasticity and network
reorganization, can be monitored using the same techniques (van
Meer et al., 2010b, 2012; Li et al., 2014). Finally, rsfMRI can be
used as a read-out for treatment efficacy resulting in different
strategies to ameliorate recovery (Wang et al., 2012; Suzuki et al.,
2013).

A lot of preclinical neuroscience work is performed on
transgenic rodent models for neurodegenerative diseases such
as: AD, PD, and HD, which are characterized by deposition of
misfolded proteins (proteinopathies) in the brain. In AD andHD,
the presence of amyloid plaques and huntingtin, respectively,
are hypothesized to affect cortical functioning as shown by
diminished fMRI responses to sensory stimuli (Lewandowski
et al., 2013; Sanganahalli et al., 2013; see Figure 8 for an
example). Moreover, entire neuronal networks seem affected
(Liu et al., 2014), as shown by altered functional connectivity
during rsfMRI (Shah et al., 2013; Ferris et al., 2014; Figure 9)
even in early disease stages before the proteinopathy establishes
(Grandjean et al., 2014b). Compared with wild-type mice, FC
deficits are also reported in both adult and old apoE4 and apoE-
KO mice. This finding could be related to the fact that the risk
of developing neurodegeneration is dependent on the present
cholesterol-transporter apolipoprotein ε (APOE) genotype (Zerbi
et al., 2014).

FIGURE 8 | BOLD activation maps during contralateral forepaw
stimulation in (A) control rat and (B) AD rat. Rats were anesthetized with
α-chloralose and ventilated. Much smaller BOLD activation patterns were
observed in the somatosensory forelimb cortex (S1FL) in the AD rats
compared to the control rats [Figure based on the results shown in with
permission of the author (Sanganahalli et al., 2013)].

Functional magnetic resonance imaging tools are equally
suited to study which factors, for example environmental
enrichment, stressors, etc., could interfere with neuronal network
modulation over time (Little et al., 2012). Similarly, the effects of
exercise on ameliorating the affected FC network in Parkinsonian
rats was studied (Wang et al., 2015). Clearly both st-fMRI and
rsfMRI could be used as read-outs for the efficacy of new
therapies in neurodegenerative diseases.

Translation of Application of fMRI
Techniques in Pharmacological
Research from Rodents to Humans
The non-invasive nature of fMRI renders the technique valuable
in terms of translation to the clinic. Though the results in
animal models can be translated to the pathology in humans,
daily application into the clinic is still hampered by the required
sophisticated data analysis. Nevertheless, in clinical research,
both st-fMRI and rsfMRI protocols are well established, but
phMRI following an acute pharmacological compound injection
in the magnet, to characterize the target regions of this
compound, is used to a lesser extent. For st-fMRI, an important
difference is the type of stimulus used since in rodents typically
sensory stimulation is used while in humans also other (complex
cognitive) tasks could be used as stimulus.

On the other hand, the fact that rsfMRI requires no action
or cooperation of the patient – which is sometimes not feasible
under pathological conditions –encouraged clinical research in
measuring the brain’s resting state clearly before it was even
applied on a preclinical level.

It is important to notice that most of the clinical FC research
is focusing on the default mode network. A DMN-like network,
covering to a certain extent the same anatomical regions, was
also observed in rodent models making the technique even more
translational. However, the majority of preclinical studies apply a
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FIGURE 9 | Functional connectivity matrices under medetomidine anesthesia, acquired in aged matched wild type (wt) and transgenic AD mice (TG)
with an average age of 18.9 months. Statistical comparison (right) clearly shows a widespread decrease in FC in the diseased animals (Shah et al., 2013).

whole brain approach making use of the advantage of rsfMRI to
have information on all brain networks obtained within a single
short MRI scan.

Some important differences have to be taken into account
when comparing acquisition of rodent fMRI with human fMRI.
Most small animal MRI systems operate at 4.7–9.4 Tesla and
even 11.4T field strengths. Although very recently high field
human MRI systems are installed in clinical research centers,
typically lower field strengths are used (1.5–3T) in the clinic.
The higher field strength clearly results in a higher signal-
to-noise ratio, which enables a higher spatial resolution as
needed for rodents. On the other hand, artifacts are typically
more prominent. For example in the head, which is comprised
of multiple compartments with different physico-chemical
properties, artifacts can be generated due to susceptibility
and different relaxation properties at the higher field strength
resulting in image distortions at the level of the ear cavities
(Bernstein et al., 2006). As discussed in detail most animal
experiments are performed under anesthesia, enabling complete
immobilization of the subject, minimizing motion artifacts
which can even be improved by mechanical ventilation of the
animal.

For most of the applications reviewed above, convergent
studies are available in humans demonstrating the clear
translational quality of fMRI research. As clinical research
is beyond the scope of this review, we only provide some
representative illustrations and related references of key reviews
in clinical research.

As outlined above, fMRI is capable of unraveling the neuronal
substrate of schizophrenia. Similarly in humans, functional
neuroimaging helped to unravel the neuronal basis of the
positive, negative and cognitive symptoms of the disease.
Moreover, fMRI studies assisted in developing therapeutic
strategies and defining promising targets. For example, both
the reported animal work and human studies pinpointed the
importance of NMDA receptors in schizophrenia (Gruber et al.,
2014).

fMRI can also be used to localize and monitor epileptic
seizures, similarly as pharmacologically induced seizures in
rodents. Additionally, on a clinical level, both st-fMRI and

rsfMRI can be used to explore how seizures modulate the brain
and its organization (Chaudhary and Duncan, 2014).

In MDD, changed brain activation (st-fMRI) and FC
anomalies were reported both in humans and animal models
(Dutta et al., 2014; Kerestes et al., 2014). Moreover clinical
trials have also examined the immediate or delayed effects of
antidepressants on resting state networks (Dichter et al., 2014).

In the past two decades, imaging studies of drug addiction
have demonstrated functional brain abnormalities by studying
drug-addicted human populations (Parvaz et al., 2011) and
rodents. Moreover, acute brain response to addictive substances
are studied in humans (Hommer et al., 2011).

For stroke imaging there is, both in preclinical and clinical
research, a clear research-focus on network reorganization after
the insult and during recovery. Moreover fMRI can contribute to
improve prognostic ability and the development of therapeutic
interventions (Carter et al., 2012). Although in animals both
rsfMRI and st-fMRI has been performed, most studies in stroke
patients report rsfMRI data (Veldsman et al., 2015). Evidently,
acute modulations of the brain immediately after the insult are
more convenient to study in rodents than in humans.

For neurodegenerative diseases, st-fMRI upon a conscious
task can be highly compromised by the mental status of the
patients. Studies in cognitively healthy individuals with brain
amyloidosis or genetic risk factors for AD have shown functional
connectivity abnormalities in preclinical disease stages (Pievani
et al., 2014) in convergence with the findings of Grandjean et al.
(2014b) in mice. An important difference between animal models
and humans is that human neurodegenerative diseases (e.g., AD)
are complex diseases manifesting different features. Using animal
models, one can differentiate pathological features in separate
models which show one key aspect of the disease (e.g., tau and
amyloid pathology in AD). In this way, the observed differences
in humans may be linked to a certain hallmark of the disease.

FUTURE PERSPECTIVES

Since its first implementation, the field of fMRI has grown
exponentially. st-fMRI, rsfMRI, and phMRI have been used
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intensively to not only characterize the functional properties and
organization of healthy brains but also to evaluate pathogenesis
and inspect treatment efficacy both in humans and animal
models. In addition, many fascinating advanced processing
techniques have become available that allow researchers to
comprehend complex network topology and infer effective
connectivity.

Modern brain mapping techniques, such as rsfMRI, produce
increasingly large datasets of functional connection patterns
underlying the large-scale functional organization of the brain5.

Concurrent technological advances are generating similarly
large connection datasets in biological, technological, social, and
other scientific fields. Attempts to characterize these datasets
have, over the last decade, led to the emergence of a new,
multidisciplinary approach to the study of complex systems.
This approach, known as complex network analysis, describes
important properties of complex systems by quantifying
topologies of their respective network representations (Rubinov
and Sporns, 2010).

Secondly, new developments in brain circuit modulations
such as deep brain stimulation (Younce et al., 2014; Lai
et al., 2015) and the more targeted optogenetic modulations
of neuronal populations (ofMRI) can be used to study brain
networks. Brain circuit elements can be selectively triggered
with temporal precision while the resulting network response
is monitored non-invasively with high spatial and temporal
accuracy (Lee, 2011).

Most resting-state fMRI investigations were based upon static
descriptions of FC. However, since the brain must dynamically
integrate, coordinate, and respond to internal and external
stimuli across multiple time scales, recent studies have begun to
study the dynamics of FC over time. Emerging evidence suggests
that using dynamic rsfMRI, FC changes in macroscopic neural
activity patterns can be discovered which may underlie critical
aspects of cognition and behavior. Nevertheless limitations with
regard to analysis and interpretation should be taken into account
(Hutchison et al., 2013).

Though the focus of this review lies on BOLD-based neuronal
activity measurements, we want to emphasize that ASL, which
was briefly introduced earlier in this review, provides a non-
invasive, absolute quantification of CBF both at rest and during
task/drug activation. These CBF measurement are very stable
over time, and as such ASL allows a relatively straightforward
physiological interpretation of drug-induced changes in neuronal
activation. ASL studies which follow CBF changes in response
to a specific stimulus/task or pharmacological modulation are
available for human research [see review, (Wang et al., 2011)].
These techniques can be translated from clinical to rodent
research to detect either the central effects of a drug or the
change in neuronal response following drug administration.
One recently published study, presents data from 1400 rats
following a standardized ASL-phMRI protocol using different
known compounds (Bruns et al., 2015). Based on these data,
a new method was proposed to quantitatively characterize
new psychotropics in which typical and differential activation

5https://www.humanbrainproject.eu/

profiles after antipsychotic, antidepressant, and anxiolytic drug
injection could be defined. Similar approaches could be used
for BOLD fMRI as well with interesting opportunities for
future pharmacological research. The acquired ‘typical activation
patterns‘ can be used to classify drug induced brain activations
of unknown psychotropics which further facilitates biological
understanding and decision making in drugdiscovery (Bruns
et al., 2015).

The current developments in measuring CBF by pseudo-
continuous ASL on clinical scanners (Alsop et al., 2014) have
dramatically improved the sensitivity and essential high temporal
resolution of perfusion imaging to allow the detection of CBF
based functional connectivity changes (Chuang et al., 2008;
Fernandez-Seara et al., 2011). However, similar ASL acquisition
protocols on preclinical scanners still need to be optimized
to provide stable CBF measurements with a high spatial and
temporal resolution to allow similar FC-analysis. This would
create new avenues in pharmacological rodent research coming
from the combination of BOLD and ASL-basedMRI. Combining
both BOLD and ASL-based rsfMRI in rodents would allow to
perform joint FC-analysis (Jann et al., 2015) to characterize the
spatiotemporal brain networks within phMRI studies. On the
other hand, from the BOLD and ASL-data, it is possible to extract
a third read-out of neuronal activity, being the cerebral metabolic
rate of oxygen (CMRO2), which is less sensitive to vascular
dynamics. Similar to BOLD and ASL experiments, one can follow
drug induced changes of CMRO2 within a rsfMRI, st-fMRI, or
phMRI design.

In conclusion, fMRI based on the BOLD response can be
used in a wide range of different applications. Recently, sensory
and pharmacologically induced fMRI were extended with fMRI
measured during rest. The interest in rsfMRI is growing, resulting
in an increasing number of methods to analyze and interpret the
data. This review clearly shows the potential of MRI to study
neuro-modulation, particularly induced by pharmacological
agents. Functional MRI techniques enable researchers to obtain
a vast amount of information in a relatively short amount of time
compared to other imaging techniques. Moreover, we are at the
beginning of fMRI’s application to preclinical treatment testing,
especially rsfMRI.

Another important feature which makes fMRI a unique and
highly exceptional method compared to other ‘brain targeting
tools’ such as electrophysiology, is its translational character.
Indeed, many similarities have been reported between human
and small animal findings. However, in general, animal studies
are lagging behind studies in humans when it comes down
to assessing the effects of specific pathologies on functional
characteristics of the brain. With this review, we hope to have
convinced and maybe even inspired neuroscientists to further
exploit fMRI and its many applications in (pre)clinical setting.
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