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Computed tomography (CT) is one of the most valuable modalities for in vivo imaging
because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is
heavily used not only in the clinic (for both diagnostics and treatment planning) but
also in preclinical research as micro-CT. Although CT is inherently effective for lung
and bone imaging, soft tissue imaging requires the use of contrast agents. For small
animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal
clearance. A variety of nanoparticles have been used for micro-CT imaging, but the
majority of research has focused on the use of iodine-containing nanoparticles and
gold nanoparticles. Both nanoparticle types can act as highly effective blood pool
contrast agents or can be targeted using a wide variety of targeting mechanisms. CT
imaging can be further enhanced by adding spectral capabilities to separate multiple
co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-
resolving detectors, has been used with multiple contrast agents to enable functional
and molecular imaging. This review focuses on new developments for in vivo small
animal micro-CT using novel nanoparticle probes applied in preclinical research.
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INTRODUCTION

X-ray computed tomography (CT) is one of the most powerful and widely used imaging modalities
in modern clinical practice. CT provides non-invasive three-dimensional imaging capabilities at
lower cost and higher spatial and temporal resolution than other imaging modalities such as MRI
and PET (Kircher and Willmann, 2012). CT imaging can reveal a patient’s anatomy in exquisite
detail and is extremely useful in the diagnosis of a wide variety of diseases. CT systems with
high resolution (also known as micro-CT systems) have been developed over the last few decades
and have been used with great success in small animal studies. With micro-CT, animals can
be non-invasively imaged in vivo multiple times over the course of a preclinical study, which
significantly decreases the number of animals required compared to methods requiring ex vivo
analysis. Additionally, the continued development of micro-CT can help to test and optimize
imaging advances for translation to clinical CT. This review provides an overview of micro-CT
imaging principles and applications of micro-CT in preclinical small animal studies, with a special
emphasis on the use of nanoparticle contrast agents and spectral imaging methods that could serve
well in drug discovery and pharmacological research.
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MICRO-CT IMAGING PRINCIPLES

Imaging System
A CT system consists of an x-ray source and x-ray detectors,
between which the subject is placed. In clinical CT, the x-ray
source and detectors rotate around the subject to produce
projections of x-ray attenuation through the body at many
different angles. For micro-CT, the x-ray source and detectors
may also be static, while the small animal is rotated between
them. The x-ray projections acquired at each angle of rotation
are then used to reconstruct tomographic images, which are
visualized as 2D slices or 3D volumes of the specimen. The
most common reconstruction method for micro-CT is a cone-
beam implementation of filtered back projection (Feldkamp et al.,
1984). A schematic of a micro-CT system and reconstruction
process is shown in Figure 1.

X-ray Generation
X-rays are generated by accelerating electrons across a high
voltage to collide with an anode composed of a high atomic
number, high melting point material (commonly tungsten).
Interactions between the electrons and the tungsten anode lead
to the production of x-rays with a broad energy spectrum. The
maximum energy of the x-ray spectrum is determined by the
voltage applied in the x-ray tube. As tube voltage increases,
the mean x-ray energy and number of photons produced both
increase. This is demonstrated in Figure 2A for a tungsten anode
operating at two different voltages: 80 and 140 kV. The energy
of the produced x-rays is an important determinant of their
absorption by a given material. This energy spectrum can be
modified by filtration through metal filters. Filtration is primarily
used to increase the mean energy of the x-ray spectrum by
removing low energy photons. Filtration can be used to both
reduce radiation dose and improve image quality, and filtration
can be optimized depending on the imaging task (Hupfer et al.,
2012). Micro-CT x-ray tubes differ from clinical x-ray tubes in
that they usually have a much smaller focal spot (area where
the electron beam interacts with the anode), which reduces
the source function blur (i.e., penumbra blurring) and thereby
greatly improves the maximum image resolution. This increased
resolution is necessary for imaging small animals which have
much smaller features than humans.

X-ray Attenuation
X-rays travel from the focal point of the x-ray tube, through the
subject, and on to the x-ray detector. The x-ray detector measures
the relative amount of x-rays absorbed by the subject at any given
position. X-ray attenuation is given by

I = I0 e−µx

where I is the intensity of the x-rays transmitted through the
subject, I0 is the original intensity of the x-rays incident on the
object, µ is the linear attenuation coefficient of the object, and x
is the thickness of the object. Therefore, absorption of x-rays by a
material is dependent on the thickness of the material and on the
material-dependent attenuation coefficient. Diagnostic x-rays can

be absorbed by a material via two primary mechanisms: compton
scattering and the photoelectric effect.

Compton scattering occurs when an x-ray photon collides
with an outer shell electron within the subject. Upon collision, the
electron absorbs a portion of the x-ray energy and is ejected from
the atom. The x-ray photon is deflected from its original direction
and loses some energy. This scattering can occur in all directions
and can lead to noise at the detector. The amount of Compton
scattering that occurs within an object depends primarily on the
energy of the incident x-ray photon and the density of the object.
Compton scattering decreases slightly with increasing photon
energy, so higher energy x-rays are better able to pass through
a patient without attenuation. The density of outer shell electrons
increases with the mass density of a material, so denser materials
tend to have more Compton scattering and therefore more x-ray
attenuation.

The photoelectric effect occurs when an x-ray photon transfers
all of its energy to an inner shell electron within the subject. This
electron is ejected from the atom and its vacancy is subsequently
filled by an outer-shell electron, which leads to the release of a
secondary photon. The photoelectric effect is highly dependent
on both the energy of the incident x-ray and the atomic weight
of the object. The photoelectric effect is strongest when the x-ray
energy matches the binding energy of the inner-shell electrons.
As x-ray energy increases, the likelihood of the photoelectric
effect drops rapidly, proportional to the inverse cube of the
x-ray energy (1/E3). If the x-ray energy is below the energy
of a particular electron shell, then none of those electrons
can participate in the photoelectric effect because the x-ray
does not have enough energy to overcome the electron binding
energy. This leads to the K-edge effect, where the probability of
absorption due to the photoelectric effect jumps abruptly as the
x-ray energy increases above the K-shell electron binding energy.
The photoelectric effect is also proportional to the cube of a
material’s atomic number (Z3), so high atomic weight materials
exhibit a much stronger photoelectric effect than low atomic
weight materials. This is why contrast agents for CT traditionally
include high atomic weight elements (e.g., iodine, barium). The
K-edge effect is shown in Figure 2B, which demonstrates the
relative probability of x-ray photon attenuation at different x-ray
energies for several high Z materials such as iodine, gold, barium,
gadolinium, bismuth.

APPLICATIONS OF
NON-CONTRAST-ENHANCED
MICRO-CT

Micro-CT images only demonstrate high contrast when there are
large differences betweenmaterial densities (Compton scattering)
or atomic weights (photoelectric effect) within the patient. In
the case of soft tissue imaging, there is very little natural
contrast so an exogenous high atomic weight contrast agent
must be administered for effective imaging (Yu and Watson,
1999). However, non-contrast-enhanced micro-CT performs well
for bone and lung imaging, both of which have high inherent
contrast in the absence of exogenous contrast agents.
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FIGURE 1 | Schematic of a micro-CT system. Multiple x-ray projections are acquired over a 360◦ rotation around the subject. These individual x-ray projections
are then reconstructed to produce 2D cross-sectional images and 3D volumes.

FIGURE 2 | X-ray production and attenuation. (A) X-ray energy spectra produced at two different tube voltages: 80 and 140 kV. Both the number of photons
produced and the mean energy of the spectrum increases with higher voltage. (B) X-ray attenuation as a function of x-ray energy for multiple materials. In general,
the x-ray attenuation rapidly drops with increasing x-ray energy. At the K-edge of each material, there is a sharp rise in attenuation due to the photoelectric
absorption at that energy.

Bone Imaging
Micro-CT is well-suited for bone imaging because of the natural
contrast between bone and soft tissues, which is due to the high
effective atomic weight of bone. This makes micro-CT extremely
valuable for non-invasive, high-resolution bone imaging without
the need of an exogenous contrast agent. Bone imaging was one
of the very first common applications of micro-CT for small
animal imaging (Feldkamp et al., 1989; Kinney et al., 1995).
Micro-CT can accurately quantify a variety of bone parameters,
including cross-sectional area, cortical thickness, bone mineral
density, bone volume, bone surface ratio, and trabecular
thickness (Bouxsein et al., 2010). Structural micro-CT studies
have examined bone architecture (Waarsing et al., 2005; Hsu
et al., 2014), bone remodeling (David et al., 2003; Cowan et al.,
2007), and osteoarthritis (Appleton et al., 2007; McErlain et al.,
2008). Micro-CT has also been used to monitor bone healing
after treatment with basic fibroblast growth factor (Yao et al.,
2005), vascular endothelial growth factor gene therapy (Li et al.,
2009), or stem cell therapy (Lee et al., 2009). Micro-CT can also

be used to longitudinally track bone loss and structural changes
following radiation therapy and bone marrow transplantation
(Dumas et al., 2009) or after spinal cord injury (Jiang et al.,
2006). In the case of osteoporosis, micro-CT measurements have
been used to study disease progression after ovariectomy (Laib
et al., 2001) or immobilization (Laib et al., 2000). Micro-CT has
also been used to study early bone development and growth
(Guldberg et al., 2004). Additionally, micro-CT has been used
extensively in studies of bone regeneration (Umoh et al., 2009)
and bone tissue engineering (Lin et al., 2005; Ho and Hutmacher,
2006). In these cases, micro-CT can quantify mineral content,
porosity, and connectivity, as well as accurately determine three-
dimensional structures. Figure 3 illustrates the use of micro-
CT to evaluate healing of a tibial bone defect after treatment
with an osteoinductive gel scaffold (Sagar et al., 2013). This
study shows the ability of micro-CT to produce both 2D cross-
sectional bone images as well 3D reconstructions of entire bones.
Within the 3D reconstructions, bone microarchitecture is clearly
visualized.
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FIGURE 3 | Tibial bone defect micro-CT imaging. (A) Axial micro-CT cross-sections and (B) 3D reconstructions of tibial bone defects after treatment with an
osteoinductive gel scaffold. Longitudinal imaging was performed up to 25 weeks. Addition of the treatment gel significantly improves healing of the bone defect.
Reprinted from (Sagar et al., 2013) under the Creative Commons Attribution License.

Lung Imaging
The large difference in density between air-filled lungs and soft
tissues creates high contrast for lung imaging, which makes CT
an extremely useful modality for studying the lung. The primary
difficulty in imaging the lungs is respiratory motion. Small animal
respiratory rates are 3–4 times the average human respiratory
rate, so completing an entire scan between breaths is not practical.
Instead, various gating strategies are used which allow researchers
to acquire each projection at the same stage in the respiratory
cycle, so that there is only minimal motion from one projection
to the next. One of the most effective methods of respiratory
gating is to intubate the animal and control the respiration by
mechanical ventilation (Hedlund and Johnson, 2002; Namati
et al., 2006). This allows projections to be acquired at exactly
the same point in each respiratory cycle. For a less invasive
approach, the respirations of a freely breathing animal can be
monitored using a pressure transducer. The x-ray projections
can then be acquired automatically at the same point in the
measured respiratory cycle (Badea et al., 2004). This method does
not perfectly eliminate respiratory motion, but it is much less
invasive than mechanical ventilation and can still resolve features
down to∼150microns (Namati et al., 2006). Retrospective gating
is also possible, in which many projections are acquired rapidly
and sorted post-acquisition according to phase of the respiratory
cycle. Subsequently, these sorted projections are used for the

reconstruction of tomographic images corresponding to each
phase of the respiratory cycle (Ford et al., 2007).

Micro-CT with respiratory gating has been used to study
a wide variety of lung diseases. Micro-CT can be used to
longitudinally monitor mice for the presence of lung metastases
(Li et al., 2006) as well as follow the growth of lung tumors
(Hori et al., 2008; Namati et al., 2010; Li et al., 2013a; Rudyanto
et al., 2013). The treatment efficacy of chemotherapy (Ueno
et al., 2012) or radiation therapy (Perez et al., 2009, 2013; Kirsch
et al., 2010) on lung tumors can be measured using micro-
CT, and lung injury resulting from radiation therapy can also
be assessed (Saito and Murase, 2012). In addition to tumor
characterization, micro-CT is also useful for imaging diseases
of the lung parenchyma. Mouse models of emphysema created
by intra-tracheal instillation of elastase (Postnov et al., 2005;
Artaechevarria et al., 2011; De Langhe et al., 2012; Munoz-
Barrutia et al., 2012) or exposure to cigar smoke (Sasaki et al.,
2015) have been developed and characterized by micro-CT. In
emphysema, CT values decrease compared to normal lung due
to the loss of soft tissue parenchyma and increased air-trapping.
A mouse model of bleomycin-induced lung fibrosis has also been
studied extensively by micro-CT (Shofer et al., 2007, 2008; De
Langhe et al., 2012) and this model has been used with micro-
CT for the preclinical evaluation of drug efficacy (Scotton et al.,
2013; Choi et al., 2014; Zhou et al., 2015). In fibrosis, CT values
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increase due to an expansion of the parenchyma tissue. Lung
compliance and lung volume, which are important factors in both
emphysema and fibrosis, can also be measured by micro-CT.
Animals are mechanically ventilated at multiple pressures and
the lung volume at each pressure is measured. The resulting lung
pressure-volume curve can be used to calculate lung compliance
(Guerrero et al., 2006; Shofer et al., 2007). Figure 4 shows an
example of automatic quantification of lung air volumes using
micro-CT in normal mice and in mice with bleomycin-induced
fibrosis (De Langhe et al., 2012). Micro-CT has also been used
to detect chronic silicosis (Artaechevarria et al., 2010) and acute
respiratory distress syndrome (Voelker et al., 2014).

MICRO-CT CONTRAST AGENTS

Because of the lack of inherent contrast for soft tissue imaging,
the majority of CT scans make use of high atomic weight
contrast agents. In current clinical practice, iodine is the most
commonly used element for intravascular CT contrast. Iodine
contrast agents are made up of water-soluble aromatic iodinated
compounds. These compounds provide effective contrast due to
their high atomic number, which produces a strong photoelectric
effect. Because CT is relatively insensitive to contrast, high
concentrations of contrast agent (up to 400 mg iodine/mL) must
be injected in order to produce adequate image enhancement.
Clinical CT contrast agents are generally safe, but severe adverse
reactions sometimes occur. These adverse reactions are generally
divided into two types: allergic reactions and contrast-induced
nephropathy (CIN). CIN occurs due to the high osmolality and
viscosity of clinical contrast agents and is more common in
patients with chronic renal disease (Namasivayam et al., 2006;
Tepel et al., 2006; Wang et al., 2007). Iodinated contrast agents
are rapidly cleared from the bloodstream by the kidneys (Bourin
et al., 1997), so there is only a very short window for imaging
after injection. Additionally, these agents quickly distribute from

the intravascular to the extravascular space throughout the body.
Initially, this provides useful contrast, but after a short time this
nonspecific uptake leads to uniform enhancement throughout
most of the body. Development and optimization of these small
molecule contrast agents continues in order to address some of
these limitations, but no breakthroughs have occurred in clinical
contrast agents for many years (Lusic and Grinstaff, 2013).
This lack of progress is primarily due to the significant hurdle
of developing high atomic weight agents that simultaneously
demonstrate low toxicity, high efficacy, and low cost.

For small animal imaging, the use of clinical contrast agents
is particularly difficult. Small animals have much higher renal
clearance rates than humans, so injected contrast agents are
rapidly excreted. This can be illustrated for the case of a mouse.
In the average adult mouse, blood volume is approximately
1.5–2.0 mL (Diehl et al., 2001), and the glomerular filtration
rate (the volume of plasma filtered by the kidneys per time)
is approximately 0.4 mL/s (Cervenka et al., 1999). Therefore,
the whole mouse blood volume is filtered by the kidneys in
less than 5 s. Consistent with this filtration rate, it has been
shown that clinical iodine contrast agents drop to undetectable
levels in the bloodstream within 4 s of injection in a mouse
(Lin et al., 2009). This rapid clearance of contrast agent severely
limits the useful application of clinical contrast agents in small
animals.

To overcome the rapid clearance of traditional contrast agents,
blood pool contrast agents have been developed which exhibit
prolonged blood residence time and stable enhancement for
minutes to hours. Blood pool agents are made up of a wide
variety of high molecular weight compounds or nanoparticles
that avoid renal clearance due to their large size. Iodine-based
blood pool agents include iodine-containing polymers (Galperin
et al., 2007; Aviv et al., 2009), micelles (Trubetskoy et al., 1997;
Torchilin et al., 1999), emulsions (de Vries et al., 2010; Hallouard
et al., 2013; Li et al., 2013b), and liposomes (Krause et al., 1993;
Petersein et al., 1999; Mukundan et al., 2006; Ghaghada et al.,

FIGURE 4 | Automated analysis of lung air volumes for a normal mouse and a mouse with lung fibrosis. CT cross-sections of the lungs are thresholded to
include only those voxels which primarily contain air. These binary images are then converted to 3D volumes to visualize and quantify the aerated lung volumes. The
fibrotic lung has significantly reduced air volume compared to the normal lung. Reprinted from (De Langhe et al., 2012) under the Creative Commons Attribution
License.
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2011). A schematic demonstrating the configuration of several
iodine-containing nanoparticle agents is shown in Figure 5.
Historically, these iodine nanoparticles have been the most used
contrast agents for micro-CT imaging. The development and
use of these iodine-containing blood pool contrast agents have
been reviewed elsewhere (Hallouard et al., 2010; Annapragada
et al., 2012; Cormode et al., 2014; Li et al., 2014). Some iodine-
containing blood pool agents are commercially available for small
animal research, including Fenestra R© (MediLumine, Montreal,
QC, Canada) and ExiaTM (Binitio Biomedical, Inc., Ottawa, ON,
Canada), and ExitronTM P (Miltenyi Biotec, San Diego, CA,
USA).

Over the past several years, metal nanoparticle contrast
agents have been developed incorporating a wide variety of
elements. The most commonly used metal nanoparticles for
micro-CT consist of gold. Gold nanoparticles produce greater
CT enhancement than iodinated contrast agents because of
the high atomic number of gold (Z = 79) compared to
iodine (Z = 53). Gold nanoparticles are particularly promising
for in vivo imaging applications because gold is extremely
inert and gold nanoparticles can be readily modified with
surface-linked molecules to render them biocompatible (Li
et al., 2012). Bismuth is another promising element for use
as contrast agent because it is plentiful, inexpensive, and has
a high atomic number (Z = 83). Multiple formulations of
bismuth nanoparticles have been proposed for use as CT
contrast agents (Rabin et al., 2006; Ai et al., 2011; Perera
et al., 2011; Swy et al., 2014). Nanoparticles for micro-CT have
also been developed using other metals, including bismuth,
barium, tantalum, silver, gadolinium, ytterbium, and thorium
(Jakhmola et al., 2012). Some metal nanoparticle contrast agents
are commercially available, including the gold nanoparticle
agent AuroVistTM (Nanoprobes, Inc., Yaphank, NY, USA)

and the barium nanoparticle agent ExitronTM Nano (Miltenyi
Biotec).

Surface conjugation is important for nanoparticle contrast
agents, because bare nanoparticles adsorb serum proteins and are
readily recognized and cleared by the immune system. A variety
of molecules can be added to the nanoparticle surface to decrease
nanoparticle clearance, but the most common modification
strategy is the addition of polyethylene glycol (PEG; Jokerst et al.,
2011). Surface PEGylation significantly increases nanoparticles’
blood residence time, which allows them to be used as blood
pool contrast agents. Nanoparticles’ blood residence time and
biodistribution are also heavily influenced by their size and shape,
with smaller nanoparticles tending to have longer blood residence
times.

APPLICATIONS OF
CONTRAST-ENHANCED MICRO-CT

The development of nanoparticle contrast agents has opened the
door for many exciting applications in small animal imaging.
While imaging applications using low molecular weight contrast
agents have been limited, blood pool contrast agents have now
been used for a wide range of imaging applications. Important
modern applications for contrast-enhanced micro-CT in small
animals include imaging of the vasculature, heart, abdomen
and tumors. Current micro-CT contrast agent research is now
focused on developing agents with active targeting, multi-modal,
or theranostic capabilities.

Vascular Imaging
Vascular imaging for micro-CT is done primarily using blood
pool contrast agents. Micro-CT scan times must be longer

FIGURE 5 | Iodine-containing nanoparticles. (A) Representation of individual amphiphilic lipids that can be incorporated into nanoparticles. (B) Representation of
several configurations of self-assembling nanoparticles based on amphiphilic lipids. Iodine can be incorporated into the hydrophobic portion of the micelle, within the
non-polar core of an emulsion, or within the aqueous core of liposomes. Reprinted with permission from (Mulder et al., 2006).
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than clinical CT scan times due to the requirement for much
higher resolution. Higher resolution implies a need for more
x-ray flux, which is achieved with a longer integration time per
projection. Early micro-CT scanners required up to an hour to
complete a scan. In these cases, low molecular weight contrast
agents could not be used for vascular imaging, as they would be
cleared from the bloodstream long before the image acquisition
was completed. For current micro-CT scanners, scan times of
under a minute are now possible. Using these fast protocols,
low molecular weight contrast agents have been successfully
used for vascular imaging (Kiessling et al., 2004; Badea et al.,
2006; Schambach et al., 2010). However, these contrast agents
must be either repeatedly or continuously administered over
the course of a scan to achieve a constant level of vascular
enhancement. This increases the difficulty of imaging and may
significantly increase the injected dose of contrast agent. As
an alternative to low molecular weight contrast agents, blood
pool contrast agents have been successfully used for a variety
of vascular applications, including measurements of vascular
morphology, diameter, and branching (Vandeghinste et al., 2011),
imaging pulmonary vasculature (Johnson, 2007), imaging hepatic
vasculature (Chouker et al., 2008), imaging tumor vasculature
(Badea et al., 2006; Graham et al., 2008), and measuring vascular
permeability (Langheinrich and Ritman, 2006). By providing a
constant level of enhancement within the vasculature over a
prolonged period of time (minutes to hours), these contrast
agents simplify the acquisition of vascular images using micro-
CT and allow for a wider range of imaging protocols to be used.
Figure 6 shows an example of vascular imaging. In this study,
micro-CT was used with a liposomal iodine contrast agent in
order to study the vasculature associated with primary soft tissue
sarcomas of the hindlimb (Moding et al., 2013).

Cardiac Imaging
Cardiac imaging is challenging in small animals due to their
rapid heart rate (∼600 bpm for mice). Like respiratory gating
(see Lung Imaging), cardiac gating can be used to minimize
artifacts due to cardiac motion in the resulting CT images.
Cardiac gating can be performed either prospectively (Badea
et al., 2005, 2008a, 2011b; Ford et al., 2005; Guo et al., 2011)
or retrospectively (Bartling et al., 2007; Song et al., 2007; Badea
et al., 2008a, 2011c; Ashton et al., 2014a). In both cases, the
ECG of the animal is continuously monitored. In prospective
gating, each projection is triggered at a pre-defined point of
the cardiac cycle, so that the heart is in the same position
in each of the projections. In retrospective gating, projections
are acquired rapidly over several rotations and then the timing
of the images is compared to the ECG tracing. Each of the
images is sorted into projections belonging to different points
in the cardiac cycle. Each set of projections can then be
compiled together for tomographic reconstruction. Retrospective
gating is much more rapid, but produces an irregular angular
distribution of projections, which can cause artifacts during
the reconstruction process. Because prospectively gated images
are acquired over many cardiac cycles, they require several
minutes to perform. Many cardiac imaging protocols incorporate
both respiratory and cardiac gating to minimize overall thoracic

FIGURE 6 | Coronal maximum intensity projection of intravascular
iodine in a mouse with a soft-tissue sarcoma in the right hindlimb.
Micro-CT imaging (88 µm voxel size) was performed immediately after
injection of a liposomal iodine contrast agent.

motion during the scan (Badea et al., 2004). We note that
intrinsic retrospective gating can also be implemented with
cardiac and respiratory motion signals derived from information
within each of the acquired projections, thus avoiding the
complications of having ECG or respiratory sensors attached to
the mouse (Bartling et al., 2008; Johnston et al., 2010; Kuntz et al.,
2010).

For all cardiac imaging, contrast agents are necessary to
differentiate the myocardium from the heart lumen. Because
cardiac-gated scans can require several minutes to perform,
enhancement of the blood within the heart must remain constant
for a prolonged period of time to produce high quality scans.
Such imaging is possible with low molecular weight contrast
agents by using continuous administration or repeated injections
(Sawall et al., 2012), but the vast majority of studies have made
use of blood pool contrast agents, which make cardiac-gated CT
protocols practical. Because images can be acquired over multiple
phases of the cardiac cycle, cardiac micro-CT can produce 4D
images of the beating heart. These datasets can be used tomeasure
cardiac function, including ventricular volumes, stroke volume,
ejection fraction, wall motion, and cardiac output (Badea et al.,
2005, 2007, 2008b, 2011b; Wetzel et al., 2007). Measurements
of cardiac function by micro-CT can be used to evaluate the
effect of drugs in preclinical studies. Cardiac micro-CT has
been used to measure changes in cardiac function as a result
of dobutamine-induced cardiac stress (Badea et al., 2011c), as
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shown in Figure 7A. Cardiac micro-CT can also be used to
longitudinally measure changes in cardiac function over time.
For example, left ventricular remodeling following a coronary
ligation-induced myocardial infarction has been tracked by
micro-CT (Sheikh et al., 2010). Measurements of cardiac function
and infarct size have also been performed in coronary ligation
mouse models using either a combination of blood pool agent
(Fenestra VC) and a low molecular contrast agent (Nahrendorf
et al., 2007) or a blood pool contrast agent (Exia 160) which shows
specific uptake inmyocardium (Ashton et al., 2014a). An example
of micro-CT imaging of myocardial infarction using a delayed
hyperenhancement protocol (Nahrendorf et al., 2007) is shown
in Figure 7B.

Liver and Spleen Imaging
Blood-pool contrast agents, which avoid renal clearance due
to their large size (>6 nm), are eventually cleared from the
bloodstream by phagocytic cells in the reticuloendothelial system
(Moghimi et al., 2001). This clearance occurs primarily in the
liver and spleen, which leads to accumulation of contrast in
those organs over time. This leads to high enhancement of
these organs for liver and spleen-specific imaging. One of the
most commonly used micro-CT contrast agents, Fenestra LC,
is composed of iodinated phospholipids which are recognized
by the ApoE receptor on hepatocytes and internalized in the
liver, which provides additional specificity for liver imaging.
Because these blood pool contrast agents get taken up by normal-
functioning liver and spleen, they can be used to identify necrotic
regions (Chouker et al., 2008), liver tumors (Almajdub et al.,
2007; Montet et al., 2007; Desnoyers et al., 2008; Graham et al.,
2008; Kim et al., 2008; Boll et al., 2011), and spleen tumors
(Almajdub et al., 2007), as well as to measure organ volume,
quantify hepatic necrosis (Varenika et al., 2013), and determine
liver anatomy (Fiebig et al., 2012). Figure 8 shows longitudinal
imaging of liver metastases as they increase in size over time
following a single injection of nanoparticle contrast agent (Boll
et al., 2011).

Cancer Imaging
Because tumors generally have the same density as their
surrounding tissues, contrast agents are necessary for tumor
identification and characterization by micro-CT. The vast
majority of cancer imaging studies have been performed using
blood pool nanoparticle contrast agents. Nanoparticles tend
to accumulate in tumors due to the enhanced permeability
and retention (EPR) effect (Maeda et al., 2000; Maeda, 2001).
Rapid angiogenesis within a tumor leads to the development
of immature, poorly organized, leaky vasculature. Gaps in this
leaky vasculature are large enough that nanoparticles (up to 200–
300 nm) can readily extravasate into the tumor tissue. Tumors
also tend to have very poorly developed lymphatic drainage,
so the nanoparticles are not cleared from the tumor once they
extravasate. This effect leads to the gradual passive accumulation
of nanoparticles in the tumor perivascular space over the course
of hours to days. EPR has been widely exploited for both tumor
imaging and therapy using nanoparticle agents.

Using micro-CT, dynamic biodistribution of contrast agent
within small animal tumor models can be tracked. A liposomal
iodine contrast agent was used in a rabbit tumor model for
contrast agent tracking and biodistribution analysis (Zheng et al.,
2009). Quantitative analysis was performed to determine the
percent contrast agent uptake within each organ, including the
tumor. Liposomal iodine was also used in two mouse models of
breast cancer to demonstrate dynamic changes in enhancement
within tumor vasculature and tumor parenchyma (Samei et al.,
2009; Ghaghada et al., 2011). Immediately after injection, the
contrast agent is entirely intravascular, with no significant
enhancement within the tumor tissue. This early phase allows for
the analysis of tumor vascular morphology, location, and density.
After the contrast agent was cleared from the bloodstream,
late phase imaging was performed to demonstrate passive
accumulation of the contrast agent in the tumors due to EPR. The
tumors showed heterogeneous enhancement throughout their
volumes, demonstrating spatial heterogeneity in tumor perfusion
and vascular permeability. Figure 9 shows an example of

FIGURE 7 | Cardiac micro-CT imaging. (A) Coronal micro-CT images through the left ventricle of a rat showing the heart in systole (left) and diastole (right) with
and without the administration of dobutamine (10 µg/kg/min). End systolic volume is significantly decreased and stroke volume and cardiac output are both
significantly increased. End diastolic volume is relatively unchanged after administration of dobutamine. (B) An axial image showing myocardial infarction in a rat
using delayed hyper enhancement. The yellow arrows show the boundaries of the region of myocardial infarction.
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FIGURE 8 | Longitudinal micro-CT imaging of liver metastases in a mouse following injection of a nanoparticle contrast agent. A single mouse is shown
at 9 days (A), 12 days (B), 14 days (C), and 19 days (D) after intrasplenic injection of tumor cells. Normal liver tissue is highly enhancing due to nanoparticle uptake,
while the tumor regions show no enhancement. The enhancement remains high within the normal liver over the entire course of the experiment. By day 19,
metastatic tumors take up the majority of the liver volume. Reprinted from (Boll et al., 2011) under the Creative Commons Attribution License.

FIGURE 9 | Longitudinal micro-CT imaging of liposomal iodine biodistribution. Liposomes slowly accumulate in the subcutaneous tumor, liver, and spleen
over the course of 72 h. The white arrow points to the location of the tumor in each image.

nanoparticle dynamic biodistribution and tumor accumulation
for a mouse injected with liposomal iodine (Ghaghada et al.,
2011). Immediately after liposome injection, blood vessels are

clearly outlined. At later time points, the liposomes accumulate
both in the flank tumor and in the liver and spleen. Further
studies have been done in mouse xenograft tumor models to
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carefully map the spatial and temporal distribution of liposome
uptake by micro-CT (Ekdawi et al., 2015), which has important
implications for nanoparticle-based drug delivery.Measurements
of tumor vascular density in early phase imaging and total
contrast accumulation in late phase imaging have also been used
in two mouse models of lung cancer to differentiate between
benign and malignant cancer types (Badea et al., 2012). Iodine-
containing nanoparticle contrast agents have also been used for
tumor imaging in two other models of lung cancer (Kindlmann
et al., 2005; Anayama et al., 2013) and a mouse model of liver
cancer (Rothe et al., 2015). Gold nanoparticles have also been
used for passive tumor targeting in mouse models of breast and
brain cancer (Hainfeld et al., 2006, 2013).

Active Targeting
In addition to the passive accumulation of nanoparticles in
the reticuloendothelial system or tumors, active targeting of
nanoparticles can be accomplished by conjugating specific
ligands to the nanoparticle surface which can then link to their
binding partners in vivo (Erathodiyil and Ying, 2011). Typically,
these binding partners are cellular receptors or extracellular
matrix proteins that are overexpressed in a pathological
condition, so binding is specific to the region of pathology.
Potential ligands for conjugation to the nanoparticle surface
include antibodies, antibody fragments, other proteins, peptides,
aptamers, lipids, carbohydrates, and other small molecules. The
use of targeted contrast agents for micro-CT has recently been
reviewed (Li et al., 2014). Gold nanoparticles have been used
extensively for active targeting due to the ease of gold surface
modification via gold-thiol bond formation. Gold nanoparticles
have been used as a micro-CT contrast agent for the targeting of
multiple tumor markers, including Her2 (Hainfeld et al., 2011),
the gastrin-releasing peptide (GRP) receptor (Chanda et al.,
2010), the epidermal growth factor receptor (EGFR) (Reuveni
et al., 2011b), the folic acid receptor (FAR) (Wang et al., 2013),
and tumor microcalcifications (Cole et al., 2014). Figure 10
demonstrates the use of EGFR-antibody conjugated gold
nanoparticles to target an EGFR-expressing subcutaneous tumor.
Tumor enhancement was significantly increased with targeted
gold nanoparticles compared to non-targeted gold nanoparticles
(190 HU vs. 78 HU). Gold nanoparticles have also been used for
CT imaging of lymph nodes by targeting CD4 (Eck et al., 2010),
imaging of inflammation by targeting intravascular E-selectin
(Wyss et al., 2009), imaging of atherosclerosis by targeting fibrin
(Winter et al., 2005), imaging of myocardial scars by targeting
collagen (Danila et al., 2013), and imaging of other cardiovascular
disease (Ghann et al., 2012). In addition to targeting by the
surface conjugation of a ligand, some nanoparticles have inherent
targeting abilities due to their nanoparticle chemistry. Gold
nanoparticle encapsulated within HDL particles are naturally
recognized by HDL receptors and taken up in atherosclerotic
plaques (Cormode et al., 2010). Exia-160 consists of iodinated
molecules which can be fully metabolized by the body, and
therefore the contrast agent accumulates in metabolically active
tissues, including the myocardium and brown adipose tissue.
This effect has been used to discriminate between healthy and
infarcted myocardium (Ashton et al., 2014a).

Targeted CT imaging can also be accomplished by labeling
cells with nanoparticle contrast agents. Cell labeling with
nanoparticles has been successfully used for MRI and other
imaging modalities, but has only recently been demonstrated for
CT (Betzer et al., 2014). In this study mesenchymal stem cells
were labeled with gold nanoparticles prior to injection into a
rat model of depression. Cell migration into depression-related
bring regions was successfully tracked up to 1 month post-
transplantation using micro-CT. The continued development
of CT contrast agents for targeted imaging and cell tracking
will improve the specificity of CT imaging for a wide range of
pathologies and cell therapies and will make molecular imaging
with CT a reality.

Multi-modality Imaging
Micro-CT can also be combined with other imaging modalities
in order to better study molecular and anatomical information
simultaneously. A micro-CT system can be combined with
single photon emission computed tomography (SPECT),
positron emission tomography (PET), or fluorescence molecular
tomography (FMT) into a single unit (Goertzen et al., 2002;
Liang et al., 2007). SPECT, PET, and FMT are all highly
sensitive, so targeted molecular imaging with radio-labeled or
fluorescently labeled small molecules or biomolecules is readily
accomplished. However, these modalities are all limited by poor
spatial resolution and poor anatomical imaging. By combining
these systems with micro-CT, high resolution anatomical images
can be co-registered with molecular images to produce highly
useful datasets. Combining micro-SPECT and micro-PET with
micro-CT can also improve the image quality of the resultant
SPECT and PET images by allowing for attenuation correction
(Chow et al., 2005; Hwang and Hasegawa, 2005). Figure 11
shows a combined micro-CT/micro-PET image for a tumor-
bearing mouse soon after injection of both liposomal iodine
and 18F-fluorodeoxyglucose (FDG) (Badea et al., 2011a). The
micro-CT image provides high resolution anatomical detail to
give context to the tumor signal seen in the micro-PET image.

A second application of multi-modal imaging which has
gained much attention recently is the use of agents that produce
contrast for multiple imaging modalities simultaneously. Thus,
multiple imaging modalities can be used after injection of
a single contrast agent. This helps to improve registration
between the different modalities, and increase the amount
of information gained from hybrid imaging systems. Many
different formulations of multi-modal contrast agents have been
developed, and the development of these agents has been
reviewed previously (Key and Leary, 2014). Combined CT/MR
contrast agents have been developed using gadolinium chelates
conjugated to gold nanoparticles (Alric et al., 2008) or gold
nanoshells (Coughlin et al., 2014), liposomes containing both
gadolinium and iodine-based contrast agents (Zheng et al., 2006),
and iron oxide core nanoparticles surrounded by either a gold
shell (Carril et al., 2014) or a mesoporous silica shell filled with
iodinated oil (Xue et al., 2014). A combined CT/SPECT agent
has been developed using a dendrimer linked to both iodinated
organic molecules and SPECT agent chelators (Criscione et al.,
2011). A combined PET/CT agent has been demonstrated using
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FIGURE 10 | 3D micro-CT reconstructions of mice with EGFR-expressing tumors. Mice were injected with (A) saline, (B) non-targeted gold nanoparticles, or
(C) EGFR-antibody targeted gold nanoparticles. Increased CT enhancement was seen for both types of nanoparticles, but targeted nanoparticles showed
significantly higher enhancement than non-targeted controls. Reprinted from with permission from (Reuveni et al., 2011a)

FIGURE 11 | Multi-modal micro-CT/micro-PET imaging. (A) Maximum intensity projection rendered micro-CT image acquired 1 h post-administration of
PEGylated liposomal-iodixanol. (B) The overlaid PET/CT image shows the metabolically active tumor (green ellipse).

gold nanoparticles conjugated to both glucose and 18F-FDG for
targeting of metabolically active tumors (Roa et al., 2012; Feng
et al., 2014). All of these formulations have been successfully
tested in vivo with multi-modal small animal imaging.

Theranostics
Another exciting topic of current research is the development
of theranostic nanoparticles – nanoparticles that can be used
for both therapy and diagnostic imaging. Many nanoparticles
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used as micro-CT contrast agents can easily be adapted to
incorporate therapeutics or act directly as a therapeutic agent
themselves. Gold nanoparticles, for example, have the inherent
ability to increase the effectiveness of radiation therapy, because
they absorb therapeutic x-rays efficiently and then release that
energy to the surrounding tissues. This can significantly increase
the locally delivered dose in regions of high nanoparticle
concentration. This has been used by several groups to effectively
treat cancer in multiple animal models (Hainfeld et al., 2004,
2008, 2010, 2013, 2014; Jeremic et al., 2013; Park et al.,
2015; Wolfe et al., 2015). Gold nanoparticles also exhibit
high absorbance of light at their surface plasmon resonance
wavelength, which can be tuned by altering the shape and size
of the nanoparticle. For many gold nanoparticle shapes (i.e.,
nanorods, nanoshells, nanostars), this plasmon resonance occurs
in the near infrared region, which is optimal for use with
photothermal heating. In photothermal heating, nanoparticles
convert laser light into heat, which leads to local hyperthermia.
This can be used for tumor ablation when nanoparticles are
accumulated within a tumor. The use of nanoparticle for
combined CT imaging and photothermal therapy has been
recently reviewed (Curry et al., 2014). Gold nanorods (Huang
et al., 2011) and hollow gold nanoshells (Park et al., 2015)
have both been used for combined CT imaging, radiation
therapy, and photothermal therapy. Figure 12 shows a gold
nanostar theranostic probe which was used for CT imaging
and photothermal therapy in a mouse model of primary soft
tissue sarcoma (Liu et al., 2015). This probe showed high tumor
accumulation and CT enhancement as well as effective tumor
ablation following photothermal therapy. Therapeutics can also
be incorporated into nanoparticles by direct conjugation to the
nanoparticle surface or by co-encapsulation of the therapeutic
with the imaging agent (e.g., within the aqueous core of a
liposome). Both methods have been used for the addition of
therapeutic radioisotopes or chemotherapy drugs to nanoparticle
contrast agents (Chen et al., 2014; Lu, 2014; Ryu et al., 2014; Zhu
et al., 2014).

FUTURE DIRECTIONS – SPECTRAL CT

Much effort has been made to overcome the low contrast
sensitivity inherent in CT imaging. The primary method, as
discussed above, is to add large amounts of an exogenous contrast
agent. However, significant developments have also been made
in imaging system design which can potentially improve CT
image contrast. One of the most promising recent developments
in CT has been the use of spectral information to improve
contrast discrimination. In traditional CT imaging, the overall
attenuation of x-ray intensity is measured by the detector, but
the detected x-rays are not spectrally resolved. The spectrum of
transmitted x-rays is important because the absorption of x-rays
by different materials is highly dependent on x-ray energy, so
the transmitted x-ray spectrum depends on what materials are
present along the x-ray path. Therefore, there is a significant
amount of information that can be gained by including spectral
data in the CT reconstruction process. Based on differences in

FIGURE 12 | Theranostic gold nanostars for micro-CT imaging and
photothermal therapy. (A) TEM image of gold nanostar (scale bar – 20 nm).
(B) Micro-CT axial section through the soft tissue sarcoma on a mouse
hindlimb following gold nanostar injection. Green represents gold
concentration (windowed from 2 to 10 mg/mL). (C) Photothermal therapy
after injection of either gold nanostars or saline. The mice receiving gold
nanostars showed complete remission of their sarcoma, while the control
mice had continued rapid tumor growth.

x-ray absorption, multiple materials can be differentiated and
quantified within a single scan using spectral CT.

There are two primary methods used to obtain spectral
CT data. The first method, dual-energy (DE) CT, uses x-ray
sources with two different energy spectra and traditional energy
integrating x-ray detectors. The second method uses a single
x-ray source but has energy-resolving detectors (photon counting
detectors) that can measure the energy of each detected photons.
DE CT is currently used clinically and has been successful in
improving imaging for a variety of applications (Jepperson et al.,
2013; Aran et al., 2014; Marin et al., 2014; Mileto et al., 2014;
Ohana et al., 2014; Paul et al., 2014; Bongartz et al., 2015)

Dual-energy CT
DE CT can use either a single x-ray source which rapidly switches
between two tube voltages or two separate sources (offset from
one another by 90◦) that each operate at a unique voltage.
In either case, x-ray projections are acquired at each rotation
angle using both x-ray sources. Additionally, a double-layer or
“sandwich” detector is sometimes used to separate low and high
energy x-rays. In DE CT, a complete CT dataset is acquired
for two different x-ray energy spectra. Most of a patient’s body
appears the same on both images, because absorption of x-rays by
low atomic weight materials, which is primarily due to Compton
scattering, is very weakly dependent on x-ray energy. However,
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the photoelectric effect in high atomic weight materials is highly
dependent on x-ray energy. Therefore, the attenuation coefficient
of high atomic weight materials (calcium in bone, iodine, gold)
will depend on the energy spectrum of the incident x-rays. This
effect is particularly pronounced if the two energy spectra fall on
either side of the K-edge for one of the materials. Because there
is a large increase in attenuation at energies above the K-edge
(see Figure 2B), this leads to a large difference in signal between
the two scans. By combining data from the two energy sets,
these high Z materials can be differentiated from one another
and quantified. This process is demonstrated in Figure 13A,
which shows scans of an in vitro phantom containing vials of
water, gold, iodine, or a mixture of gold and iodine. Scans at
two different energies were simultaneously acquired. These two
scans were thenmathematically decomposed into amap of iodine
concentration and a map of gold concentration (Clark et al.,
2013). We note that although the K-edges have helped with the
separation between iodine and gold, we are not able to deliver true
K-edge imaging as is possible with synchrotron mono-energetic
beams.

Spectral separation using DE CT is somewhat limited by
our ability to minimize the overlap of x-ray spectra using
polychromatic sources. Although the peak tube voltage can be
changed over a wide range, the average energy of the resulting
spectrum does not change significantly, as was shown for the
two energy spectra in Figure 2A. The separation between the
two energy spectra can be improved by applying additional
filtration to the x-ray tubes, which can preferentially remove low
energy photons and further increase the average energy of the
x-ray spectrum. The other limitation for DE CT is its ability to
discriminate between closely related elements. Discrimination of
two elements using DE CT is best when there is a large difference
in their attenuations at the two x-ray energies. This works very
well for elements with widely different k-edges (gold and iodine),
but does not work for elements with very similar k-edges (barium

FIGURE 13 | Dual energy micro-CT material decomposition. (A), In vitro
phantom consisting of a large tube of water surrounded by vials containing
gold, iodine, or a mixture of the two. (B), In vivo imaging of gold nanoparticles
and iodine-containing liposomes within a mouse soft tissue sarcoma. The
iodine (shown in red) and gold (shown in green) maps are the result of dual
energy decomposition. In both cases, the decomposition was able to
successfully differentiate the signals from the gold and iodine contrast agents.

and iodine). By careful selection and design of contrast agents,
this limitation can be avoided.

Although DE CT is commonly used in the clinic, its use
has been limited to date in preclinical micro-CT imaging.
The primary challenge with translating CT to micro-CT is the
significant increase in resolution. Because voxel size is much
smaller, the noise is much higher for micro-CT than for clinical
CT. This could be improved by significantly increasing the
number of x-ray photons delivered in order to get the same
photon flux through each voxel. However, the radiation dose
must be limited for in vivo studies, so noise cannot be decreased
to the levels seen in clinical scans. This presents a problem
for DE reconstruction, because the mathematical decomposition
of multiple materials depends on having high quality (low
noise) measurements of attenuation at each voxel. High levels of
noise make material decomposition inaccurate. By minimizing
scatter during acquisition and applying post-acquisition image
processing strategies, beam hardening and noise can be reduced
to allow for successful DE decomposition. It has been shown that
applying joint domain bilateral filtration (an edge-preserving,
smoothing filter that incorporates data from both energy sets)
prior to DE decomposition significantly improves the DE
decomposition accuracy, precision, and limits of detectability
(Clark et al., 2013). The mean limits of detectability for each
element were determined to be 2.3 mg/mL (18 mM) for iodine
and 1.0 mg/mL (5.1 mM) for gold, well within the observed
in vivo concentrations of each element (I: 0–24 mg/mL, Au:
0–9 mg/mL) and a factor of 10 improvement over the limits
without post-reconstruction joint bilateral filtration. In vitro
testing of this method using imaging phantoms containing both
gold and iodine is shown in Figure 13A (Clark et al., 2013).
Using this method, DE micro-CT has been used successfully
for a variety of applications in mice. DE CT was used
for atherosclerosis imaging to differentiate liposomal iodine
accumulated in plaque macrophages from calcium within the
plaque (Bhavane et al., 2013). Iodine accumulated within the
myocardium has been separated from other soft tissues and from
calcium in the bone for imaging of myocardial infarction (Ashton
et al., 2014a). DE CT has been used to separate gold nanoparticles
accumulated within soft-tissue sarcomas (Clark et al., 2013) or
primary lung tumors (Ashton et al., 2014b) from liposomal
iodine within the vasculature. Images of the decomposed gold
and iodine maps for a soft-tissue sarcoma are shown in
Figure 13B. In these studies, the simultaneous measurement of
two different nanoparticle concentrations was used to calculate
tumor vascular density and vascular permeability. Validation
of the calculated results was performed using histology and ex
vivo measurements of tissue gold and iodine concentrations
(Ashton et al., 2014b). In two additional studies, DE CT was
used to assess vascular changes following radiation therapy.
In the first, the increase in vascular permeability in a soft-
tissue sarcoma was determined by measuring accumulation of
liposomal iodine (Moding et al., 2013). In the second study,
cardiac injury following radiation therapy was assessed using gold
nanoparticles and liposomal iodine (Lee et al., 2014). Cardiac-
gated CT imaging was performed to obtain a DE decomposition
of the myocardium at each phase of the cardiac cycle. This data
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was used to assess both extent of cardiac injury and change in
cardiac function.

Our group has recently also demonstrated triple-energy
micro-CT for the differentiation of three materials: gold, iodine,
and gadolinium. Using a novel algorithm called spectral diffusion
(Clark and Badea, 2014), these three materials were successfully
separated and quantified both in an in vitro phantom and in vivo.
Figure 14 shows in vivo images with decomposed concentration
maps depicting liposomal iodine accumulated within the liver
and spleen, gold nanoparticles within the vasculature, and a
low molecular weight gadolinium contrast agent in the kidneys.
Dual and triple-energy CT have the potential to be particularly
useful with targeted contrast agents, so that contrast agents with
multiple different targets can be co-injected and individually
quantified using a single scan.

Photon Counting X-ray Detectors
The alternative to DE CT is the use of energy-resolving photon-
counting x-ray detectors (PCXDs) for spectral CT imaging. The
PCXDs acquire data for each projection using multiple energy
bins. These detectors directly convert photons to a digital signal,
which decreases the noise that is inherent in traditional energy-
integrating detectors (Schirra et al., 2014). Each photon that is
counted by the detector is assigned into one of the energy bins,
which provides an approximation of the energy spectrum of the
transmitted x-rays. Energy bins can be chosen to include regions
of the spectrum above and below the K-edge of the elements of
interest. The measured attenuations from each energy bin can
then be used to simultaneously solve for the concentration of
one or more high atomic weight materials within a single voxel.
This method can also be used quantify the contribution of either
Compton scattering or the photoelectric effect within any given

voxel, which allows accurate separation between signal from soft
tissues and signal from high Z materials.

Photon-counting x-ray detectors are not yet used in standard
clinical CT imaging, but prototype photon counting CT scanners
have been deployed in some research hospitals. It is expected that
PCXDs will likely be generally adopted in the clinical realm once
the technology has further advanced (Taguchi and Iwanczyk,
2013). The primary drawback of current PCXDs is the relatively
low photon count rate for each individual detector. Because it
takes a finite amount of time to count a single photon, the
hardware can fall behind when photon flux is high. This leads to
pulse pileup, which can cause saturation of the detectors and loss
of spectral sensitivity and accuracy (Schirra et al., 2014). Clinical
CT operates at very high photon flux, so this problem must be
resolved before PCXDs can be effectively used clinically. The
most obvious solution is to decrease the detector size, which will
decrease the flux incident on each detector. However, as detectors
become smaller, the charge sharing between detectors increases,
which can lead to multiple counts for single x-rays and counts at
the wrong energies. This leads to spectral distortions and high
noise. Therefore, many researchers are focused on improving
both the hardware and reconstruction algorithms necessary for
optimal spectral imaging with PCXDs.

Although PCXDs are still experimental for clinical CT, their
use in preclinical small animal studies has been successfully
demonstrated. Spectral CT has been used with targeted
nanoparticles to image atherosclerotic plaques (Cormode et al.,
2010). Gold nanoparticles were encapsulated within high-density
lipoprotein (HDL) particles to target plaque macrophages.
A preclinical spectral CT system (Phillips Research, Hamburg)
was used to differentiate the gold from iodine, calcium, and
soft tissues. This analysis was first performed in an in vitro

FIGURE 14 | Three-energy micro-CT imaging in a mouse. Liposomal iodine was injected 72 h before imaging. Gold nanoparticles and low molecular weight
gadolinium were injected immediately before imaging. Images were acquired at three energies, filtered, then separated into maps of iodine (red), gold (green), and
gadolinium (blue) concentration.
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aorta phantom, as shown in Figure 15A. Spectral CT was used
to resolve the signals from gold, iodine and calcium within
the tissue phantom matrix. The spectral CT system successfully
differentiated the phantom regions containing gold, iodine, and
calcium, with very little overlap between the signals. They also
tested the targeting of their gold-HDL particles in a mouse
model of atherosclerosis. Spectral CT (and subsequent histology)
demonstrated that the gold successfully accumulated within
the plaques and that gold could be discriminated from iodine,
calcium, and soft-tissue in vivo, as seen in Figure 15B. The
same HDL-encapsulated gold nanoparticles have been used along
with a blood pool iodine contrast agent to simultaneously image
the signals from gold accumulated within lymph nodes, iodine
within the blood, bone, and soft tissue (Roessl et al., 2011).

Low density-lipoproteins (LDLs) labeled with gold nanoparticles
have also been used to image tumors using spectral CT (Allijn
et al., 2013). Gold nanoparticles accumulating in lymph nodes
after subcutaneous injection have been differentiated from
soft tissue and bone (Schirra et al., 2012). Iodine within the
vasculature and barium within the gastrointestinal tract have
been imaged and differentiated from bone and soft tissue
(Anderson et al., 2010). Spectral imaging has also been used
to detect novel ytterbium nanoparticles within the vasculature
(Pan et al., 2012) and organic bismuth nanocolloids targeted
to fibrin-rich clots (Pan et al., 2010). In both cases, spectral
CT was used to differentiate contrast agent signal from soft
tissue and bone. The primary limitation in all of these studies
was that the low photon-count rate limitations of the PCXD

FIGURE 15 | Spectral micro-CT imaging using photon counting x-ray detectors and HDL-encapsulated gold nanoparticles. (A) In vitro aorta phantom
study demonstrating the conventional CT image along with the decomposition of the CT image into gold, iodine, photoelectric, and Compton components. (B) In
vivo imaging of targeted gold nanoparticles and blood pool iodine in a mouse model of atherosclerosis. The iodine (red) can be clearly visualized within the aorta,
while the gold signal (yellow) is immediately adjacent to the aorta lumen in the atherosclerotic plaque. Reprinted with permission from (Cormode et al., 2010).
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system resulted in a long scan time. Because the scan time
was so long, the imaging was done after sacrificing the animals
in order to prevent motion over the course of the long
acquisition. Despite the limitations, these studies demonstrate
that spectral CT using a PCXD system has the potential for
high quality in vivo imaging and material discrimination. Some
technical problems remain to be solved, but PCXD systems
have great promise for use in both preclinical and clinical CT
imaging.

RADIATION DOSE CONSIDERATIONS

One of the primary drawbacks of x-ray CT imaging is exposure to
radiation. X-ray radiation exposure can lead to biological damage
and long-term health effects (Boone et al., 2004). Radiation
exposure is particularly important to consider for micro-CT
applications, because higher radiation doses are required for
high resolution CT scans. Signal-to-noise ratio in CT is inversely
proportional to the square root of the number of x-rays passing
through each voxel. As voxel size decreases, the number of
x-rays necessary to maintain a constant signal-to-noise ratio
increases significantly. In planning micro-CT studies, a balance
must be made between desired image quality and radiation
exposure.

The LD50/30 radiation dose in mice (the dose required to
kill 50% of mice within 30 days) depends on many factors,
but tends to be between 5 and 8 Gy (Ritman, 2004; Carlson
et al., 2007). The typical radiation dose for a single micro-
CT scan can vary widely and reported values in the literature
range from 0.017 Gy to 0.78 Gy (Carlson et al., 2007). Rodents
have the ability to repair damage from low doses of radiation
(∼0.3 Gy) over the course of several hours (Parkins et al.,
1985), so most low dose micro-CT scans should have limited
biological impact, even when the same animals are longitudinally
scanned over the course of a study. But for higher dose
scans, longitudinal imaging can potentially lead to a cumulative
dose that could affect biological function (particularly immune
function and tumor response) and long-term health (Boone
et al., 2004). Therefore, careful consideration must be made
to determine the optimal imaging protocol for each individual
application to minimize the effects of radiation dose on the
experiment. With additional advances in micro-CT technology
and reconstruction algorithms, radiation doses should further
decrease, which will help to overcome radiation as a limitation
of micro-CT imaging.

NANOPARTICLE CONTRAST AGENT
SAFETY

Understanding the potential toxicity of nanoparticles is essential
in order to apply nanoparticle contrast agents in vivo and
eventually translate these contrast agents to the clinic. Because
blood pool contrast agents are not rapidly cleared from the
body by the kidneys, they have much more opportunity to
interact with the body and accumulate in various organs.

Since each nanoparticle formulation is unique, rigorous toxicity
testing must be performed for any proposed contrast agent
in order to fully understand its usefulness for both preclinical
research and potential clinical translation. For example, there is
strong evidence regarding bio-compatibility of gold (Cervenka
et al., 1999; Hainfeld et al., 2006; Lin et al., 2009). Gold-based
nano-products are now undergoing clinical trials, e.g., colloidal
Au-based tumor necrosis factor (CYT-6091, CytImmune, Inc.,
Rockville, MD, USA) and gold nanoshells (Nanospectra, Inc.,
Houston, TX, USA). However, there is still uncertainty
regarding the toxicity of many of the recently proposed
nanoparticle contrast agents; although most of the studies
reviewed here have stated that no toxicity has been observed,
comprehensive prospective toxicity studies are still required
to be performed. Because many nanoparticles can accumulate
in the body for up to several months, in depth studies
of long term toxicity are particularly important. A better
understanding of nanoparticle toxicity is necessary for the
further advancement of the field of nanoparticle CT contrast
agents.

CONCLUSION

Micro-CT has become an extremely important tool in small
animal research. Micro-CT produces non-invasive, three-
dimensional, high resolution anatomical images, which can
provide a wealth of information about normal animal function
and pathology. Although x-ray CT is limited by low tissue
contrast, developments in contrast agent design show great
promise for use in imaging a wide range of organ systems
and pathologies. Additional new developments in spectral
imaging will further improve the usefulness of micro-CT
in acquiring functional and molecular information. This will
greatly expand the potential applications for micro-CT in
small animal research. The increasing availability and low cost
of micro-CT scanners promises to greatly increase the use
and impact of micro-CT imaging on small animal studies.
Given the common use of mouse models of disease to
validate potential drug targets, to assess therapeutic efficacy,
and to identify and validate biomarkers of drug efficacy
and/or safety, micro-CT with nanoparticle based contrast agents
can have far-reaching applications in drug discovery and
pharmacology. Continuous development of novel CT/micro-CT
imaging technology and contrast agents will serve well drug
discovery and result in better medicines. Contrast agents and
technology developed for preclinical micro-CT also have the
potential to translate to significant improvements in clinical CT
imaging.
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