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In the peripheral sensory nervous system the neuronal expression of voltage-
gated sodium channels (Navs) is very important for the transmission of nociceptive
information since they give rise to the upstroke of the action potential (AP). Navs
are composed of nine different isoforms with distinct biophysical properties. Studying
the mutations associated with the increase or absence of pain sensitivity in humans,
as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9
as being the most important contributors to the control of nociceptive neuronal
electrogenesis. Modulating their expression and/or function can impact the shape
of the AP and consequently modify nociceptive transmission, a process that is
observed in persistent pain conditions. Post-translational modification (PTM) of Navs
is a well-known process that modifies their expression and function. In chronic pain
syndromes, the release of inflammatory molecules into the direct environment of dorsal
root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes
that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl
groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs
in two different ways: via direct physical interference with Nav gating, or via the
control of Nav trafficking. Both mechanisms have a profound impact on neuronal
excitability. In this review we will discuss the role of Protein Kinase A, B, and C,
Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in
peripheral chronic pain syndromes. We will also discuss more recent findings that the
ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are
also implicated in the development of experimental neuropathic pain. We will address
the potential roles of other PTMs in chronic pain and highlight the need for further
investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate
pain.

Keywords: voltage-gated sodium channels, post-translational modification, chronic pain, hyperexcitability,
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PAIN, NOCICEPTION, INFLAMMATORY
AND NEUROPATHIC PAIN

The ability to recognize and remember danger is one of the
major evolutionary steps necessary for survival in a hostile
environment. The primary line of defense for organisms relies
on the primary nociceptive neurons, which are activated when
stimuli intensities reach the noxious range. The peripheral
endings of nociceptive neurons are found in almost all tissue of
the body, i.e., skin, muscle and internal organs (Kruger et al.,
2003). Their cell bodies are located in the dorsal root ganglia
(DRG) or the trigeminal ganglia (TG) for the innervations
of the face. Central terminals of primary nociceptive neurons
project to the dorsal horn of the spinal cord where they make
their first synapse with secondary order sensory neurons and/or
interneurons (Millan, 1999). At this level, the transmission
of the signal by the secondary order projection neurons to
the supra spinal centers is modulated by a complex network
of the dorsal horn. A barrage of activity or neurotransmitter
release from the periphery can highly modulate the excitability
of the secondary order neurons (Latremoliere and Woolf,
2009). Spinal neurons are subjected to change by microglial,
astrocytic and oligodendrocitic cells (Fotia et al., 2002; Lou et al.,
2005). Furthermore, descending projections from supra-spinal
centers can affect the central terminal of the primary sensory
neuron, the projection neuron and the inhibitory and excitatory
interneurons. The signal is eventually processed and reaches
supra-spinal centers, including brain areas involved in sensory
and emotional pain perception. At this point, complex circuitries
process and integrate the pain signal and allow for appropriate
behavioral and motor responses. These circuitries also modulate
pain signaling via descending pathways that ultimately reach the
dorsal horn neurons.

For the most part, primary nociceptive neurons are polymodal
(Dubin and Patapoutian, 2010), in that they are able to detect a
wide range of stimuli, such as heat and mechanical or chemical
stimuli. To integrate these wide ranges of stimuli, nociceptive
neurons express a multitude of receptors and ion channels
in their free endings (Basbaum et al., 2009). There are many
review articles that extensively discuss these so called transducers,
i.e., TRP channel family members or acid-sensing ion channels
(ASICs; Basbaum et al., 2009; Stucky et al., 2009; Deval et al.,
2010). Once transducers are activated, these non-selective ion
channels open and contribute to cell depolarization, thus eliciting
an action potential (AP) and allowing for the transmission of a
noxious signal along pain pathways.

Nociception enables the organism to react quickly, and
by virtue of the emotionally offensive component of pain,
helps the organism avoid similar situations in the future.
When the noxious stimulus is acute, pain is transient and the
nociceptive neurons should subsequently return to a resting
state. This process is referred to as nociception. On the
other hand, tissue injury leads to longer lasting inflammatory
pain, characterized by peripheral sensitization. Inflammatory
pain is due to the modification of the chemical environment
surrounding nociceptive neurons and the accumulation of
several factors secreted by recruited non-neural cells, such

as mast cells, macrophages, neutrophils, inflammatory cells,
fibroblasts and keratinocytes, as well as by the nociceptive
neurons themselves. These factors are of diverse origins but
include protons (H+), nerve growth factors (NGFs), cytokines
(such as IL-1β, IL-6), tumor necrosis factor alpha (TNF-α),
prostaglandins (PGE2), several neurotransmitters (serotonin,
ATP) and peptides (bradykinin, substance P, CGRP). This
mixture is commonly referred to as “the inflammatory soup”
(Basbaum et al., 2009), and will increase spontaneous neuronal
firing, usually decrease the threshold of nociceptive neurons
and increase firing in response to suprathreshold stimuli.
The mechanisms by which inflammatory pain increases pain
transmission include the activation of kinases that phosphorylate
membrane channels and receptors, which subsequently alter
their function, and the genetic regulation of primary sensory
neurons (Woolf and Costigan, 1999). Inflammatory pain, by the
virtue of central sensitization, is also accompanied by the local
loss of inhibition (Julius and Basbaum, 2001) and enhanced
postsynaptic transmission (Galan et al., 2004).

Inflammatory pain is linked to the persistence of
inflammation, but should fade away when the tissue is healed.
In some cases, however, abnormal activity from the peripheral
neurons can also occur in the absence of tissue inflammation.
This abnormal activity occurs when nociceptive neurons
are damaged and elicit long-term molecular modifications
that eventually lead to neuropathic pain. Neuropathic pain
is defined as the “pain caused by a lesion or disease of the
somatosensory system” (Heikamp et al., 2014). This definition
reflects that not only nerve injury, but also degenerative,
infectious or metabolic conditions can lead to neuropathic pain,
accounting for the distinct etiologies of peripheral neuropathic
pain (e.g., compressive disk herniation, diabetic neuropathy,
chemotherapeutic-induced neuropathy, post-herpetic neuralgia,
etc.) (Woolf and Mannion, 1999). The prevalence of neuropathic
pain varies from 7 (Bouhassira et al., 2008) to 18% of the
population (Toth et al., 2009). Most of these patients are
often resistant to treatment (Brower, 2000). Neuropathic pain
cardinal positive symptoms are spontaneous pain, allodynia
and hyperalgesia, but can be also associated with negative
symptoms such as hyposensitivity in a related nerve territory.
Spontaneous pain is thought to arise from ectopic activity, which
can be driven by C- (Djouhri et al., 2006) and A-fibers (Liu
et al., 2000); where as allodynia and hyperalgesia are related
to reduced activation thresholds or an increased response
of primary afferent neurons (von Hehn et al., 2012). The
peripheral mechanisms underlying neuropathic pain associated
hyperexcitability have been extensively reviewed in other articles
(Julius and Basbaum, 2001; Woolf, 2004; Campbell and Meyer,
2006; Hucho and Levine, 2007). These mechanisms include
altered gene expression, dysregulation of membrane channel
expression, migration of inflammatory cells and activation of
satellite cells in DRG neurons. The increased peripheral input
leads to activity-dependent mechanisms of central sensitization
in the spinal cord and supra-spinal levels (Woolf and Salter, 2000;
Latremoliere and Woolf, 2009; Woolf, 2011). Although they
share similar pain symptoms and some common mechanisms,
inflammatory and neuropathic pain differ fundamentally by their
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respective pharmacology and resolution. Altogether, peripheral
and central mechanisms will lead to enhanced and long-lasting
pain perception, which will ultimately result in debilitating
chronic conditions, sleep disturbances, depression, anxiety and
social withdrawal (Bair et al., 2003; Turk et al., 2010). On the
other side of the spectrum, in diseases where patients can no
longer experience pain appropriately, such as in congenital
insensitivity to pain, the pain signal is permanently shut off.
This results in an inappropriate behavioral response and a
reduced life expectancy in a subset of individuals (Nagasako
et al., 2003).

Navs: STRUCTURE AND FUNCTION

After activation via transducers, primary nociceptive neurons
transmit the signal along the axon to the spinal cord. Voltage-
gated sodium channels (Navs) play a critical role in this process.
Navs are activated upon depolarization of the transmembrane
voltage, generating a fast, transient and massive inward sodium
current, which accounts for the rising phase of the AP. Navs give
rise to the upstroke of the AP and contribute to setting the resting
membrane potential of nociceptive neurons (Herzog et al., 2001;
Rush et al., 2007).

Since the first biochemical characterization of Navs (Beneski
and Catterall, 1980), tremendous effort has been made to
unravel the structure and function of the sodium channel. The
α-subunit is encoded by a single gene, which is structurally
divided into four homologous domains (I-IV) connected
by an intra and/or extracellular loop, thus referred to as
heterotetramere. Each domain is composed of six α-helical
transmembrane segments. S5 and S6 compose the pore of
the channel, whereas S1 – S4 are the voltage sensors.
The crystallography structure of NavAb, a bacterial sodium
channel from Arcobacter butzleri, was identified in 2011
(Payandeh et al., 2011). Although NavAb is a homotetramere
and the mammalian Navs is heterotetrameric, they share
similar pharmacological profiles (Ren et al., 2001). Most
of the inferences made based on previous biochemical and
electrophysiological experiments have been confirmed (Payandeh
et al., 2011).

Nine discrete genes (SCNxA) encode for the α-subunits
(Nav1.1 to Nav1.9 isoforms) (Catterall et al., 2005) and another
atypical tenth isoform, NaX (Akopian et al., 1997; Noda
and Hiyama, 2014). Each isoform has its own biophysical
properties and particular expression pattern across the nervous
system. A single amino acid substitution in the S5–S6
linker renders Nav1.5, Nav1.8, and Nav1.9 resistance to
TTX.

α-subunits are accompanied by associated β-subunits with an
assumed stoichiometry for an α-β association of 1:1 (Catterall,
1992). There are four different identified genes coding for the
different β-subunits: SCN1B codes for β1 (Isom et al., 1992)
and its associated splice variant β1A (Kazen-Gillespie et al.,
2000); SCN2B codes for β2 (Isom et al., 1995a); SCN3B codes
for β3 (Morgan et al., 2000) and SCN4B codes for β4 (Yu
et al., 2003). The pore-forming α-subunit enables for Na+

conductance, but the β–subunits can modulate the biophysical
properties and plasma membrane stabilization of Navs (Isom
et al., 1995b).

Nav1.7, Nav1.8, and Nav1.9 ARE
EXPRESSED IN NOCICEPTIVE
NEURONS

Navs are broadly expressed in excitable cells throughout the
body, with some isoforms ubiquitously expressed and others
expressed in specific tissues. In nociceptive neurons, many of
the different Navs isoforms are present and collaborate with one
another for electrogenesis. With the exception of Nav1.2 and
Nav1.4, all the Nav isoforms are expressed in DRG nociceptive
neurons (Black et al., 1996; Rush et al., 2007; Berta et al.,
2008; Fukuoka et al., 2008; Fukuoka and Noguchi, 2011; Ho
and O’Leary, 2011). The role of Nav1.5 in adult small DRG
neurons has not been fully unraveled (Renganathan et al., 2002).
As compared to Nav1.1 and Nav1.6, the Nav1.7 isoform is
the most expressed TTX-sensitive isoform among the DRG
neurons (Black et al., 1996; Toledo-Aral et al., 1997; Berta
et al., 2008; Ho and O’Leary, 2011; Dib-Hajj et al., 2013).
The two TTX-resistant isoforms, Nav1.8 and Nav1.9, are also
highly expressed in nociceptive neurons (Akopian et al., 1996;
Dib-Hajj et al., 1998). During the last decade, mutations in
Nav1.7, Nav1.8, and Nav1.9 have been linked with human pain
disorders (see Inherited Pain Syndromes). The possible variable
combinations of each of these “pain specialized” isoforms, as well
as their relative expression levels, differentially shape the AP and
firing properties, accounting for the heterogeneity among DRG
neurons (Rush et al., 2007; Theriault and Chahine, 2014). In this
review, we focus on the roles of Nav1.7, Nav1.8, and Nav1.9 in
chronic pain states.

Navs’ IMPLICATION IN PAIN
SYNDROMES

Reviewing all the studies that have investigated the Nav1.7,
Nav1.8, and Nav1.9 mutations associated with painful
channelopathies and those studies that have investigated the
expression of Navs in human and animal models of pathological
pain is beyond the scope of this review and can already be found
in other recent reviews (Brouwer et al., 2014; Waxman et al.,
2014; Waxman and Zamponi, 2014; Hoeijmakers et al., 2015). In
the next two chapters we will summarize some of the key findings
demonstrating the role of Navs in channelopathies and in animal
models of inflammatory pain, and we will discuss conflicting
results observed in neuropathic pain in both human and animal
studies.

Inherited Pain Syndromes
The contribution of Nav1.7, Nav1.8, and Nav1.9 in chronic pain
syndromes is exemplified through human mutations (familial
and de novo mutations) of these channels and their associated
pathologies, being either pain hypersensitivity or congenital
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insensitivity to pain (Dib-Hajj et al., 2009; Liu and Wood, 2011;
Waxman et al., 2014). Seminal studies have linked Nav1.7 to
altered pain sensitivity. A gain of function for this gene leads
to inherited painful channelopathies, such as erythromelalgia
(Cummins et al., 2004; Yang et al., 2004) and paroxysmal extreme
pain disorder (Fertleman et al., 2006). Conversely, a loss of
function for Nav1.7 was reported to be associated with congenital
insensitivity to pain (Cox et al., 2006). Many other studies have
identified Nav1.7 mutations as being implicated in numerous
altered pain sensation pathologies (Dib-Hajj et al., 2005, 2013;
Waxman andDib-Hajj, 2005; Fertleman et al., 2006; Novella et al.,
2007; Cheng et al., 2008). A gain of function mutation of Nav1.9
was linked to an episodic pain disorder (Zhang et al., 2013); while
another gain of function mutation of Nav1.9 was reported to
cause a loss of pain perception (Leipold et al., 2013). In the latter
the authors showed that the excessive activity of Nav1.9 at resting
voltages caused sustained depolarization of nociceptive neurons,
leading to the inactivation of other Navs and subsequently to the
impairment of the AP generation. Other studies also highlighted
a role of Nav1.7 in idiopathic small-fiber neuropathy (I-SFN);
nearly 30% of patients suffering from this pathology had a gain
of function mutation in Nav1.7 (Faber et al., 2012a). Small fiber
peripheral neuropathy is a type of peripheral neuropathy that
occurs from damage to C-fibers and A-δ fibers, which can often
lead to exaggerated pain sensitivity (Hoeijmakers et al., 2012).
Since these first studies, similar gain of function mutations in
Nav1.8 and Nav1.9 have been reported in I-SFN (Faber et al.,
2012b; Han et al., 2014; Huang et al., 2014). None of the previous
gain of function mutations of Nav1.7, Nav1.8, and Nav1.9 have
been studied in animal models of chronic pain.

Acquired Pain Syndromes
Apart from intrinsic modifications of Nav channel function,
a modification of expression levels will also impact neuronal
excitability. Most of the studies that are discussed here
investigated Nav expression while assuming that an increased
sodium channel expression and conductance would cause
neuronal hyperexcitability, something already demonstrated by
computer simulations (Matzner and Devor, 1992). However,
the link between increased sodium channel expression and
hyperexcitability is likely more complex. For instance,
computational studies revealed that increasing the sodium
conductance might actually decrease the firing rate of neurons
(Kispersky et al., 2012). In addition, a gain of function mutation
of Nav1.9 was recently shown to be associated with congenital
insensitivity to pain (Leipold et al., 2013).

Modifications in Nav1.7, Nav1.8, and Nav1.9 expression have
been observed in several chronic pain syndromes. Both human
studies and experimental pain model studies have helped unravel
the role of these isoforms in chronic pain syndromes, including
both inflammatory and neuropathic pain.

There is substantial evidence linking Nav1.7 to inflammatory
pain in animal studies. Studies have reported an increase of
Nav1.7 expression after injection of pro-inflammatory mediators
(Gould et al., 2000; Black et al., 2004). Knocking-down Nav1.7
in a model of inflammatory pain with a viral vector in
primary afferents (Yeomans et al., 2005) led to the attenuated

development of hyperalgesia, a result confirmed by another study
using Nav1.7 knockout mice (Nassar et al., 2004). Similarly to
Nav1.7, knocking down (Khasar et al., 1998) or knocking out
Nav1.8 (Khasar et al., 1998; Akopian et al., 1999) prevented
full development of pain hypersensitivity in inflammatory pain
models. Nav1.8 was also shown to be increased in inflammatory
pain models (Coggeshall et al., 2004; Strickland et al., 2008),
and its role was confirmed in knockdown studies (Yu et al.,
2011) and in studies using specific blockers (Jarvis et al., 2007;
Moon et al., 2012). Other studies also support a role for Nav1.9
in inflammatory pain (Dib-Hajj et al., 2010). Nav1.9 knockout
mice or knockdown rats have a weaker response to inflammatory
mediator application (Hirade et al., 1999; Priest et al., 2005;
Amaya et al., 2006; Lolignier et al., 2011; Hockley et al., 2014).

Dysregulated Nav expression, by altering the intrinsic
electrical properties of neuronal plasma membranes, is largely
accountable for neuropathic pain-associated hyperexcitability
(Matzner and Devor, 1994; Zhang et al., 1997). Navs’ contribution
to neuropathic pain is also demonstrated by the application
of local anesthetics known to block sodium channels, which
suppresses ectopic discharges and attenuates allodynia and
hyperalgesia (Mao and Chen, 2000; Suter et al., 2003; Scholz et al.,
2005).

The development of nerve injury-induced neuropathic pain
animal models has significantly contributed to the discovery of
mechanisms that contribute to neuropathic pain syndromes, but
also gave rise to conflicting results. For instance, the role of
Nav1.7 in neuropathic pain is still being debated. Nav1.7 mRNA is
reduced after peripheral nerve injury-induced neuropathic pain
in rats (Berta et al., 2008; Laedermann et al., 2014b; Casals-Diaz
et al., 2015), an observation confirmed by reduced levels of the
Nav1.7 protein. Furthermore, Nav1.7 knockout mice still develop
neuropathic pain-mediated mechanical allodynia (Nassar et al.,
2004). More recent studies suggest that Nav1.7 is actually
implicated in neuropathic pain by virtue of its concomitant
expression in both sympathetic ganglion neurons and nociceptive
neurons, rather than solely in nociceptive neurons (Minett et al.,
2012). In contrast, other studies have reported an increased
expression of Nav1.7 mRNA in DRG neurons (Liu et al., 2012),
as well as an increased protein expression in the sciatic nerve
of animal experimental neuropathic pain models (Laedermann
et al., 2013a). In humans, many studies reported an increased
expression of this isoform, such as in intervertebral disk injury
(Sadamasu et al., 2014), human dental pulp neuromas (Luo et al.,
2008b) and other neuromas (Coward et al., 2001a; Kretschmer
et al., 2002; Bird et al., 2007; Persson et al., 2011).

Nav1.8 regulation is also controversial in experimental nerve-
injury induced neuropathic pain. Many studies have reported a
downregulation of Nav1.8 mRNA (Waxman, 1999; Berta et al.,
2008), protein (Decosterd et al., 2002) and currents (Cummins
and Waxman, 1997; Berta et al., 2008) in rodent models.
Another group, however, reported an increase of the Nav1.8-
mediated current (Abdulla and Smith, 2002). To reconcile these
contradictory findings, it was suggested that a decrease in the
expression of Nav1.8 mRNA and protein in the cell soma of
nociceptive neurons could be due to a redistribution of this
isoform in the sciatic nerve (Gold et al., 2003; Thakor et al., 2009).

Frontiers in Pharmacology | www.frontiersin.org 4 November 2015 | Volume 6 | Article 263

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Laedermann et al. Pain and post-translational modifications of sodium channels

Controlling Nav1.8 expression in mice also leads to controversial
results. Gene knockout studies did not find a role for Nav1.8 in
neuropathic pain development (Akopian et al., 1999; Kerr et al.,
2001; Abrahamsen et al., 2008), whereas gene knockdown speaks
in favor of such a role (Lai et al., 2002; Dong et al., 2007; Leo et al.,
2010). It is likely that Nav1.8 involvement depends on the type of
lesion and the model of chronic pain (Joshi et al., 2006). A few
studies carried out in humans showed that Nav1.8 expression was
increased in neuromas (Kretschmer et al., 2002; Black et al., 2008;
Bird et al., 2013).

Nav1.9 implication in neuropathic pain has been scarcely
investigated. A few studies reported a downregulation of Nav1.9
mRNA and protein in animal models of neuropathic pain (Dib-
Hajj et al., 1998; Decosterd et al., 2002; Berta et al., 2008;
Laedermann et al., 2014b; Casals-Diaz et al., 2015; Yin et al.,
2015). A human study reported no modification of Nav1.9
protein in patients with lingual nerve neuromas (Bird et al., 2013).

The conflicting observations of sodium channel regulation
in animal models of neuropathic pain underscores that further
research is necessary to clarify the mechanisms leading to Navs
dysregulation and to those that generate hyperexcitability. Some
of the aforementioned discrepant results can be attributed to the
use of different models of pathological pain, the different species
used, the relocalization of mRNA or protein, and/or various
compensation mechanisms. Some of these studies analyzed the
total pool of cellular Navs, but only Navs anchored at the
membrane regulate the electrogenesis of nociceptive neurons.
There is a large pool of intracellular Navs in the trafficking
pathway (Schmidt et al., 1985), and it is possible that a
modification of the membrane fraction can be overshadowed
if one looks at the overall cellular pool of sodium channels.
Furthermore, it remains possible, that an apparent decrease of
total Nav expression in a cell is concomitant with an increase
membrane expression of sodium channels. Studying mechanisms
that regulate the trafficking of a channel, or mechanisms that
directly alter the biophysical properties of a channel, might
reconcile these discrepant results.

POST TRANSLATIONAL MODIFICATIONS

Both acquired and inherited pain syndromes are manifestations
of altered function and expression of Navs that result in electrical
instabilities in the nociceptive pathway, ultimately leading to
pathological pain. In channelopathies, the pain syndrome is due
to a DNA mutation that can be either sporadic or inherited. In
acquired pain syndromes, the altered expression and function can
be due to a plethora of signaling pathway activations. Among
them, post-translational modifications (PTMs) are important
contributors to the development of chronic pain syndromes.

Post-translational modifications are protein modifications
that occur either soon after the ribosome-mediated translation
of the mRNA into a polypeptide chain or later in the secretory
pathway. These are critical steps for protein maturation
and function. In these processes, many different enzymes
attach biochemical groups (acetylation, phosphorylation),
polypeptides (ubiquitylation, SUMOylation) and complex

molecules (glycosylation, isoprenylation), or cleave (proteolysis)
a protein’s specific amino acid. The overall effect of PTMs leads
to a modulation of the structure, function or localization of the
given protein. PTMs were first identified in the study of kinases
(Hunter, 2009) and protein degradation (Ciechanover, 2005;
Kresge et al., 2006) many decades ago. Since then the number of
different PTMs has risen to over 200 (Mann and Jensen, 2003).
PTMs are involved in almost every cellular event, from precise
gene expression regulation to broad signal integration (Deribe
et al., 2010).

Post-translational modifications have a large spectrum of
action on proteins, ranging from very stable modifications to very
transient and reversible changes. For instance, glycosylation and
disulfide bridge formation are directly implicated in the synthesis,
maturation and folding of the protein. The covalent binding of
molecules, such as the addition of a ubiquitin moiety, leads to
quicker and stable protein modification. On the other side of
the spectrum, some PTMs are versatile and are important for
transient cellular signaling, as exemplified by the phosphorylation
process.

There is precise coupling between the interaction sites of
PTMs and a given amino acid sequence on the target protein,
rendering the system very specific. This also allows for good
spatial (many different amino acids can be targeted by the same
PTM) and temporal (a given amino acid can be modified by
different PTMs) control and allows neurons to fine tune the
properties of a protein depending on the changes occurring in
the direct environment.

PTMs ALTER Nav FUNCTION AND/OR
EXPRESSION

Computational studies have shown that, depending on the site
of phosphorylation, the addition of a phosphoryl group that
carries two negative charges at physiological pH (Narayanan and
Jacobson, 2009) can modify the structure and the function of the
protein through an alteration of the free energy landscape. Navs
possesses charged residues in the voltage sensor domain that can
sense membrane potential oscillation. When the transmembrane
voltage changes, these charged domains reorient in the electric
field resulting in conformational changes, a process referred
to as gating. The addition of charged groups on their intra-
cellular, extra-cellular or transmembrane domains modifies
protein intrinsic properties and functions. Apart from the direct
electrostatic effect on gating of the channels, phosphorylation
can also create or disrupt binding sites for interaction with other
regulatory proteins that modulate Nav function.

Navs need to be at the interface between a high extracellular
and low intracellular sodium concentration to open and drive
sodium influx. For this reason they are only functional when
anchored at the plasma membrane. There is also, however, a
large intracellular pool of Navs in the secretory pathway of the
cell (Schmidt et al., 1985; Ritchie et al., 1990). A tight balance
between the membrane and the intracellular pool, a process
referred to as trafficking, is crucial for the fine-tuning of cellular
excitability in nociceptive neurons. Maintaining this equilibrium
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is largely mediated by PTMs that regulate the trafficking of Navs
(Cusdin et al., 2008). Some enzymes will generate PTMs that
are responsible for internalization and/or degradation, whereas
others will promote externalization or stabilization of Navs at the
membrane.

PERIPHERAL SENSITIZATION
TRIGGERS PTMs

We previously highlighted that peripheral sensitization is
triggered by the inflammatory soup (Basbaum et al., 2009).
There is a large body of evidence that there is a recruitment
of macrophages (Perry et al., 1987) and neutrophils (Daemen
et al., 1998), as well as degranulation of mast cells (Olsson,
1967; Zochodne et al., 1994) in inflammatory processes, such
as the ones observed after nerve injury. Once recruited, these
cells secrete peptides, such as prostaglandins (PGE2), bradykinin,
NGF and serotonin (Cesare et al., 1999; Petho and Reeh, 2012).
They also secret cytokines, such as TNF-α or IL-1β and IL-6
(Wells et al., 1992). Some of these mediators are not only secreted
by immune or inflammatory cells, but also by the nociceptive
neurons themselves (Daemen et al., 1998). When inflammation
resolves, these molecules are slowly cleared from the extracellular
liquid around nociceptive neurons. In some cases, however, pro-
nociceptive molecules, such as NGF and cytokines, (Leung and
Cahill, 2010; Dogrul et al., 2011; Gaudet et al., 2011) are found
to persist at the site of injury. This phenomenon may partially
explain any long-term changes.

When binding to receptors, which include neurotrophic
tyrosine kinase receptors (NTKR), such as TrkA, and/or
G-protein coupled receptors (GPCRs), such as bradykinin and
PGE2 receptors, these aforementioned ligands (peptides and
cytokines) will activate multiple intracellular pathways, including
Protein Kinase A (PKA), Protein Kinase B (PKB), Protein
Kinase C (PKC), Mitogen-activated protein Kinase (MAPK) and
the Ca++/Calmodulin-dependent Kinase I and II (CamKI/II),
among others (Figure 1). The concrete, but not sole, effect of
these cascades is phosphorylation or other PTMs of Navs (Dib-
Hajj et al., 2010), which lead to long-term increased neuronal
excitability. It should, however, be noted that PTMs also control
other ion channels, such as potassium channels, and even
modulate the activation of some transcription factors. Theymight
also regulate nociceptive neuronal excitability through these
alternative mechanisms.

PROTEIN KINASES

Phosphorylation is an important PTM that affects up to 30%
of proteins in vivo (Kreegipuu et al., 1999). The phosphate
group is usually added to serine, threonine, histidine, and
tyrosine residues in eukaryotic proteins. The effect of protein
kinases (PKs) on Navs in peripheral chronic pain syndromes
has been extensively reported in the literature. The reports are
varied and complex, largely due to the important number of
phosphorylation sites and to the large number of different PKs

present in nociceptive neurons. PKs can modulate Nav function
in a very short-term range upon electrostatic interferences.
Phosphate groups carry a −2 charge at physiological pH that
might interfere with the Navs voltage-sensing domain, or other
domains implicated in the gating of the channel. PKs can also
have long-term effects when regulating Nav trafficking, which is
acheived by masking or highlighting targeting sequences, such as
the endoplasmic reticulum (RE) retention signal of Navs (Zhou
et al., 2002).

Protein Kinase A
The immediate increase in nociceptive neuronal excitability
observed after tissue injury or inflammation results from
G-protein-coupled receptor activation and the resulting
intracellular signaling pathway (Woolf and Costigan, 1999).
G-protein binding leads to an increase in cAMP production
by adenylate cyclase (AC), which ultimately activates PKA.
Triggering of this pathway by direct cAMP application or
activation of AC is sufficient to elicit hyperalgesia in animals
(Taiwo et al., 1989; Kress et al., 1996; Hucho and Levine, 2007).
PKA activation not only plays a role in the initiation of pain
hypersensitivity, but is also important for the maintenance of
inflammatory pain (Aley and Levine, 1999). PGE2 is one of the
best-known ligands that activates this pathway. PGE2 binds to the
prostaglandin E2 receptor (E2) and increases cAMP in sensory
neurons (Pierre et al., 2009). Many studies have reported that
PGE2-induced hyperalgesia is due to PKA activation (Pitchford
and Levine, 1991; Khasar et al., 1995; England et al., 1996).

Protein kinase A phosphorylates Nav1.2 in brain neurons
(Costa and Catterall, 1984a; Rossie and Catterall, 1987), with the
main effect being a 50% reduction in the peak current (Gershon
et al., 1992), along with modifications of some biophysical
properties (Li et al., 1992; Smith and Goldin, 1996). This suggests
that both the function and expression of Nav1.2 are modified
by PKA. Since these early studies, other groups have reported
similar decreases in Nav1.1, Nav1.6, and Nav1.7 in different
cell expression systems and intact cells (Gershon et al., 1992;
Cantrell et al., 1997; Smith and Goldin, 1998; Zhou et al., 2000;
Vijayaragavan et al., 2004a; Chen et al., 2008; Liu and Zheng,
2013). The phosphorylation sites of Nav1.2 by PKA were mostly
investigated using traditional biochemical approaches (Murphy
et al., 1993; Smith and Goldin, 1996; Cantrell et al., 1997).
A lot of new predictive bioinformatic tools have helped identify
phosphorylation sites on other isoforms.

Protein kinase A is increased after inflammation and in
pathological pain states. Vijayaragavan et al. (2004a) showed
that PKA decreases Nav1.7. One could hypothesize, therefore,
that inflammation may decrease nociceptive neuronal excitability
through Nav downregulation. However, Nav1.7, as well as other
Nav isoforms, can undergo alternative splicing, with each splice
variant possessing distinct biochemical and pharmacological
properties (Schaller et al., 1992; Plummer et al., 1997; Dietrich
et al., 1998; Schirmeyer et al., 2014). It was previously shown that
a particular Nav1.7 splice variant, Nav1.7 11S, was upregulated
and responsible for pain hypersensitivity in animal models
of neuropathic pain (Raymond et al., 2004). Contrary to the
lack of effect of PKA on three spice variants, the Nav1.7 11S
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FIGURE 1 | Scheme representing the peripheral terminal, axon and cell soma of a pseudo-unipolar dorsal root ganglia nociceptive neuron, in normal
and pathological pain conditions. Following tissue damage and inflammation, recruited inflammatory cells secrete numerous pro-inflammatory molecules (referred
to as the inflammatory soup). These chemical mediators activate many membrane proteins, including G-protein coupled receptors (GPCR), neurotrophic tyrosine
kinase receptors (NTKR) and cytokines receptors (CR). GPCR binding by PGE2 and bradykinin mostly leads to protein kinase A (PKA) and protein kinase C (PKC)
activation, through the adenylate cyclase (AC) and inositol 3-phosphate (IP3) secondary messengers, respectively. NTKR and CR binding by TNFα, IL-6 and NGF will
activate ERK1/2 and p38 kinases via different potential secondary messengers. These signal transduction pathways can undergo cross communication one with
another. In experimental neuropathic pain, nerve injury induces Nedd4-2 downregulation. In models of diabetic neuropathy, as well as in patients, methylglyoxal
accumulation is related to an increased glucose concentration. The increased activation of kinases, the downregulation of Nedd4-2 and the accumulation of
methylglyoxal all lead to an increase of Nav1.7/Nav1.8 function (shift of biophysical properties, making the channel more available, as represented in green and red in
the figure) and/or to an increase of Nav1.7/Nav1.8 expression at the membrane (altered trafficking), which leads to increased sodium influx and consequently to
nociceptive neuronal hyperexcitability.

splice variant activation curves were shifted to hyperpolarized
potentials upon PKA activation, thus lowering the threshold
for opening of the channel and presumably increasing neuronal
excitability (Chatelier et al., 2008). The current hypothesis is that
in chronic pain syndromes the increase of this splice variant,
together with the modification of its biophysical properties by
PKA, will lead to an increase in sodium conductance which
results in nociceptive neuronal hyperexcitability. One must keep
in mind that the effect of PKA on Nav1.7 was found in Xenopus
oocytes and other mammalian cell lines, which have a different
cellular background than nociceptive neurons, and that Nav
regulation varies greatly depending on cell type (Cummins et al.,
2001). This is highlighted by one Nav1.7 mutation that renders
DRG sensory neurons hyperexcitable, but decreases sympathetic
DRG neuron excitability (Rush et al., 2006). Studying an
endogenous Nav1.7 current in adrenal chromaffin cells revealed
that cAMP upregulates Nav1.7 (Yuhi et al., 1996). Thus, a
careful characterization of PKA’s effect on the Nav1.7 current in
nociceptive neurons needs to be performed.

The effect of PKA on TTX-resistant isoforms is the opposite
to that aforementioned. PKA increases the TTX-resistant current
(Gold et al., 1996, 1998) in DRG neurons, an effect at least
partially due to PGE2 (England et al., 1996). A similar increase in
the Nav1.8 current isolated from a recombinant protein expressed
in Xenopus oocytes (Vijayaragavan et al., 2004a) and mammalian
cells (Fitzgerald et al., 1999) was also reported, providing
evidence that PKA activation in pathological pain states can
generate nociceptive hyperexcitability through enhanced Nav1.8
expression and function. How PKA increases the Nav1.8 current
is partially due to increased membrane trafficking, since blocking
protein transports in DRG neurons prevented a PKA-induced
increase of the Nav1.8 mediated current (Liu et al., 2010).
Furthermore, using a site-directed mutagenesis approach, the
authors proposed that the forward trafficking effects of Nav1.8
could be due to the phosphorylation of an identified ER retention
signal.

Nav1.9 is also increased by inflammatory mediators (Maingret
et al., 2008), such as PGE2. This mechanism is dependent on
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G-protein activation (Rush and Waxman, 2004) and GTPγS
(Vanoye et al., 2013).

Protein Kinase B
The PKB (also referred to as Akt) is well-known for its role in
neuronal plasticity in the brain (Sanna et al., 2002), but little
is known about its role in the pain field. There is evidence,
however, that PKB is activated in sensory neurons in animal
models of neuropathic pain (Xu et al., 2007a; Shi et al., 2009)
and inflammatory pain (Zhuang et al., 2004; Sun et al., 2006).
Furthermore, intrathecal injection of a PKB inhibitor attenuated
formalin and carrageenan-induced hypersensitivity (Xu et al.,
2011). The authors demonstrated that this effect was due to
mTOR signaling in the spinal cord, but the intrathecal injection
mode of delivery cannot rule out an additional effect in the
peripheral nervous system. A recent study showed that PKB
activation in peripheral sensory neurons was necessary for the
inflammatory-induced increased expression of both Nav1.7 and
Nav1.8 (Liang et al., 2013) since blocking this kinase reversed
the upregulation of both isoforms. The previous study did not
demonstrate that PKB could directly phosphorylate Navs, nor
has any other study to our knowledge. However, ASICS, another
important ion channel implicated in pain processing, can be
directly phosphorylated by PKB, leading to increased trafficking
and enhanced expression of ASICs at the membrane (Duan et al.,
2012). Further investigations are required to unravel the role of
PKB in the phosphorylation of Nav channels in pathological pain.

Protein Kinase C
The implication of PKC activation in nociceptive neurons has
been extensively studied. Activation of PKC by phorbol esters
demonstrated an in vivo implication of this pathway in peripheral
sensitization (Rang and Ritchie, 1988; Schepelmann et al., 1993;
Souza et al., 2002). PKC inhibition decreased hyperalgesia in a
model of diabetic neuropathy. Together with PGE2, bradykinins
are also able to activate PKC pathways (Cesare and McNaughton,
1996; Ferreira et al., 2005, 2008). PKC is a serine/threonine kinase,
which has at least 12 different isoforms (Way et al., 2000) that
can be classified into different groups (Battaini, 2001). PKCε is
one of the isoforms shown to be necessary for the development
of hypersensitivity in animal models of peripheral chronic pain
(Khasar et al., 1999; Aley et al., 2000; Dina et al., 2000, 2001).
Inflammatory molecules enhance the translocation of PKCε to
the membrane, where it contributes to peripheral sensitization
(Khasar et al., 1999; Hucho and Levine, 2007; Zhang et al., 2007).
Other PKC isoforms have also been implicated in chronic pain,
but focus has been on their expression in the spinal cord.

As for PKA, the phosphorylation of Nav1.2 by PKC (Costa
and Catterall, 1984b) could be responsible for a reduction of
up to 80% of the current when expressed in Xenopus oocytes,
with a concomitant slowing of its inactivation (Numann et al.,
1991). This reduction is due, at least in part, to a positive
shift in the voltage-dependence of activation (Dascal and Lotan,
1991). Similar findings on the total sodium current have been
observed in rat brain neurons (Numann et al., 1991; Cantrell
et al., 1996). Other studies in Xenopus oocytes have shown
that PKC downregulates the skeletal muscle sodium channel

Nav1.4 (Bendahhou et al., 1995), the cardiac channel Nav1.5
(Murray et al., 1997), as well as the two pain specialized isoforms
Nav1.7 and Nav1.8 (Vijayaragavan et al., 2004a). It was initially
hypothesized that PKC robustly downregulates Navs across
species since a reduction in the Nav1.5 current was also observed
in myocytes and CHO cells (Qu et al., 1994), and a reduction
in the total sodium current was observed in neuroblastoma cells
(Renganathan et al., 1995), hippocampal neurons (Cantrell et al.,
1996), and cortical neurons (Mittmann and Alzheimer, 1998).

As with PKA activation, the decrease of the Nav1.7
current mediated by PKC activation (Vijayaragavan et al.,
2004a) is discrepant with the increased excitability observed
in pathological pain. Again, the cellular background studied
could explain these discrepancies. Furthermore, a study reported
that blocking PKC phosphorylation was concomitant with
a decrease in Nav1.7 protein expression upon continuous
opioid administration in a diabetic painful neuropathic model
(Chattopadhyay et al., 2008). In addition, a recent study also
showed that PMA activation of PKC pathways led to an increase
of Nav1.7 resurgent currents in HEK cells (Tan et al., 2014),
currents which have been implicated in pathological pain (Jarecki
et al., 2010).

Gold et al. (1996, 1998) observed that the activation of PKC
increased the TTX-resistant current in nociceptive neurons. This
was later confirmed by another group (Ikeda et al., 2005). A later
study determined which PKC isoform and which of the two TTX-
resistant isoforms were responsible for the increased current,
implicating PKCε and Nav1.8 (Cang et al., 2009). The PKCε

mediated upregulation of Nav1.8 was confirmed in another study,
demonstrating the causative link to hyperalgesia (Wu et al.,
2012). Since PGE2 can activate the PKC pathway and increase
the Nav1.9 current in nociceptive neurons (Rush and Waxman,
2004), it is likely that both Nav1.8 and Nav1.9 are implicated.
Nav1.8 and Nav1.9 are well-identified sodium channels whose
expression and function are increased upon pathological pain-
driven PKC activation. The role of Nav1.7, however, remains
to be fully elucidated. Since PKA and PKC pathways converge
and co-regulate Nav1.2 function (Chahine et al., 2005), similar
mechanisms might also account for the effects on Nav1.7, Nav1.8
(Gold et al., 1998) and Nav1.9.

MAPK Pathway
Mitogen-activated protein kinases are another family of kinases
that play an important role in mammalian cell signaling. There
are three major members in the MAPK family: ERK, p38 and
c-JUN. Each member activates a specific intracellular pathway
(Widmann et al., 1999). They regulate various cellular activities
and have been implicated in numerous human diseases, including
tissue injury (Kim and Choi, 2010). Since they are activated by
proinflammatory cytokines (Ji et al., 2009), they have been shown
to be important in pathological pain (Obata and Noguchi, 2004).

In transected axons of experimental neuromas, Nav1.7
accumulates with ERK1/2 at the site of injury (Persson et al.,
2011). Since ERK1/2 was shown to phosphorylate Nav1.7,
altering its biophysical properties and rendering it easier to
open in response to stimuli (Stamboulian et al., 2010), it is
hypothesized that a Nav1.7 and ERK1/2 co-accumulation would
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increase nociceptive neuronal firing. Another study proposed
that IL-6 application enhances the excitability of trigeminal
ganglion neurons via ERK-mediated phosphorylation of Nav1.7,
a mechanism involved in the development of migraine-related
pain behavior (Yan et al., 2012).

Another kinase of the MAPK, p38, was reported to be
increased in animal models of neuropathic pain (Obata and
Noguchi, 2004; Xu et al., 2007b), leading to the upregulation
of TTX-resistant sodium channels in sensory neurons (Jin
and Gereau, 2006). A study recently unraveled the role of
TNF-α in activating p38, resulting in the modification of
the slow inactivation and voltage dependence of activation of
Nav1.8/Nav1.9. This, in turn, increases the TTX-resistant inward
current and enhances nociceptive hyperexcitability (Gudes et al.,
2015). Another study showed that p38 phosphorylates Nav1.8,
increasing the trafficking of this channel at the membrane of DRG
neurons (Hudmon et al., 2008).

Similar to the previous studies investigating MAPK activation
in animal models of chronic pain and those focusing on the
regulation of Nav1.7 and Nav1.8 by kinases in vitro, ERK1/2 and
p38 are increased along with the Nav1.7 and Nav1.8 isoforms in
painful human neuromas (Black et al., 2008), where they likely
also contribute to neuronal hyperexcitability.

CamKII
Calmodulin (CaM) is a small calcium-binding protein that senses
Ca2+ changes and drives cellular responses to rapid changes
in intracellular calcium concentration. It is also known to be
involved in regulating Ca2+-dependent neuronal plasticity (Solà
et al., 2001).

The C-terminus of Navs contains a CaM-binding domain,
known as the IQ motif (Mori et al., 2000), which is a
recognizable site for these calcium-sensing proteins. Even though
the functional meaning of such binding remains unknown, there
are a few studies reporting the regulation of Nav currents by
CaM. Despite the fact that all Navs possess a conserved IQ motif,
the regulatory effect of CaM is isoform specific, as exemplified by
the more potent regulation of Nav1.4 as compared to Nav1.5 by
this protein (Deschênes et al., 2002; Young and Caldwell, 2005;
Biswas et al., 2008; Ben-Johny et al., 2014). CaM also regulates
Nav1.6, which is expressed in nociceptive neurons (Herzog et al.,
2003). Interestingly, Nav1.7 is also bound by CaM (Herzog et al.,
2003), but with a lower affinity than Nav1.6.

CaM Ca2+-dependent activation leads to the activation of
many signaling molecules, one being the Ca2+/CaM-dependent
serine/threonine kinase (CamK) (Nelson and Chazin, 1998).
CamKII is expressed in nociceptive neurons and is involved in
pain transmission (Hiruma et al., 1999; Brüggemann et al., 2000).
It was proposed that CamKII is responsible for the transition
from acute to chronic pain, a process involving PKCε activation
(Ferrari et al., 2013) and links these two kinase pathways. Further
evidence supporting a role for CamKII in neuropathic pain
was demonstrated by using a CamKII inhibitor that reversed
mechanical allodynia in animal models of both neuropathic pain
(Chen et al., 2009) and inflammatory pain (Luo et al., 2008a).

Since the CaM binding effect on Navs regulation is thought
to be due to the recruitment and subsequent phosphorylation of

Navs by CamKII (Deschênes et al., 2002; Maltsev et al., 2008),
it is likely that the activation of this kinase in pathological pain
states is partially responsible for hyperexcitability through the
regulation of Nav. This hypothesis remains to be confirmed.

GLYCOSYLATION

Glycosylation is another important PTM that affects sodium
channel function and expression. Glycosylation is a crucial step
for protein biosynthesis and folding, but it is also involved in
cell signaling, cell-cell adhesion, protection against proteolysis,
and cellular development and immunity (Moremen et al., 2012).
Nav α-subunits undergo important glycosylation steps in the
endoplasmic reticulum and Golgi apparatus (Waechter et al.,
1983; Schmidt and Catterall, 1987), a process involving the
sequential addition of N-acetylglucosamines capped by sialic
acid residues, and the further addition of diverse oligosaccharide
chains. Glycosylation can account for 5% (Cohen and Barchi,
1993) to 30% of the α-subunit’s molecular weight (Messner and
Catterall, 1985), depending on the isoform, with an estimated
stoichiometry of around 100 sialic acid molecules per channel
(James and Agnew, 1987). Glycosylation is known to influence
Nav gating properties (Recio-Pinto et al., 1990; Bennett et al.,
1997; Zhang et al., 1999; Tyrrell et al., 2001) by interfering
with the electric field near the gating sensors (Bennett et al.,
1997; Cronin et al., 2004). It was proposed that extracellular
sialic acid residues, which are negatively charged at physiological
pH, influence the sensitivity of the voltage sensor domains to
the transmembrane electrical potential difference (Ednie and
Bennett, 2011).

Only a few studies have investigated glycosylation of Navs in
the peripheral sensory nervous system. One reported that Nav1.9
is subject to important developmentally regulated glycosylation.
This isoform is found in two different heavily glycosylated
forms in neonatal rats, which have different gating properties
as compared to the less glycosylated form of Nav1.9 in adult
tissue (Tyrrell et al., 2001). Another study reported that Nav1.7 is
found in at least two different glycosylated forms in HEK293 cells:
a heavily functional glycosylated form and a core-glycosylated
immature form (Laedermann et al., 2013a). The same authors
later reported that a third intermediate glycosylated form is also
present in HEK293 cells (Laedermann et al., 2013b). Inhibition
of glycosylation in Xenopus oocytes by tunicamycin also altered
Nav1.3 gating properties (Xu et al., 2008). Whether these different
patterns of α-subunit glycosylation lead to modification of Nav
function has yet to be investigated in peripheral chronic pain
syndromes.

UBIQUITYLATION

Ubiquitylation is another well-known PTM that negatively
regulates the cell surface expression of many different plasma
membrane proteins (Staub and Rotin, 2006). Ubiquitylated
proteins that are internalized through this pathway are either
degraded or recycled (Shih et al., 2000; Abriel and Staub, 2005;
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Ciechanover, 2005). Ubiquitin is a small and highly conserved
polypeptide of 76 amino acids that is covalently attached to
the lysine residues of the targeted protein. Three enzymatic
successive steps are required to ubiquitylate a protein (Pickart,
2001): (1) ubiquitin is first activated by a ubiquitin-activating
enzyme (E1) in an ATP-dependent manner, (2) ubiquitin is then
transferred to a ubiquitin-conjugating enzyme (E2) via a thioester
bond, (3) this complex further interacts with an ubiquitin-protein
ligase (E3) that eventually ubiquitylates the substrate protein.

The first and probably best-described protein that undergoes
ubiquitylation is ENaC (Abriel et al., 1999; Rossier et al., 2002).
The ENaC subunit possesses a PY motif. Mutating this motif is
sufficient to generate a hypertensive phenotype, known as Liddle’s
Syndrome (Schild et al., 1996), which involves increased ENaC
function (Firsov et al., 1996). Nedd4 and Nedd4-2 proteins where
shown to bind to ENaC’s PY motif on large members of the E3
ubiquitin ligase family (Joazeiro and Weissman, 2000; Metzger
et al., 2012), leading to its internalization (Abriel et al., 1999;
Henry et al., 2003). This process is impaired in Liddle’s syndrome.

Most Navs possess a PY motif at their α-subunit C-terminal,
making them potential substrates for Nedd4-2 dependent
ubiquitylation (Abriel et al., 2000; Laedermann et al., 2014a).
The first sodium channel isoform described to be regulated
by Nedd4-2 was Nav1.5. Regulation was demonstrated in both
cell expression systems and cardiac tissue (van Bemmelen et al.,
2004). Nav1.7 and Nav1.8 also possess a PY motif and were
shown to be negatively regulated by Nedd4-2 in both Xenopus
oocytes (Fotia et al., 2004) and HEK293 cells (Laedermann et al.,
2013a). The functional significance of Nav regulation by Nedd4-2
was previously demonstrated in chronic pain syndromes. In an
animal model of neuropathic pain, ubiquitin ligase expression
was robustly reduced in both mice (Laedermann et al., 2013a)
and rats (Cachemaille et al., 2012). Nav1.7 and Nav1.8 expression
were increased as a consequence of Nedd4-2 downregulation.
The causal link between Nedd4-2 downregulation and Nav1.7
/Nav1.8 upregulation was demonstrated using both tissue specific
knockout and viral overexpression of Nedd4-2, leading to hyper-
and hypo- pain sensing phenotypes, respectively (Laedermann
et al., 2013a). The reduction of Nedd4-2 might also increase
membrane expression of other Navs, with the exception of Nav1.9
which lacks the PY motif, (Abriel et al., 2000), and other ion
channels expressed in sensory neurons that are also substrates
for this ubiquitin ligase (Bongiorno et al., 2011). Nav1.6 was also
regulated by Nedd4-2 in mouse hippocampal neurons, a process
dependent on the concomitant p38-mediated phosphorylation
of this sodium channel isoform (Gasser et al., 2010). Whether
Nedd4-2 downregulation in neuropathic pain is due to the
inflammatory soup or to another mechanism remains to be
investigated.

METHYLGLYOXAL

A recent study unraveled a new mechanism accounting
for painful peripheral neuropathy in diabetes. The authors
showed that the concentration of methylglyoxal, an endogenous
degradation product of excessive glycolysis (Thornalley, 2005),

is increased in patients suffering from diabetes. Since peripheral
nerves have low levels of enzymes that metabolize methylglyoxal
(Bierhaus and Nawroth, 2009), its accumulation in the sensory
system was proposed to account for pain hypersensitivity. The
authors reported that the methylglyoxal effect on excitability was
through its binding to Nav1.8 within the DIII-DIV linker on an
arginine residue, which reduced channel inactivation (Bierhaus
et al., 2012), leaving the channel in an excitable state. In sciatic
nerve biopsies isolated from patients with diabetes and from
those who had amputations due to peripheral artery disease,
the authors observed an increase of Nav1.8 modification by
methylglyoxal when compared to controls. It was proposed that
this PTM was specific to Nav1.8 in regards to sodium channel
regulation, but the authors demonstrated that methylglyoxal
can also have an effect on pain pathways by depolarizing
nociceptive neurons, and increasing GCRP release and COX-2
expression.

POST-TRANSLATIONAL MODIFICATION
OF Nav PROTEIN PARTNERS

Many protein partners are known to interact with typical
pain isoforms and undergo PTM. Evidence is lacking which
demonstrates a direct effect between protein partners’ PTMs and
concomitant modification of Nav expression or function. In the
following chapter, we will discuss the potential partners that
undergo PTMs that are known to regulate Nav1.7, Nav1.8, and
Nav1.9.

β–Subunits
β–subunits are important regulators of Navs. They are implicated
in neuropathic pain and are subject to PTMs. β-subunits regulate
α-subunit gating properties by direct steric interactions that
interfere with the voltage-sensor (Zimmer and Benndorf, 2002).
Even though the effects of the different β-subunits on biophysical
properties give rise to conflicting results (Nuss et al., 1995;
Sangameswaran et al., 1997; Smith and Goldin, 1998; Morgan
et al., 2000; Fahmi et al., 2001; Vijayaragavan et al., 2001, 2004b;
Zimmer and Benndorf, 2002), partially due to the different cell
types used, the literature clearly demonstrates that β-subunits
regulate Nav gating. β-subunits can also affect the Nav current
in an ex vivo nociceptive neuron primary culture, as highlighted
by the decreased INa current recorded from SCN1B and SCN2B
knockout animals (Lopez-Santiago et al., 2006, 2011). SCNB
knockout animals also demonstrated abnormal pain sensing,
confirming that modulating Nav function ultimately modulates
pain signaling (Pertin et al., 2005; Lopez-Santiago et al., 2006,
2011). Moreover, β1-, β2-, and β3-subunit expression levels are
increased in different animal models of pathological pain (Shah
et al., 2000; Coward et al., 2001b; Pertin et al., 2005), highlighting
their potential implication in modulating cellular excitability.
Auxiliary β-subunits are themselves substrates for glycosylation
(Isom et al., 1992), which ultimately modulates α-subunit
function (Johnson et al., 2004; Johnson and Bennett, 2006).
β-subunits can also be phosphorylated, i.e., the phosphorylation
of Tyr181 is necessary for the interaction with ankyrin, another
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Nav protein partner (Malhotra et al., 2002). Whether altered
glycosylation or phosphorylation of the β-subunits could be
implicated in pathological pain has, at least to our knowledge,
never been investigated.

Nedd4-2
Nedd4-2, a potent regulator of Navs in the sensory nervous
system, also undergoes several PTMs, particularly by kinases
which alter its function. Most of these pathways have been
investigated in the Nedd4-2 regulation of ENaC (Snyder, 2009).
Whether a similar action also occurs on the sodium channels
in the sensory system remains to be determined. Pathways that
lead to Nedd4-2 PTMs are the same pathways as those activated
in chronic pain syndromes. For instance, phosphorylation of
Nedd4-2 by PKA was demonstrated to decrease Nedd4-2
ubiquitylating efficiency (Snyder et al., 2004). In addition to its
direct effect on Navs, it is probable that PKA activation also
indirectly leads to an increase of Nav channels at the membrane
by impeding the downregulatory role of Nedd4-2. It has been well
documented that cytokine signaling leads to NF-κB activation
in inflammatory processes. These signals first activate the IκB
kinase [an inhibitor of nuclear factor κB (NF-κB)] (IKK) via
phosphorylation, which then phosphorylates and inactivates IκB
inhibitory proteins. IKKβ, a subunit of IKK that is expressed
in unmyelinated fibers, then binds and phosphorylates Nedd4-
2 (Edinger et al., 2009). Finally, NGF, another inflammatory
mediator (Leung and Cahill, 2010) also known to positively
regulate Navs mRNA expression (Toledo-Aral et al., 1997; Fjell
et al., 1999), triggers a cascade after binding to the TrkA receptor,
which ultimately leads to Nedd4-2 phosphorylation (Arévalo
et al., 2006). Pro-inflammatory molecules likely negatively
regulate Nedd4-2 activity in nociceptive neurons following
inflammation, leading to an increase in Nav expression at the
membrane.

Collapsin Response Mediator Protein 2
(CRMP2)
Collapsin response mediator protein 2 (CRMP2) is a protein
initially identified to be important for axonal outgrowth (Inagaki
et al., 2001). It is now known to be important for modulating
ion channel trafficking (Bretin et al., 2006; Chi et al., 2009).
CRMP2 is the secondary target of the anti-epileptic drug
lacosamide (Errington et al., 2006, 2008) and can directly bind
to Navs (Wang et al., 2010), modulating the channel’s slow
inactivation. In a recent study carried out in both HEK293
cells and sensory neurons, it was demonstrated that CRMP2
can be SUMOylated, which affects Nav1.7 trafficking (Dustrude
et al., 2013). Whether SUMOylation of CRMP2 plays a role in
pathological pain via the alteration of Nav1.7 trafficking remains
to be investigated.

There are many other well described proteins, i.e., contactin
(Ranscht, 1988; Kazarinova-Noyes et al., 2001), ankyrin
(Malhotra et al., 2000), spectrin (Bennett and Baines, 2001),
dystrophin, and syntrophin (Gee et al., 1998; Abriel and Kass,
2005) among others (Shao et al., 2009), that interact with Navs
and modulate their function and cell surface expression. Kinases

are themselves substrates for PTMs that can modify their
function in important ways. All of these proteins are subject
to PTMs, which may impact the control of Nav function and
expression in peripheral chronic pain syndromes.

PTMs MODULATE Nav TRANSCRIPTION

In studies carried out in adrenal chromaffin cells, which express
relatively high levels of Nav1.7 (Klugbauer et al., 1995; Toledo-
Aral et al., 1995, 1997; Goldin, 2001; Wada et al., 2004, 2008),
a role for PTMs in controlling Nav transcription was proposed.
ERK kinases were shown to positively regulate Nav1.7 expression
at the membrane by modulating their mRNA stability (Yanagita
et al., 2003). Conversely, PKCε kinase activation destabilized
Nav1.7 mRNA, contributing to Nav1.7 negative regulation of the
steady-state levels at the plasmamembrane (Yanagita et al., 1996).
Whether similar mechanisms occur in sensory neurons has not
been reported.

DISCUSSION

Navs expression and function are dysregulated in peripheral
inflammatory pain, nerve injury induced neuropathic pain,
metabolic, infectious, toxic or inherited painful neuropathies.
Peripheral mechanisms for initiation and maintenance of pain
is partially due to the release of inflammatory molecules that
trigger different signaling cascades and leads to the activation of
enzymes with diverse functions. In turn, these enzymes will post-
translationally modify Nav function and expression, ultimately
impacting nociceptive neuronal hyperexcitability and pain. Most
knowledge of such mechanisms comes from the kinase field, but
since Navs are large proteins composed of over 2000 amino acids,
they possess a plethora of domains that could be subject to PTMs.
It is likely that PTM’s contribution to chronic pain syndromes are
still under-estimated and should be further investigated. In this
review, we not only discussed proven Nav PTMs implications in
pathological pain but also other potential relevant PTMs, which
will eventually open new avenues for a deeper understanding of
chronic pain syndromes. Together with the development of more
efficient and specific pharmacological agonists and antagonists
targeting PTM effectors, new genome engineering tools will
facilitate the generation of knock-in mice withmutations on PTM
sites or on the PTM effectors themselves. This will hopefully help
confirm and identify new pathways that regulate Nav function
and expression.

The pharmaceutical industry is attempting to develop highly
selective drugs that block Nav1.7, Nav1.8, or Nav1.9, but with
unfortunately little progress. This is partially due to the fact that
Navs are well-conserved proteins, and non-specific blockers are
bound to have many dramatic side effects. Rather than targeting
and blocking the sodium channels themselves, regulating the
function or expression of sodium channels, which may havemore
subtle effects on excitability, might prove to be an interesting
alternative to treat chronic pain. From this perspective, more
effort should be focused on targeting PTM pathways, as
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exemplified by the anti-TNF-α drug, which is promising and
still in expansion (Leung and Cahill, 2010). Pharmacological
targeting of the MAPK pathway has already been shown to
have an analgesic effect (Tong et al., 2012), and many other
kinases are currently in pre-clinical or clinical studies (Ji et al.,
2007). Other promising avenues include the use of scavengers
of methylglyoxal (Bierhaus et al., 2012) or the use of gene
therapy to restore Nedd4-2 ubiquitylating function, which have
proven to be efficient in relieving pain in animal models of
chronic pain. Altogether, it is important to further characterize
the known PTM effects on Navs and to identify new PTMs
in order to gain insight into the development of pathological
pain.
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