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Beneficial microbes are responsible for the synthesis of nutrients and metabolites that
are likely important for the maintenance of mammalian health. Many nutrients and
metabolites derived from the gut microbiota by luminal conversion have been implicated
in the development, homeostasis and function of innate and adaptive immunity. These
factors clearly suggest that intestinal microbiota may influence host immunity via microbial
metabolite-dependent mechanisms. We describe how intestinal microbes including
probiotics generate microbial metabolites that modulate mucosal and systemic immunity.
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INTRODUCTION

The mammalian gastrointestinal tract, site for digestion and nutrition absorption harbors
commensal microbiota, a population composed of 1000–5000 different bacterial species.
Metagenomics of the Human Intestinal Tract (MetaHit) project containing 249 newly sequenced
samples with 1,018 previously sequenced samples were combined to create a cohort from three
continents. From this the integrated gene catalog (IGC) comprising 9,879,896 geneswere established.
The catalog includes close-to-complete sets of genes for most gut microbes. Analyses of a group of
samples from Chinese and Danish individuals using IGC revealed country-specific gut microbial
signatures. This expanded catalog should facilitate quantitative characterization of metagenomic,
metatranscriptomic, and metaproteomic data from the gut microbiome to understand its variation
across populations in human health and disease (Qin et al., 2010; Ferreira et al., 2014; Li et al., 2014).
Recent studies show that changes in the commensal bacterial composition are linked to various
metabolic and inflammatory diseases including inflammatory bowel disease (IBD; Sokol et al., 2008),
obesity and type 2 diabetes (Everard et al., 2013; Dao et al., 2015), allergy (Berni Canani et al.,
2015), and colorectal cancer (Swidsinski et al., 1998). These interrelationships provoke multiple
fundamental questions regarding the cellular and molecular pathways through which commensal
microbiota regulates mammalian gene expression and influence a wide range of clinically important
diseased complications. The intestinal microbiota affects host physiology in many ways such as
influencing the maturation of the immune response and fortifying the intestinal barrier against
pathogenic bacteria. Importantly, intestinal microbes are potential regulators of digestion converting
a wide range of non-digestible carbohydrates to short chain fatty acids (SCFA), which can be
absorbed by the host and used as energy sources (Sharma et al., 2010; Becker et al., 2011).

Dysregulation of intestinal immune response by commensal microbiota plays an important
role in the onset and development of different immune-mediated disorders (Wohlgemuth et al.,
2009; Feng et al., 2010). For example, the presence of Akkermansia muciniphila, commensal mucin
degrader, has been shown to exacerbate Salmonella Typhimurium infection by worsening intestinal
inflammation, increasing macrophage infiltration and elevating proinflammatory cytokines
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in gnotobiotic mice (Ganesh et al., 2013). Flagellin-detecting toll
like receptor 5 (TLR5) knockout mice colonized with adherent-
invasive Escherichia coli (AIEC) during microbiota acquisition
drove chronic colitis. AIEC instigates chronic inflammation by
increasing microbiota levels of LPS and flagellin (Chassaing et al.,
2014). Recent findings described how commensals are recognized
by the intestinal innate immune system and how individual
species can influence specific modules of the innate and adaptive
immunity. Germ-free mice were shown to have fewer and smaller
Peyer patches, exhibit a local defect or absence of TH1, TH17, and
TREG cells, and their intestinal epithelia express lower amounts
of TLRs and MHC class II, as compared with mice that have been
exposed to normalmicrobiota (commensals). Similarly, symbiosis
factor polysaccharide A (produced by Bacteroides fragilis) can
induce TREG cells and suppress TH17 cells via engagement of
TLR2 on CD4+ T cells (Round et al., 2011). Similarly, another
human commensal Faecalibacterium prausnitzii suppresses IL-
8 production and NF-κB signaling in response to inflammatory
secretion of IL-1β (Sokol et al., 2008). Altogether, recent evidence
has provided insights into immune-mediated mechanisms in
metabolic disorders (Borchers et al., 2009). Taken all the
findings together, existing data argues for the need to probe the
microbiome for new strategies for immunomodulation, either
by enhancing (immunodeficiency) or by suppressing (allergy)
host immunity. Microbial metabolites and nutrients derived
from beneficial bacteria in the intestine via luminal conversion
may modulate host immunity and profoundly affect mammalian
biology of the “holobiont.”

CHANGES IN MICROBIAL DIVERSITY
AND TREATMENT WITH PROBIOTICS

Recent studies in rodents show that inflammation and/or
infection is correlated with changes in bacterial composition
(Packey and Sartor, 2009; Saulnier et al., 2011; Pflughoeft and
Versalovic, 2012; Ganesh et al., 2013). Molecular techniques are
clarifying changes in the composition of the mucosal associated
and fecal microbiota in patients with IBD esp., ulcerative
colitis (UC), and Crohn’s diseases (CD) together with widely
expanding previous culture based studies. Patients with UC
and CD have decreased complexity of commensal microbiota
revealed by examining DNA libraries (Frank et al., 2007). More
specifically, members of the phyla Bacteroidetes and Firmicutes
are decreased in CD and UC patients (Backhed et al., 2005).
A member of the family Firmicutes, F. prausnitzii was reduced
in the patients with CD and this was confirmed and associated
with increased risk of post-resection recurrence of ileal CD
(Frank et al., 2007; Sokol et al., 2008; Swidsinski et al., 2008).
In vitro peripheral blood mononuclear cell stimulation by F.
prausnitzii decreased pro-inflammatory cytokines IL-12 and IFN-
γ and stimulated secretion of anti-inflammatory cytokine IL-
10. Oral administration of live F. prausnitzii or its supernatant
reduced the inflammation severity by TNBS and corrected
the associated dysbiosis (Baumgart et al., 2007). However, the
abundance of E. coli is increased in IBD patients (Figure 1;
Kotlowski et al., 2007). Similarly, the mucosal E. coli numbers
in situ correlates with the severity of ileal disease and invasive

E. coli are restricted to inflamed mucosa. Finally, fecal and
mucosal associated microbial communities of UC and CD
patients are consistently less diverse with increased instability.
Commensal non-pathogenic bacteria can cause colitis in host with
immunomodulatory and mucosal barrier deficits. Interleukin
(IL)-10−/− germ-free mice colonized with Enterococcus faecalis
and/or invasive E. coli, showed aggressive TH1/TH17-mediated
colitis within 3 weeks but this was not observed in the WT mice.
LPS from microbes were detected by dendritic cells (DCs). DCs
play an important role through antigen presentation via TLRs
in linking between the innate and adaptive immunity (McKenna
et al., 2005). DCs are the initial cells to synthesize IL-12 under
well characterized microbial stimulants of the cytokines. IL-
12 selectively promotes the differentiation of Th1 CD4+ cells
upon stimulation with antigens (de Jong et al., 2002). Th1 cell-
mediated immune response leads to the paradigm of T-helper
cell differentiation in which IL-12 cytokine mediated activation
of STAT4 and is critical for generation of Th1 cells (Kaplan
et al., 1998). IL-12 mediated immune response is dependent
upon the presence of CD4+ and CD8+ T lymphocytes and upon
the production of IFN-γ finally causing cell-mediated adaptive
immunity (Figure 1; Kim et al., 2007). However, certain class of
bacteria like probiotic bacterium, Bifidobacterium breve increased
IL-10 secretion Tr-1 cells in the colon and inhibits inflammation
(Jeon et al., 2012). Introducing such beneficial strains in an
unhealthy intestinal environment will potentially be a novel
therapeutic strategy.

Most importantly, metabolites produced by intestinal
microbiota have direct effects on the host mucosa. Commensal
bacterial fermentation of non-digestible fiber leads to increased
luminal bioavailability of SCFAs like butyrate, acetate, fumarate,
and propionate (Cummings and Macfarlane, 1997). Bacterial
metabolites such as butyrate serve as potential energy sources for
colonic epithelial cells, whereas other fermentation by-products
like hydrogen sulfide (HS), nitric oxide (NO) and proteases
produced by subsets of commensals may enhance histopathology.
Butyrate metabolism by colonic epithelial cells might be
suppressed by HS/NO metabolites, resulting in starvation of
colonocytes and yielding histopathology similar to that of UC
(Roediger et al., 1993; Packey and Sartor, 2009; Cain and Karpa,
2011). The butyrate producing probiotic bacterium Clostridium
butyricum MIYAIRI 588, increase the butyrate availability in the
presence of fibrous diet (Weng et al., 2015). Intracellular butyrate
and propionate (but not acetate) has been shown to inhibit the
activity of histone deacetylases (HDACs) in colonocytes and
immune cells, which promotes the hyperacetylation of histones,
in addition to some transcription factors and proteins that are
involved in signal transduction. This has multiple consequences
for gene expression and cellular differentiation, including the
down-regulation of pro-inflammatory cytokines, such as IL-6
and IL-12, in colonic macrophages and is also known to inhibit
colorectal cancer (Louis et al., 2014). Similarly, pretreatment
of Helicobacter pylori-induced gastric ulcers with C. butyricum
in mice showed significantly reduced numbers of mucosal
lesions with decreased quantities of proinflammatory cytokines
(Wang et al., 2015). Probiotics may provide beneficial functions
into the GI tract which might enhance the functionality of the
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FIGURE 1 | Immune responses triggered by changes in the gut microbiome. Intestinal inflammation in the UC or CD leads to dysbiosis (imbalance microbiota).
Overgrowth of enteropathogenic bacteria causing increased activation of toll-like receptors (TLR) 2 or 4. This causes the activation and translocation of nuclear factor
kappa B (NFκB) and causes secretion of pro-inflammatory cytokine interleukin (IL)-12. Increased IL-12 causes T-helper (Th) Th1/Th2 immune response with increase
in tumor necrosis factor (TNF), IL-6, interferon gamma (IFN-γ). The dysbiosis leads to increase in immune cells (macrophages, neutrophils) at the infected site causing
severe inflammation (MHCII—major histocompatibility complex).

existing commensal communities. Probiotics may also affect
the composition of the intestinal microbiota by providing
colonization resistance and competition for nutrients or
production of pathogenic inhibitors and modulates intestinal
immune response.

Probiotics possess the ability to transiently colonize the gut
(Valeur et al., 2004; Ukibe et al., 2015; Vieira et al., 2015) and
facilitating proliferation of commensalmicrobes, while enhancing
microbial diversity (Sherman et al., 2009). Probiotics are known
to exert antimicrobial effects as a front line of defense against
the luminal pathogens. For example, some probiotics are known
to elaborate some microbial products known as bacteriocins.
These probiotic factors can inhibit the growth and virulence of
enteric bacterial pathogens (Corr et al., 2007). Bifidobacterium
animalis subsp. lactis (B. lactis), Streptococcus thermophilus, two
different strains of Lactobacillus delbrueckii subsp and L. lactis
subsp in fermented milk were used to determine the impact
of microbes in a mouse model of IBD. The findings show
that B. lactis containing fermented milk decreased cecal pH,

altered SCFA concentrations, increased the relative quantities of
lactate- and butyrate-consuming bacteria, and reduced intestinal
inflammation scores (Veiga et al., 2010). In addition, lactic-acid
producing bacteria are known to exert antimicrobial effects on
pathogens by reducing the pH of the microenvironment in the
lumen of the GI tract (Fayol-Messaoudi et al., 2005). Probiotics
or their metabolites reduced the secretion of immunomodulation
molecule autoinducer-2 by the pathogenic E. coli, which results
in reduced gene expression contained in the locus of enterocyte
effacement (Pathogenicity Island) which is critical for mediating
intimate bacterial binding to the host cell surfaces, called
attachment and effacing lesion (Mack et al., 1999; Russell et al.,
2007). Lactobacillus plantarum has been shown to have the
capacity to enhance the production and secretion of mucins
esp. MUC2 and MUC3 from the human intestinal epithelial
cells (Mack et al., 1999), which improves the epithelial barrier
function (Corfield et al., 1992, 2000). Similarly, bacteria and their
by-products may have direct effect on the betterment of host
health.
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FIGURE 2 | Mechanisms of probiosis in the gastrointestinal tract. SCFAs, short chain fatty acids; GABA, gamma-aminobutyric acid; Hsp, heat shock proteins;
IL, interleukin; TNF, tumor necrosis factor; Th, T-helper; IFN-γ, interferon gamma; Mϕ, Macrophage; DC, dendritic cell; M, microfold cells.

LUMINAL CONVERSION OF DIETARY
COMPONENTS BY THE INTESTINAL
MICROBIOTA
Human diet may have a direct impact on the intestinal
microbiotawhich ultimately leads to the changes in themicrobiota
composition. These changes have been recently validated using
mouse model experiments. Mice subjected to the high fat diet
in obese mice showed major changes in microbial composition
with an increased proportion of the phylum Firmicutes and
decreased proportion of Bacteroidetes. In particular, species like
Clostridium ramosum was correlated with increased body weight
(Fleissner et al., 2010; Woting et al., 2014). Vitamins, amino acids
or dietary fibers with the diet are assimilated and converted
into other metabolites in the lumen by intestinal microbiota.
Some of the products of these bio-chemical conversions were

SCFA, biogenic amines (such as histamine) or other amino
acid derived metabolites like serotonin or gamma-aminobutyric
acid (GABA; Bravo et al., 2011; Figure 2) which may have
beneficial effect on host health (Hemarajata and Versalovic,
2013; Hemarajata et al., 2013). Serotonin is a neurotransmitter,
biochemically derived from tryptophan (Best et al., 2010).
Bifidobacterium infantis colonization in rats modulated the
bioavailability of tryptophan by yielding increased concentrations
of tryptophan in plasma, reduced 5-HIAA (hydroxyindoleacetic
acid) concentrations in the frontal cortex, and diminished
quantities of 3,4-dihydroxyphenylacetic acid (DOPAC) in the
amygdaloid cortex (Desbonnet et al., 2008). Gut microbial
populations in SPF mice modulated brain development by
contributing to suppressed expression of postsynaptic density
protein (PSD)-95 and synaptophysin in the striatum compared
to germ-free mice (Diaz Heijtz et al., 2011). Treatment with
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Bifidobacterium species resulted in normalization of the immune
response, reversal of behavioral deficits, and restoration of basal
noradrenaline concentrations in the brainstem, thereby alleviating
depression of the CNS (Desbonnet et al., 2010). In addition,
orally gavaged BALB/c mice with Lactobacillus rhamnosus (JB-
1) reduced GABAAα2 gene expression in the prefrontal cortex
and amygdala, but increased GABAAα2 gene expression in the
hippocampus. These findings provide evidence that Lactobacillus
strains regulate emotions, behavior and central GABA receptor
expression (Bravo et al., 2011). Intestinal microbiota may
modulate the bioavailability of tryptophan in the intestine,
and may in turn influence availability of neurotransmitters
such as serotonin in the host. Non-digestible carbohydrates
can be fermented in the lumen resulting in production of
SCFAs such as lactate, formate, acetate, propionate, butyrate
and valerate (Blaut, 2013). These metabolically active SCFAs
are involved in various biological processes as an energy source
in intestinal epithelial cell proliferation (Astbury and Corfe,
2012; Fung et al., 2012; Matthews et al., 2012). Additionally,
fermentation of prebiotic carbohydrates such as inulin and fructo-
oligosaccharides has been shown to increase the proportion of
beneficial microbes like Bifidobacterium spp. and Lactobacillus
spp. in the obese mice and was negatively correlated with
serum entoxin levels (Salazar et al., 2014). Consumption of
western diet showed increased level of plasma LPS concentration
and this was correlated with increased changes in microbiota
composition (Cani et al., 2013; Everard and Cani, 2013;
Everard et al., 2013). Moreover, a recent study shows that
dietary plant lignans were converted to estradiol like metabolite
enterodiol and enterolactone by intestinal bacteria in germ-
free rats colonized with lignan-converting consortium, such as
Clostridium saccharogumia, Blautia producta, Eggerthella lenta,
and Lactonifactor longoviformis. The produced enterolignans
suppressed tumor number and tumor cell proliferation in
hormone related cancer (Mabrok et al., 2012).

The secondary plant metabolites, glucosinolates from Brassica
vegetables, were converted to isothiocyanates (glucosinolate
derivative) and were measured in urine, luminal contents
and plasma of mice (Budnowski et al., 2013). In addition,
glucosinolates and their derivatives have been shown to reduce
AOM/DSS induced colon carcinogenesis in mice (Lippmann
et al., 2014). For example, Bacteroides thetaiotaomicron isolated
from human fecal sample can convert glucosinolates into
isothiocyanates, measured in luminal contents of rats (Elfoul
et al., 2001; Krul et al., 2002), and these compounds potentially
suppress lung cancer cell metastasis by inhibiting cell survival
signaling molecules Akt and NFκB activation in human lung
large cell carcinoma (Wu et al., 2010b). Similarly, isoflavones have
been implicated in the prevention of hormone-dependent and age
related diseases, including cancer (Birt et al., 2001; Scalbert et al.,
2005; Geller and Studee, 2006; Usui, 2006). Intestinal bacteria,
e.g., Slackia isoflavoniconvertens, play an important role in the
metabolismof isoflavones, daidzein and genistein to equol (Chang
andNair, 1995; Rafii et al., 2003;Matthies et al., 2008, 2012). Based
on the structural similarities of these bacterial by-products with
estrogens, they bind to estrogen receptors and thus may prevent
cancer progression (Matthies et al., 2008; Lepri et al., 2014).

FIGURE 3 | Microbe-derived histamine mediated suppression of
pro-inflammatory cytokines. TNF is suppressed by inhibition of the
MEK/ERK pathway in myeloid cells. H2HR, histamine receptor 2; PKA,
activated protein kinase A; TNF, tumor necrosis factor; TLR, toll-like receptor.
Adapted from Thomas et al. (2012).

IMMUNOMODULATION BY PROBIOTICS

Probiotics (beneficial microbes) are frequently, though not
necessarily be a commensal bacteria. Probiotics are defined as
“beneficial live micro-organisms which when administrated in
adequate amounts confer beneficial effects on the host health”
(Mack et al., 1999; Peran et al., 2006; Borchers et al., 2009; Ganesh
et al., 2012; Isolauri et al., 2012; Klaenhammer et al., 2012; Thomas
et al., 2012; Morelli and Capurso, 2012; Arena et al., 2014; Dylag
et al., 2014; Galdeano et al., 2015; Ki et al., 2014; Repa et al.,
2014; Sah et al., 2014; Sanders et al., 2014). Most known probiotics
until now are either lactobacilli or bifidobacteria representatives
of which are normal inhabitants of the gastro-intestinal (GI)
tract (Blum et al., 2002; Wohlgemuth et al., 2009). Recently,
animal experiments and human studies suggest that therapeutic
manipulation of the balance between beneficial and detrimental
intestinal bacterial species can influence health and disease
(Fitzpatrick, 2013). The known mechanisms of probiosis include
manipulation of intestinal microbial communities, suppression
of pathogens, immunomodulation, activation of anti-apoptotic
genes in human or mouse intestinal epithelial cells from
cytokine induced apoptosis, differentiation and fortification of the
intestinal barrier (Thomas and Versalovic, 2010). For example,
simultaneous treatment with probiotic Streptococcus thermophilus
ATCC19258 and Lactobacillus acidophilus ATCC 4356, prevent
invasion of entero-invasive E. coli and enhance the intestinal
epithelial barrier function by amplifying the phosphorylation
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of occludin and ZO-1 together with a reduction of pro-
inflammatory responses in vitro (Resta-Lenert and Barrett, 2003).
Another similar study also demonstrated that application of
probiotic E. coli NISSLE (EcN) is able to mediate up-regulation
of ZO-1 expression in murine IECs and confer protection from
the Dextran sodium sulphate (DSS) colitis-associated increase in
mucosal permeability to mice luminal substances (Ukena et al.,
2007).

Loss of tolerance to the patient’s own commensal microbiota
has been implicated in the development of IBD (Wu et al., 2010a).
Use of probiotics, to shift the existing microbiota balance in
favor of protective microbial species and to treat IBD, has been
extensively reviewed (Ochoa-Reparaz et al., 2009). The ability
of some probiotics to synthesize bacteriocins (Awaisheh et al.,
2013) or to induce the secretion of antibacterial cryptidins by
Paneth cells (Hooper et al., 2003; Ayabe et al., 2004) could account
for such changes in microbiota composition or even for the
protection against pathogenic bacteria. In addition to the effects
mediated by bacteria–bacteria interactions, probiotics may have a
direct effect on host physiology. In the inflamed gut, the down-
regulation of pro-inflammatory cytokines by probiotics may be
an important factor for the observed improvement of symptoms
(Figure 2; Ma et al., 2004). For example, Lactobacillus casei
DN-114001 treatment increases the number of CD4+FoxP3+
regulatory T cells in mesenteric lymph nodes (mLN), decreases
the production of the pro-inflammatory cytokines TNF-α and
IFN-γ, changes the gut microbiota composition and prevents
DSS induced colitis in BALB/c mice (Zakostelska et al., 2011).
However, only few molecular mechanisms underlying probiotic
action have so far been identified. Activation of TLR9 by
bacterial DNA has been proposed as one possible mechanism
of a probiotic-mediated amelioration of experimental colitis
(Rachmilewitz et al., 2004). TLRs belong to highly conserved
receptors of the innate immune system. TLR activation results in
the translocation of the nuclear factor NFκB into the cell nucleus
triggering transcription of immunorelevant genes (Cario and
Podolsky, 2005). In addition, L. casei inhibits post-transcription
of pro-inflammatory interferon γ-induced protein 10 (IP-10)
in intestinal epithelial cells of colitic IL-10 knock-out mice
(Hormannsperger et al., 2009).

An intact intestinal epithelial cell layer is of utmost importance
for preventing the uncontrolled intrusion of pathogenic bacteria.
However, pathogenic bacteria are capable of compromising the
integrity of the epithelium by disrupting the tight junctions
between epithelial cells (Berkes et al., 2003). Bacterial factors
improving epithelial integrity have been identified for the
probiotic Lactobacillus GG. This strain produces two soluble
proteins (p40 and p75) which protect epithelial cells from
apoptosis and thereby increase mucosal integrity. The secreted
proteins activate anti-apoptotic protein kinase B (PKB/Akt) in

a phosphatidylinositol-3′-kinase (PI3K)-dependent pathway and
inhibit the pro-apoptotic p38/mitogen-activated protein kinase
(MAPK; Yan et al., 2007).

Similarly, the biogenic amine, histamine, produced by
decarboxylation of amino acid -histidine by histidine
decaxboxylase gene cluster (hdc) in Lactobacillus reuteri ATCC
6475 showed immunomodulatory effects by suppressing TNF
production in myeloid progenitor cell lines (Figure 3) whereas
the L. reuteri lacking hdc gene cluster was unable to suppress
the pro-inflammatory cytokine TNF. The bacterial derived
histamine binds to and activates histamine receptor H2 (HRH2)
and there by inhibits MEK/ERK MAPK signaling pathway and
presumably suppress TNF transcription and Ap-1 translocation
(Thomas et al., 2012). These findings clearly demonstrate that
bacterial interactions directly or indirectly have an impact on
host physiology. Therefore, in the current review we mainly
focused on the different beneficial bacteria and their metabolites
on immunoregulation of the host.

CONCLUSION

In the presented review we demonstrated how probiotic bacteria
or their metabolites regulate immunomodulatory effects on
the host health. Probiotics have been proposed as preventive
and therapeutic measures in order to restore the healthy
microbiota composition and function of the GI tract. Additionally
restoring the current balance is very important because the
commensal bacteria are important source of vitamins, amino
acids and lipid homeostasis and alternation in the levels of these
metabolites might have an influence on the immune system
(Brestoff and Artis, 2013). Therefore, therapeutic manipulations
of intestinal bacteria by selectively altering the beneficial
versus detrimental species by probiotics and or prebiotics
administration could reverse the inflammatory responses
and restore mucosal homeostasis. Future challenges include
interrogations of molecular mechanisms through nutrients and
beneficial bacterial metabolites, regulate immune response and
linking the commensal bacteria-beneficial probiotic bacteria-
metabolite-immune system axis in the content of health and
diseases, may provide useful insights for the development of
improved, preventive and therapeutically cost-effective and
non-toxic approaches to treating different disorders mainly IBD.
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