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Integrins belong to a large family of αβ heterodimeric transmembrane proteins

first recognized as adhesion molecules that bind to dedicated elements of the

extracellular matrix and also to other surrounding cells. As important sensors of the cell

microenvironment, they regulate numerous signaling pathways in response to structural

variations of the extracellular matrix. Biochemical and biomechanical cues provided by

this matrix and transmitted to cells via integrins are critically modified in tumoral settings.

Integrins repertoire are subjected to expression level modifications, in tumor cells, and

in surrounding cancer-associated cells, implicated in tumor initiation and progression as

well. As critical players in numerous cancer hallmarks, defined by Hanahan andWeinberg

(2011), integrins represent pertinent therapeutic targets. We will briefly summarize here

our current knowledge about integrin implications in those different hallmarks focusing

primarily on β1 integrins.

Keywords: integrins, hallmarks of cancer, proliferation, migrationinvasion, resistance to cell death, angiogenesis,

therapeutic target

INTRODUCTION

In the setting of cancer, six hallmarks enabling a cell to become tumorigenic and ultimately
malignant have been defined by Hanahan and Weinberg (2000). As such cancer cells have the
abilities to sustain proliferative signaling, to evade growth suppressors, to resist to cell death, to
enable replicative immortality, to induce angiogenesis and to activate invasion and metastasis.
This list has been extended recently by the authors taking into account the new progresses made
in the past decade with the proposal of two new hallmarks comprising the reprogramming of
energy metabolism and the evasion of immune destruction (Hanahan and Weinberg, 2011). A
recent review emphasized the modulation of these hallmarks by the extracellular matrix (Pickup
et al., 2014). Integrins belong to one of the most studied family of matricellular receptors. These
heterodimeric αβ cell surface receptors sense the extracellular matrix with high flexibility (Hanein
and Horwitz, 2012; Hohenester, 2014) triggering thereby specific answers in both physiological
and pathophysiological conditions. In humans, 18 α and 8 β subunits have been characterized
enabling about 24 heterodimeric combinations. The Arg-Gly-Asp (RGD) binding integrins belong
to the most studied subfamily including αvβ1,αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3. The RGD
motif is available in ECM components such as fibronectin, vitronectin, osteopontin, and fibrinogen.
Cell binding to collagen or laminin involves either β1 (α1β1, α2β1, α10β1, α11β1,α6β1. . . ) or
β4 (α6β4. . . ) subunits-containing integrins. Integrins signaling operates through the integrin
adhesome which appears complex (Winograd-Katz et al., 2014). Interactions of integrins with
soluble or membrane-localized elements as well as with cytoplasmic adaptors or catalytic partners
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(kinases, phosphatases, proteases . . . ) define series of coordinated
and spatiotemporal regulated processes. Mechanistic insights
into the fine tuning of integrin signaling thereby revealing the
high versatility of the cell answer to integrin-driven stimuli
were enabled by the development of new technologies (Rossier
et al., 2012; Robertson et al., 2015). Expression and activity
of integrins and of their adhesome components have been
implicated in various diseases including cancer. Integrins are
well recognized as valuable tumor therapeutic targets although
essentially in preclinical studies (Desgrosellier and Cheresh,
2010; Schaffner et al., 2013). A recent review emphasized their
capability to regulate cancer stemness, metastasis, and drug
resistance (Seguin et al., 2015). They remarkably impact on
the hallmarks of cancer as defined above. In this review, our
aim is to update the knowledges with the most recent data in
the field focusing particularly on β1 integrins and their roles
in the tumor progression. Integrins containing the β1 subunit
constitute the largest subgroup and appear overexpressed in
several solid tumors compared to control tissues (Paulus et al.,
1993; Barkan and Chambers, 2011; Fabricius et al., 2011; Lahlou
and Muller, 2011; Schaffner et al., 2013).

INTEGRINS AND A SUSTAINED
PROLIFERATIVE SIGNALING

Integrins contribute to the cell cycle progression in physiological
and pathological situations (reviewed in Moreno-Layseca and
Streuli, 2014). The cross-talk between integrins and growth factor
receptors (GFR) is well established especially in sustaining the cell
proliferative signaling. Several GFR are concerned of which the
epidermal growth factor receptor (EGFR), the hepatocyte growth
factor receptor (HGFR/cMet), the platelet-derived growth factor
receptor (PDGFR) and the vascular endothelial growth factor
receptor (VEGFR). Direct activation of GFR by integrins was
first described in normal cells. In endothelial cells, integrins
phosphorylate EGFR even in the absence of EGF (Moro et al.,
2002). More recently, β1 integrin downregulation decreased
the phosphorylation of c-Met and of EGFR in hepatocytes
during liver regeneration (Speicher et al., 2014). Keratinocytes
stimulation by EGF modulates constituents of focal adhesion
complexes including β1/β3 integrins and FAK (Eberwein et al.,
2015). The synergistic relationship between integrins and GFR
is also highlighted in tumor progression (Ivaska and Heino,
2011). Physical interactions between integrins and GFR have
been demonstrated by co-immunoprecipitation experiments (α5
integrin and EGFR; Morozevich et al., 2012) or by FRET analysis
on patient tumor slices (β1 integrin and ERBB1; Petras et al.,
2013). Interestingly, proliferative cooperation between ECM
receptors and GFRmay also be achieved through direct ECM-GF
interactions (Vlahakis et al., 2005; Oommen et al., 2011; Dong
et al., 2014; Han et al., 2014; Zhu and Clark, 2014). The fine
molecular tuning of the integrin-GFR interplay implicates other
partners either from the ECM or from the cellular compartment.
The matricellular protein CCN1 (CYR61/CCN1, cysteine-rich
protein 61) inhibits EGFR-dependent hepatocytes proliferation
through ROS accumulation induced by α6β1 integrin in liver

carcinoma (Chen et al., 2015). Tenascin-C induces a physical
association of PDGFR- β and α5β1 integrin resulting in
prolonged activation of PDGFR- β and deregulated proliferation
of fibroblast cell line (Tanaka et al., 2014). EGFR signaling
regulates ILK (Integrin Linked Kinase) to increase gastric
cancer cells proliferation (Tseng et al., 2014). In epidermoid
carcinoma cells, EGF stimulation modulates α5β1 activation
state by phosphorylation of Filamin-A (Vial and McKeown-
Longo, 2012). In the same model, α5β1 integrin inhibition
reduces EGFR phosphorylation implicated in cell proliferation
(Morozevich et al., 2012). Scaffolding proteins such as tensin4
(TNS4) may create a functional complex between cMet and
integrin β1 (Muharram et al., 2014). Hepatocellular carcinoma
progression has been blocked by nanoparticle-formulated siRNA
targeting β1 and αv integrins through reduced activation of
MET oncogene (Bogorad et al., 2014). Integrins and GFR thus
mainly interact through cross-regulated signaling pathways. In
the case of EGFR and α5β1integrin, common way of intracellular
trafficking may also potentiate their functions (Caswell et al.,
2008). The overexpression of GFR and/or the expression of
constitutively active mutants (such as the EGFRvIII mutant;
Guo et al., 2015) are hallmarks of different tumor types and
boost the proliferation of tumoral cells. Powerful therapeutic
strategies may thus include simultaneous integrin/GFR targeting
for selected tumors and patients (Eke et al., 2015).

INTEGRINS AND THE EVASION OF
GROWTH SUPPRESSORS AND THE
RESISTANCE TO CELL DEATH

Evading Growth Suppressor
p53 one of the most prominent tumor suppressor, is mutated
in about 50% of cancers (Ciriello et al., 2013). Wild type p53
signaling is nevertheless altered in a large majority of tumors by
alternative pathways such as deletions/mutations of endogenous
activators or amplifications of inhibitors (Brennan et al., 2013).
Integrin signaling may be added to the list of p53 activity
regulators. We have shown that α5β1 integrin impairs the p53
activation by chemotherapeutic drugs (Martinkova et al., 2010;
Janouskova et al., 2012, 2013; Martin et al., 2012). Similar results
obtained by others in breast carcinoma cells showed enhanced
expression of p53 upon depletion of α2β1 integrin (Morozevich
et al., 2015). In glioblastoma, an overexpression of α5 integrin
was recorded in p53 wild type tumors (Janouskova et al., 2012)
explaining their resistance to therapies. Conversely, in ovarian
tumors with a mutated p53 overexpression of the β4 integrin
leads to a metastasis advantage (Lee et al., 2015). In squamous cell
carcinoma, cooperation between p53 and αv integrin, impacts
on tumor induction and growth (Savar et al., 2015). Integrin
signaling pathways have been highlighted in the regulation
of p53 activity. Our recent data demonstrated participation
of the integrin/AKT/PEA15/caspase8 axis in the inhibition of
p53 (Renner et al., 2015). As reported by others, the integrin-
downstream kinase FAK, has the capability to inhibit p53 through
direct physical interaction in the nucleus or cytoplasm thus
linking signaling from the ECM to the nucleus (Golubovskaya
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and Cance, 2011; Golubovskaya, 2014). Interestingly, a regulatory
loop exists between FAK and p53 (Golubovskaya et al., 2008)
similar to the one we described between α5 integrin and p53
(Renner et al., 2015). Finally, abrogation of α5 integrin or
FAK signaling concomitantly with activation of p53 leads to
tumor cell apoptosis (Gillory et al., 2015; Renner et al., 2015).
Reactivation of p53 appears as a pertinent strategy for numerous
tumors (Selivanova, 2014) and, as suggested above, blocking
either integrins or their downstream signaling pathways may
offer new opportunities to synergistically enhance the p53 tumor
suppressor effects.

Resisting Cell Death
Maintenance of cell survival through ECM-integrin interactions
has been recognized for a long time in development and in tissue
homeostasis. Loss in cell adhesion will block the pro-survival
integrin-dependent signaling pathways including PI3K/AKT,
MEK/ERK, FAK, NFκB, and/or ILK leading to a particular
form of apoptosis named anoikis (Griffiths et al., 2011; Vachon,
2011). Resistance to anoikis promotes tumor progression and
favors emergence of metastasis (Paoli et al., 2013; Buchheit
et al., 2014). The “integrin switch” includes changes in their
expression profile and functionality during cell detachment from
the ECM thus overcoming anoikis and allowing tumor cell
survival andmetastasis (Janes andWatt, 2004). New contributors
to anoikis resistance through integrin pathway modulations were
recently discovered. In melanoma cells, TIMP1, a member of the
metalloproteinase inhibitors, was shown to form a complex with
CD63 and integrin β1 conferring resistance to anoikis (Toricelli
et al., 2013). Depletion of cytoplasmic FER, a non-receptor
tyrosine kinase, by increasing the expression of α6β1 integrin
decreased anoikis resistance in breast cancer cells (Ivanova et al.,
2013). Vacuolar-ATPase inhibitor has been shown to reduce
active β1 integrins and to regulate anoikis resistance in several
cancer cells (Schempp et al., 2014). Zinc finger transcription
factor ZNF304 transcriptionally regulates the β1 integrin and
prevents anoikis (Aslan et al., 2015). The miR-26a targeting of
α5 integrin promotes anoikis in human hepatocellular carcinoma
(Zhang et al., 2015b). Finally, atypical anoikis involving necrosis
and autophagy in glioma cells was induced by cilengitide, an
αvβ3/β5 integrin inhibitor (Silginer et al., 2014). Very recently,
suppression of anoikis was attributed to integrin endosomal
signaling (Alanko et al., 2015). These recent examples document
the different ways for a tumoral cell to engage for resisting to
cell-detachment induced apoptosis by means of modulation of
integrin expression and functions.

Resistance to Therapies as a Consequence
As the therapeutic protocols aim to eradicate the tumors and
avoid recurrences, the best strategy would be to induce cell
death. As supported by their pro-survival capacities, integrins
participate to the resistance toward therapies including radio-,
chemo- and targeted therapies (Aoudjit and Vuori, 2012; Nistico
et al., 2014; Shishido et al., 2014; Eke and Cordes, 2015; Naci et al.,
2015).

Research from the group of Cordes largely confirmed that
β1 integrins induce radioresistance in head and neck cancers

(Eke et al., 2012, 2015; Dickreuter et al., 2015; Steglich et al.,
2015) whereas similar results have been reported by others in
breast cancer (Nam et al., 2009, 2013; Ahmed et al., 2013).
Resistance to radiotherapy has also been linked to αvβ3/β5
integrins (Monferran et al., 2008; Skuli et al., 2009; Ning et al.,
2010; Ducassou et al., 2013; Lanvin et al., 2013). β1 integrins
also modulate solid tumor responses to chemotherapies (Howe
and Addison, 2012; Sorensen et al., 2015). In glioblastoma, we
demonstrated the crucial role of α5β1 integrin in the resistance
to Temozolomide (Martinkova et al., 2010; Janouskova et al.,
2012). IGFBP-2 was involved in this resistance (Holmes et al.,
2012; Han et al., 2014). Chemoresistance against doxorubicin by
means of α2β1 integrin activation was recently noted in leukemia
(Naci et al., 2012). Interestingly, an anchorage-independent
form of chemoresistance may exist in leukemia cells implicating
only the α integrin subunit and its cytoplasmic tail sequence
KXGFFKR (Liu et al., 2013). If confirmed in other tumors, this
will constitute a new concept in the field of integrin-dependent
chemoresistance.

Integrins are also coopted candidates for innate and acquired
resistance provoking tumor recurrence. In melanoma, the
mutant BRAF inhibitor, vemurafenib, drives an adhesion
signaling network involving α5β1 integrin and implicated in
the drug resistance (Fedorenko et al., 2015). BRAF inhibition
also activated a β1 integrin/FAK signaling pathway in the
fibroblastic tumor stroma promoting tumoral cell survival
(Hirata et al., 2015). In breast cancer cells, acquired resistance
to tamoxifen is mediated by cancer-associated fibroblast-derived
fibronectin which induces β1 integrin-dependent signaling in
adjacent tumoral cells (Yuan et al., 2015). Ovarian taxol-resistant
tumor populations exhibit an increase in β1 integrin expression
and microtubule dynamics (McGrail et al., 2015). One of the
most studied resistance mechanism addresses the integrin-
GFR crosstalk. The importance of αvβ3 integrin/KRAS axis in
the resistance of various solid tumors toward EGFR targeted
therapies has been demonstrated (Seguin et al., 2014). β1 integrin
is also implicated in resistance to anti-EGFR therapies (Huang
et al., 2011; Morello et al., 2011; Eke et al., 2013; Kanda et al.,
2013). By contrast, a recent study showed that β1 integrin
and EGFR inhibitions are inefficient for radio- and chemo-
sensitization of colorectal carcinoma cell in vitro (Poschau et al.,
2015). Cooperation between β1 integrin and c-Met regulates
tyrosine kinase inhibitor resistance in lung cancer (Ju and Zhou,
2013).

In solid tumors, as resistance to therapies can be mediated
by GFR and β1 integrin, targeting of β1 integrin simultaneously
with GFR inhibitors may be a promising therapeutic approach.
In addition, new data stress side-effects of targeted therapies
on the tumor-surrounding microenvironment that may affect
the integrin signaling pathways to reinforce their resistance
mechanisms.

INTEGRINS AND INVASION/METASTASIS

Other key biological process of cancer progression comprises
local invasion and metastatic dissemination of tumor cells which
present interconnected pathways with resistance to therapies
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(Alexander and Friedl, 2012). Cell adhesion to ECM is central to
the migration/invasion/metastasis process and implicates largely
integrins (Scales and Parsons, 2011; Esposito and Kang, 2014;
Naci et al., 2015). It is known for a long time that integrins
regulate MMPs (matrix metalloproteinases) facilitating ECM
degradation and remodeling. New data extend these findings
(Borrirukwanit et al., 2014; Missan et al., 2015; Schlomann et al.,
2015). New components are still being discovered contributing to
the activity/function of integrins in cancer. Among those, actin-
binding proteins or nucleation/assembly factors were recently
reported to play crucial roles in the proinvasive activity of
integrins. High expression of Profilin-1 (PFN1-a regulator of
actin polymerization) was associated to tumor infiltration and
lymph nodemetastasis. In gastric cancer, silencing PFN1 reduced
β1 integrin expression and prevented FAK signaling (Cheng et al.,
2015). Formin-like 2 (FMNL2—actin nucleation and assembly
factor), upregulated in several metastatic cancers, interacts with
RhoC to drive α2β1 and α5β1 integrin internalization/trafficking
and invasive motility of cancer cells (Wang et al., 2015). Invasive
migration of cancer cells into fibronectin-rich 3D ECM was
reported to be enhanced following Rab-coupling protein (RCP)-
driven endocytic recycling of α5β1 integrin. Invasive cells exhibit
dynamic actin spike protrusions that are Arp2/3-independent
but requires ROCK-mediated activation of FHOD3 (member
of the formin family of protein; Paul et al., 2015). Integrin
signaling can be rewired to increase tumor invasiveness during
tumor metastasis by a novel mechanism recently described
(Leyme et al., 2015). Integrins and G protein-coupled receptor
traditionally trigger independent signaling but interestingly it
was shown that integrin signaling requires the activation of the
trimeric G protein Gαi by GIV or Girdin. In breast cancer
cells, GIV colocalize with β1 integrin in invadosomes to recruit
Gαi3 to the integrin signaling complex. Expression of GIV
in non-invasive cancer cells results in enhanced haptotaxis
and invasion. Modulation of expression of integrins is an
alternative mechanisms used by cancer cells to control migration,
invasion and metastasis. Human telomerase reverse transcriptase
(hTERT) expression and telomerase activation are observed in
90% of human malignancies. hTERT plays an important role
in cancer invasion by enhancing β1 integrin to promote the
invasion of gastric cancer (Hu et al., 2015). The collaboration
between integrins and GFR also accelerate tumor cell mobility
and invasion. Clinical and functional analyses showed that
CD151 and α3β1 integrin were elevated in glioblastoma. Both
synergized with EGF/EGFR to accelerate tumor cell motility
and invasion (Zhou et al., 2015). β1 integrin/kindlin and EGFR
complexes increase breast and lung cancer cell migration (Li
et al., 2013; Williams and Coppolino, 2014; Guo et al., 2015).
Fibronectin matrix mediates PDGFR-β association with α5β1
integrin in focal adhesions and regulates cell migration (Veevers-
Lowe et al., 2011). HGF-mediated c-Met activation induces
collective cancer cell invasion through β1 integrin trafficking
(Mai et al., 2014). All these data suggest that β1 integrins and
GFR share the same signaling pathways to modulate migration
of cancer cells. In human colorectal cancer, downregulation of
the aryl hydrocarbon receptor nuclear translocator (ARNT or
HIF-1β) promoted cancer cell migration and invasion through

the activation of the fibronectin/β1 integrin/FAK signaling
axis. Chemotherapeutic drugs inhibited ARNT expression and
promoted invasion of residual tumor cells (Huang et al., 2015).
In head and neck squamous cell carcinoma, disappearance
of caveolin-1 expression in primary tumors is predictive of
high risk of metastasis and is of bad prognosis. α2β1 and
α5β1 integrins, both of which are regulated by caveolin-1, are
responsible for the acquisition of motile, invasive, evasive and
metastatic traits of tumors (Jung et al., 2015). MiR targeting of
integrins represents a new way to endogenously regulate their
expression. By targeting directly kindlin-2, miR-200b silenced
the kindling-2/β1 integrin/AKT regulatory axis that ultimately
suppresses the invasiveness of esophageal squamous cancer
cells. miR-25 acts as a tumor suppressor in prostate cancer
by direct functional interaction with the 3’UTR regions of
proinvasive αv and α6 integrins (Zhang et al., 2015a; Zoni et al.,
2015).

The tumor cell dissemination to a particular metastatic niche
is dependent on the integrin repertoire expressed at the surface
of cancer cells, blood and lymph compartment, vasculature,
stromal cells as well as the composition and organization of
ECM. For instance, a hepatic microenvironment favors the
expression of α2β1 and α5β1 integrins on colorectal cancer
cells which prompted colorectal cancer metastases to settle in
the liver (Pelillo et al., 2015). αvβ3, α2β1 and α4β1 integrins
play a key role in bone metastasis as their ligands are normally
expressed by the bone-associated cells (Esposito and Kang,
2014). Knock-out mice for α11β1 integrin, a stromal cell-specific
receptor for fibrillar collagen overexpressed by carcinoma-
associated fibroblasts (CAF), prevent the metastatic potential of
lung adenocarcinoma cells to bone, kidney, or brain (Navab et al.,
2015). Lymph node metastasis (LNM) is recognized in clinical
medicine as of bad prognosis for HNSCC patient. α2β1, α3β1,
α6β1 integrins were identified as specific receptors that mediate
the interactions between tumor cells and laminin present in the
lymphatic environment (Fennewald et al., 2012; Soares et al.,
2015).

INTEGRINS AND NEOANGIOGENESIS

The role of integrins in developmental and pathological
angiogenesis has been largely described (Avraamides et al.,
2008). As a leader, the αvβ3/β5 integrin was long considered
as a primordial player in tumoral neo-angiogenesis and its
specific antagonist cilengitide was the first to reach clinical
trials as an anti-angiogenic compound (Stupp et al., 2010).
Unfortunately, cilengitide failed to improve the overall survival
of glioblastoma patients in a multicentric randomized phase
III clinical trial (Stupp et al., 2014). The need to understand
the fine molecular events supporting integrin biology and
functions appears currently as a priority in the field (Atkinson
et al., 2014). Recent data indicate that dosage and timing
of αvβ3 integrin antagonism are critical to pro- or anti-
angiogenesis effects (Robinson et al., 2009; Steri et al., 2014).
Hence, proof of principle that low doses of cilengitide, which
were shown to promote angiogenesis, may be used in a
“vascular promotion therapy,” opens a new field in integrin
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antagonist usefulness (Wong et al., 2015). Integrin α5β1 was
also highlighted as a pro-angiogenic driver with an increased
expression in neo-angiogenic tumoral vessels (Schaffner et al.,
2013). However, recent data using KO mice models challenged
the implication of α5, αv and their matrix ligand fibronectin
in the tumor angiogenesis (Murphy et al., 2015). Discrepancies
observed between the effects of the gene deletions and those of
integrin-matrix adhesion blocking compounds on angiogenesis
led to the interesting hypothesis that the latter may induce
some anti-angiogenic function in the integrins. A better
understanding of the integrin signaling pathways will help to
understand their fine tuning in endothelial cells. Recent data
explored the molecular regulation of angiogenesis through β1
integrin activation/inhibition and revealed cross-talks between
angiopoietin-2, Arf6, VE-cadherin or MAP4K4 and β1 pathway
(Hakanpaa et al., 2015; Hongu et al., 2015; Vitorino et al., 2015;
Yamamoto et al., 2015).

Integrins also participate to anti-angiogenic therapy
resistance. One of the most studied anti-angiogenic therapy
is Bevacizumab, a monoclonal antibody against VEGF-A.
Addition of Bevacizumab to adjuvant therapies in multiple
cancer types improved progression free survival of patients
(Ahmadizar et al., 2015). In brain tumors, anti-VEGF therapy
led to bevacizumab-resistant recurrent glioblastoma with two
different phenotypes, one of which appeared as infiltrative and
the other as proliferative (de Groot et al., 2010; DeLay et al.,
2012). Interestingly, the former expressed more α5β1 integrin
and fibronectine. β1 integrin targeting was shown to disrupt the
resistance toward Bevacizumab (Carbonell et al., 2013; Jahangiri
et al., 2014).

INTEGRINS AND REPROGRAMMING OF
ENERGY METABOLISM AND THE EVASION
OF IMMUNE DESTRUCTION

Unlike normal cells, tumor cells use aerobic glycolysis (the
Warburg effect) rather than oxidative phosphorylation
(OXPHOS) to generate energy. This reprogramming of
glucose metabolism is promoted by Twist through a β1-
integrin/FAK/PI3K/AKT/mTOR pathway (Yang et al., 2015).
Interestingly, it was shown recently that aerobic glycolysis or
OXPHOS deregulation may enhance cancer cell migration and
invasion through modulation of β1 integrin pathway (Yang et al.,
2014; Nunes et al., 2015). Concerning the immune system, αv
integrin upregulation can promote ADCC (antibody-dependent-
cell-mediated cytotoxicity) but also link drug resistance with
immune evasion (Jinushi et al., 2012; Anikeeva et al., 2014). Local
immune response can be abrogated by tenascin C/α5β1 integrin
to promote metastasis (Jachetti et al., 2015). A phenomenom
named “integrin transregulation” can enhance tumor immunity
through an increase in T-cell entry into melanomas (Cantor
et al., 2015). Innate immune cells can promote tumor metastasis
in dedicated environment. Interestingly, it was proposed that
immune cell-derived microparticles may transfer αMβ2 integrin
to tumor cells leading to their migration in vitro and metastasis

FIGURE 1 | Implication of β1 integrins in the hallmarks of cancer. β1

integrins participate, through several mechanisms, to the major steps of tumor

progression including the development of the tumor and of new vessels,

migration/invasion into the surrounding stroma and extravasion through

neoangiogenic vessels and homing in new tissues to form metastasis. In

addition, these integrins participate largely to the resistance to therapies.

in vivo (Ma et al., 2013). This recent literature suggests that
an exponential growth of data will be available in the future
characterizing the roles of integrins in these two new hallmarks
of cancer.

CONCLUSIONS

The goal of this review was to give a brief and non-exhaustive
overview of the most recent data about the implication of β1
integrins in different hallmarks of cancer (Figure 1). Examples
given here stress the complexity of the integrin signaling
pathways which will largely depend on the tumor context under
consideration. Micro environmental cues as well as molecular
features of the tumoral cells themselves will determine which
integrin(s) may be preferentially targeted. Increasing knowledge
on how the integrin expression and functions are modulated is
mandatory to propose associated therapies more susceptible to
eradicate tumors.
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