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Disturbing CA3 Pyramidal Cell Firing
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Zoltan Gerevich*

Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany

Cortical gamma oscillations are associated with cognitive processes and are altered
in several neuropsychiatric conditions such as schizophrenia and Alzheimer’s disease.
Since dopamine D3 receptors are possible targets in treatment of these conditions, it is
of great importance to understand their role in modulation of gamma oscillations. The
effect of D3 receptors on gamma oscillations and the underlying cellular mechanisms
were investigated by extracellular local field potential and simultaneous intracellular
sharp micro-electrode recordings in the CA3 region of the hippocampus in vitro. D3

receptors decreased the power and broadened the bandwidth of gamma oscillations
induced by acetylcholine or kainate. Blockade of the D3 receptors resulted in faster
synchronization of the oscillations, suggesting that endogenous dopamine in the
hippocampus slows down the dynamics of gamma oscillations by activation of D3

receptors. Investigating the underlying cellular mechanisms for these effects showed
that D3 receptor activation decreased the rate of action potentials (APs) during gamma
oscillations and reduced the precision of the AP phase coupling to the gamma cycle
in CA3 pyramidal cells. The results may offer an explanation how selective activation
of D3 receptors may impair cognition and how, in converse, D3 antagonists may exert
pro-cognitive and antipsychotic effects.

Keywords: gamma rhythm, dopamine D3 receptors, hippocampus CA3 region, cognition, schizophrenia,
antipsychotics

INTRODUCTION

Cognitive impairment is common in individuals with neuropsychiatric disorders such as
schizophrenia, mood disorders, Alzheimer’s disease, autism spectrum disorder, and Parkinson’s
disease (Millan et al., 2012). Many efforts have been made to develop drugs to maintain or
enhance cognitive processes but the available treatments still have limited pro-cognitive effects.
Despite some progress in treating cognitive deficits in schizophrenia with second-generation

Abbreviations: 5-HT3 receptor, 5-hydroxytryptamine 3 receptor; ACSF, artificial cerebrospinal fluid; AP, action potential;
D1 receptor, dopamine D1 receptor; D2 receptor, dopamine D2 receptor; D3 receptor, dopamine D3 receptor; D4 receptor,
dopamine D4 receptor; DA, dopamine; KA, kainate; Ki, dissociation constant; LFP, local field potential; Physo, physostigmine.

Frontiers in Pharmacology | www.frontiersin.org 1 January 2016 | Volume 6 | Article 297

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://dx.doi.org/10.3389/fphar.2015.00297
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fphar.2015.00297
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2015.00297&domain=pdf&date_stamp=2016-01-06
http://journal.frontiersin.org/article/10.3389/fphar.2015.00297/abstract
http://loop.frontiersin.org/people/281734/overview
http://loop.frontiersin.org/people/18641/overview
http://loop.frontiersin.org/people/180831/overview
http://loop.frontiersin.org/people/269385/overview
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lemercier et al. Dopamine D3 Receptors Inhibit Gamma Oscillations

antipsychotics, management of negative and cognitive symptoms
remains one of the most pressing and unresolved problems of
neuropsychopharmacology (Miyamoto et al., 2012).

In recent years, there has been increasing recognition
of the role of D3 receptors in cognition (Nakajima et al.,
2013). Behavioral studies in a variety of animals have shown
that activation of D3 receptors impairs attention, working
memory, object recognition, associative learning, episodic
memory, and spatial learning (Ukai et al., 1997; Smith
et al., 1999; Watson et al., 2012), whereas blockade or
knockout of this receptor seems to exert pro-cognitive effects
(Glickstein et al., 2005; Laszy et al., 2005; Loiseau and
Millan, 2009; Xing et al., 2010). Accordingly, in humans,
activation of these receptors has been shown to impair
cognitive performance, whereas their blockade seems to have
pro-cognitive effects (Cools et al., 2006; Hamidovic et al.,
2008; Gross et al., 2013). Despite the increasing evidence
for D3 receptor involvement on cognitive processes, the
underlying mechanism is still not understood (Nakajima et al.,
2013).

Gamma band (30–90 Hz) oscillations have been implicated in
a range of aforementioned cognitive processes (Axmacher et al.,
2010; Powell et al., 2014) and are known to be generated by
the synchronous firing of perisomatic parvalbumin containing
fast-spiking basket cells (Gulyás et al., 2010). An increasing
number of studies have demonstrated that gamma oscillations
are altered and instable in schizophrenic patients and have led
to the hypothesis that disturbances in gamma band network
activity may be involved in the pathophysiology of the disease
(Uhlhaas and Singer, 2010). Associations between gamma
disturbances and positive, negative and cognitive symptoms
have been observed (Light et al., 2006; Lee et al., 2010;
Mulert et al., 2011) making gamma rhythm abnormalities
an emerging biomarker in schizophrenia with a potential
for use in drug development. In our previous study on
the effects of first and second generation antipsychotics on
hippocampal gamma oscillations (Schulz et al., 2012a) we
found that among 19 investigated receptors, the 5-HT3 and
D3 receptors seemed to be most strongly implicated in the
effect of antipsychotics on hippocampal gamma oscillations.
Indeed, elevated D3 receptor expression have been found in
the central nervous system of schizophrenic patients (Gurevich
et al., 1997). Moreover, D3 receptor polymorphisms have
been reported to be associated with schizophrenia (Jönsson
et al., 2003; Talkowski et al., 2006) and poorer working
memory and executive functioning tasks (Szekeres et al.,
2004).

In present study, we investigated the effect of D3 receptors
on hippocampal gamma oscillations and its underlying
cellular mechanisms. Our findings show that D3 receptor
activation decreases the power, coherence and dynamics of
gamma oscillations and that this effect is accompanied by a
reduction of the firing rate in CA3 pyramidal cells and the
synchrony of their spiking within the gamma cycle. In light
of the relationship between hippocampal gamma rhythms and
higher cognitive functions, our data offer an explanation how
D3 receptor activation may exert anti-cognitive action and

how its blockade may have pro-cognitive and antipsychotic
effects.

MATERIALS AND METHODS

Slice Preparation
Hippocampal slices were prepared from Wistar rats of both
sexes at an age of 6–9 weeks (180–230 g). Animal procedures
were conducted in accordance with the guidelines of the
European Communities Council and the institutional guidelines
approved by the Berlin Animal Ethics Committee (Landesamt
für Gesundheit und Soziales Berlin, T0330/12). All efforts were
made to minimize animal suffering and to reduce the number
of animals used. Animals were anesthetized with isoflurane and
then decapitated. Their brains were removed and immerged in
ice-cold artificial cerebrospinal fluid (ACSF; in mM: NaCl, 129;
KCl, 3; NaHCO3, 21; NaH2PO4, 1.25; MgSO4, 1.8; CaCl2, 1.6;
glucose, 10) aerated with carbogen gas (95% O2/5% CO2). The
brain was cut into 400 μm thick horizontal slices containing
the hippocampal formation with a vibratome (DSK microslicer
DTK-1000, Dosaka, Japan). Slices were immediately transferred
to an interface-type recording chamber perfused with warm
and carbogenated ACSF (36◦C, flow rate 1.7 ml/min). Slices
were left for recovery for at least 1 h before starting the
experiments.

Extracellular Recordings
Local field potentials were recorded from stratum pyramidale
of area CA3b with glass pipettes filled with ACSF
(resistance < 3 M�) as earlier described (Klaft et al., 2012;
Çalişkan et al., 2015). Recordings were amplified by a custom-
made amplifier, low-pass filtered at 1 kHz and sampled at
5 kHz by a CED 1401 interface (Cambridge Electronic Design,
Cambridge, UK). Gamma oscillations were induced by bath
application of either 10 mM acetylcholine (ACh) and 2 mM
physostigmine (Physo) or 100 nM kainic acid (KA) and stabilized
after 90 and 50 min, respectively. Drugs were applied 100 and
60 min after the application of ACh/Physo and KA, respectively,
for a period of 60 min. Antagonists, if appropriate, were applied
40 min prior to the agonist or the wash out of ACh/Physo.
Note that for the better oxygen supply in the tissue, gamma
oscillations were evoked in an interface-type chamber showing
slower equilibration of slices with drugs than in submerged
chambers (Hájos et al., 2009).

Intracellular Recordings
Intracellular recordings were made after the induction of ACh-
induced gamma oscillations from CA3b pyramidal cells in the
slice with sharp microelectrodes filled with 2 M K+-acetate
(resistance 70.3 ± 5.4 M�) as described earlier (Schulz et al.,
2012b). Intracellular signals were amplified by a SEC-05 LX
amplifier (npi electronics, Tamm, Germany), low-pass filtered at
2 kHz and sampled at 10 kHz using the CED 1401 interface.
Recordings were done in bridge mode. Cells were impaled
during the induction of gamma oscillations. The measurements
were started after the stabilization of gamma oscillations but at
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least 20 min after penetration. Only cells were accepted which
showed stable overshooting APs over the full period of the
experiment.

Materials
KA, Physo, PD-128907, PG-01037, and L-741,626 were
purchased from Tocris Bioscience (Bristol, UK). ACh was
purchased from Sigma–Aldrich (Taufkirchen, Germany).

Data Analysis and Statistics
For the analysis of oscillations, power spectra were calculated
every 2 min with a 2-min window throughout the recording
and peak power, peak frequency and half bandwidth (at 50% of
peak power) were determined off-line by using a custom-made
script for the Spike2 software (Cambridge Electronic Design,
Cambridge, UK). Since absolute power values vary substantially
among slices, they were normalized in every slice to a 10-min
period before the drug application, the ACh/Physo washout
or the corresponding time in control experiments. Data are
presented as mean ± SEM. Statistical comparisons between the
drug-induced effects and the time-matched control experiments
were made using Student’s t-test. Significance level was set at
p < 0.05.

Phase histograms of APs from intracellular recordings
in relationship to the extracellular gamma cycle and the
corresponding LFP waveform averages were calculated by the
Spike2 software over time windows covering 1000 APs each. 0◦
represents the trough of the LFP gamma cycles. Occurrence of
fast components at the negative peak of gamma oscillations (most
probably spikes in pyramidal cells adjacent to the electrode tip)
made a low-pass filtering (100 Hz) of the data necessary (Fisahn
et al., 1998). Although the FIR filter preserves the shape and phase
of the signal better than the infinite impulse response (IIR) filter,
we observed a minimal ∼10◦ shift in phase which, however, did
not bias the calculated changes in phase accuracy or preferred
phase induced by drugs. Analysis of the phasic AP timing resulted
in a mean vector for each cell. Its mean phase � and vector
lengths r were used to calculate the mean vectors and the circular
standard deviations for the cell populations of different drug
conditions (Schulz et al., 2012b). Time-frequency-analysis of
LFPs was carried out offline using the Spike2 software.

RESULTS

Dopamine Inhibits Cholinergically
Induced Gamma Oscillations in the
Hippocampus
Perfusion of the hippocampal slices with acetylcholine (ACh,
10 μM) and Physo (2 μM) induced gamma oscillations in the
CA3 pyramidal layer with a peak power of 429.22 ± 253.26 μV2,
a peak frequency of 37.6 ± 0.71 Hz and a half bandwidth of
3.92 ± 0.82 Hz. A narrow half bandwidth in the power spectrum
of the oscillation indicates a high temporal coherence and regular
oscillations, whereas a wide gamma band means low coherence
and less regular oscillations.

Application of dopamine (DA; 100 μM) decreased the power
to 46.2 ± 10.8% (n = 6; p < 0.001, compared to control
power change to 106.1 ± 8.9%, n = 12; Figure 1), whereas
the peak frequency did not change significantly (108.0 ± 3.5%,
p= 0.057 compared to control frequency change to 102.2± 1.0%;
Figure 1). We also investigated the effect of DA on the width
of the gamma band (half bandwidth) and found that DA
did not affect significantly the bandwidth of the oscillation
(138.7 ± 14.1%, p = 0.123 compared to control half bandwidth
change to 117.4 ± 6.1%; Figure 1).

Dopamine D3 Receptors Inhibit
Cholinergically Induced Gamma
Oscillations in the Hippocampus
Our previous study on the effects of antipsychotics on gamma
oscillations suggested that among DA receptors, only the
activation of D3 receptor altered gamma oscillations significantly
(Schulz et al., 2012a). To further investigate the effect of these
receptors on gamma oscillations, we next applied PD-128907
(10 μM), a selective DA D3 agonist and found that it decreased
the power to 43.4 ± 8.1% (n = 8, p < 0.001 compared to
control; Figure 2) and broadened the half bandwidth of the
gamma oscillations to 216.6 ± 37.0% (p = 0.003, compared to
control; Figure 2). The peak frequency of the oscillation did not
change (100.2 ± 4.9%, p = 0.642 compared to control; Figure 2).
To confirm whether indeed the D3 receptors are responsible
for the effect of PD-128907, we repeated the experiments in
the presence of PG-01037 (10 μM), a selective antagonist at
D3 receptors. PG-01037 itself did not significantly alter gamma
oscillations (power: 133.0 ± 22.9%, p = 0.212; bandwidth:
113.9 ± 12.8%, p = 0.780; frequency: 101.1 ± 1.0%; n = 7;
p = 0.475 compared to control; Figure 2D) but antagonized
the effect of PD-128907 on power (96.0 ± 20.1%, n = 7,
p = 0.024 compared to PD-128907 alone, Figure 2) and half
bandwidth (123.0 ± 14.3%, p = 0.047 compared to PD-128907
alone, Figure 2), whereas the frequency of the oscillation was
not changed (103.1 ± 14.7%, p = 0.607 compared to PD-
128907 alone, Figure 2). On the contrary, L-741,626 (10 μM),
a selective D2 receptor antagonist, did not reverse the effect
of PD-128907 (power: 33.0 ± 9.8%, n = 7, p = 0.422; half
bandwidth: 162.0 ± 31.3%, p = 0.199; frequency: 96.8 ± 6.5%,
p = 0.543 compared to PD-128907 alone). These data indicate
that PD-128907 reduced the magnitude and precision of gamma
oscillations via selective activation of D3 receptors.

D3 Receptors Inhibit Kainate-Induced
Hippocampal Gamma Oscillations
Gamma oscillations can also be induced by activation of
KA receptors on pyramidal and basket cells (Fisahn et al.,
2004), showing a different pharmacological profile compared
to ACh-induced gamma oscillations (Schulz et al., 2012b).
To test whether D3 receptors can also modulate KA-induced
gamma oscillations, we applied KA (100 nM) on hippocampal
slices and reliably induced gamma oscillations in the CA3
pyramidal layer with a peak power of 943.31 ± 388.64 μV2,
a peak frequency of 42.72 ± 0.96 Hz and a half bandwidth
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FIGURE 1 | Dopamine (DA) inhibits cholinergically induced hippocampal gamma oscillations. (Aa) Local field potentials (LFPs) recorded in the CA3
pyramidal layer from rat hippocampal slices. Gamma oscillations were induced by bath application of acetylcholine (ACh, 10 μM) and physostigmine (Physo, 2 μM).
Addition of DA (100 μM) to the bath inhibited the power of gamma oscillations. (Ab) Power spectra of ACh-induced gamma oscillations before and after DA
application. (B) Spectrogram of the gamma oscillations before, during and after the application of DA. (C) Bars summarize the effect of DA on the peak power (Ca),
half bandwidth (Cb) and peak frequency (Cc). Data were normalized to the mean of the 10-min period before DA application or the corresponding time in control
experiments. ∗p < 0.05 compared to the time-matched control.

of 3.72 ± 0.85 Hz. Application of PD-128907 decreased the
power to 67.7 ± 11.9% (n = 5; compared to KA control:
142.9 ± 12.2%, n = 5; p = 0.002) and broadened the bandwidth
to 119.4 ± 5.7% (compared to KA control: 79.2 ± 8.2; p = 0.004;
Figure 3). The frequency increased to 105.0 ± 1.8% (compared
to KA control: 95.2 ± 0.6%; p = 0.001). We compared
the effects of PD-128907 on ACh- and KA-induced gamma
oscillations in Table 1. As seen, we did not find any statistical
different effects on any parameters between the two induction
protocols.

TABLE 1 | Effects of PD-128907 on ACh- and KA-induced gamma
oscillations.

Oscillation parameter ACh (10 µM) + Physo (2 µM) KA (100 nM)

Peak power (mV2) 43.4 ± 8.1%∗ 67.7 ± 11.9%∗

Peak frequency (Hz) 100.2 ± 4.9% 105.0 ± 1.8%∗

Half bandwidth (Hz) 216.6 ± 37.0%∗ 119.4 ± 5.7%∗

Data were normalized to the baseline period before PD-128907 application.
∗p < 0.05 compared to control experiment.

D3 Receptors Slow Down the
Development of Gamma Oscillations
Since in vivo cortical network activity is dynamic and
characterized by appearing and disappearing synchronization,
we next investigated whether D3 receptors could have an
effect on these dynamics. To do so, gamma oscillations were
first induced by ACh and Physo (baseline state) and then
washed out after stabilization of the oscillations either in the
presence or the absence (control) of the D3 antagonist PG-
01037. As a consequence of the removal of the ACh and Physo,
the gamma oscillations became progressively less powerful,
faster and less synchronized (Figure 4A). After 40 min of
washout of ACh and Physo (wash-out state), the gamma power
showed massive reduction (5.8 ± 1.6% of the baseline state,
n = 9; p < 0.001 compared to baseline state), and both the
frequency (43.4 ± 1.4 Hz; p = 0.013 compared to baseline
state 38.9 ± 1.1 Hz) and the half bandwidth (13.2 ± 1.4 Hz;
p = 0.010 compared to baseline state 4.1 ± 0.8 Hz; Figure 4A)
increased. Blockade of the D3 receptors by PG-01037 (10 μM)
did not affect the desynchronisation of the gamma oscillations

Frontiers in Pharmacology | www.frontiersin.org 4 January 2016 | Volume 6 | Article 297

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lemercier et al. Dopamine D3 Receptors Inhibit Gamma Oscillations

FIGURE 2 | Activation of D3 dopamine receptors inhibits cholinergically induced hippocampal gamma oscillations. (A) LFP recordings from the CA3
pyramidal cell layer after induction of gamma oscillations by ACh (10 μM) and Physo (2 μM) before (black) and after (orange) the application of the selective D3

receptor agonist PD-128907 (PD, 10 μM) alone (Aa), in the presence of the D3 receptor antagonist PG-01037 (10 μM, Ab) or in the presence of the selective D2

receptor antagonist L-741,626 (10 μM, Ac). Only the D3 antagonist antagonized the effect of PD-128907 indicating that only the D3 receptors are involved in the
effect. (B) Spectrograms showing the effect of PD-128907 on hippocampal gamma oscillations in the absence (Ba) and presence (Bb) of the D3 antagonist
PG-01037. PG-01037 could antagonize the effect of PD-128907. (C) Power spectra showing the effect of PD-128907 (PD) on hippocampal gamma oscillations
alone (Ca), in the presence of PG-01037 (PG; Cb) and in the presence of L-741,626 (Cc). (D) Bars summarize the effect of PD-128907 alone and in the presence of
selective DA receptor antagonists on the peak power (Da), half bandwidth (Db) and peak frequency (Dc). The last bar shows the effect of PG-01037 alone. Data
were normalized to the mean of the 10-min period before PD-128907 application or the corresponding time in control experiments. ∗p < 0.05 compared to the
time-matched control.

(power: 4.3 ± 1.4% of the baseline state, n = 7, p = 0.497
compared to the control washout state; frequency: 41.5 ± 1.4 Hz,

p = 0.368; bandwidth: 11.3 ± 1.1 Hz, p = 0.340; Figure 4).
Next, ACh and Physo were re-perfused to the ACSF to investigate
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FIGURE 3 | Activation of dopamine D3 receptors (D3 receptors) inhibits kainate (KA)-induced hippocampal gamma oscillations. (A) LFPs recorded in
the CA3 pyramidal layer from rat hippocampal slices. (Aa) Gamma oscillations were induced by bath application of KA (100 nM). The selective D3 receptor agonist
PD-128907 (10 μM) inhibited the power of gamma oscillations. (Ab) Power spectra of KA-induced gamma oscillations in the absence (black) and presence (orange)
of PD-128907. (B) Bars summarize the effect of PD-128907 on the peak power (Ba), half bandwidth (Bb) and peak frequency (Bc) of gamma oscillations. Data
were normalized to the mean of the 10-min period before PD-128907 application or the corresponding time in control experiments. ∗p < 0.05 compared to the
time-matched control.

the dynamics of neuronal network resynchronization. In the
control experiment, 30 min after the renewed presence of ACh
and Physo (re-wash-in state), the power increased significantly
to 39.6 ± 10.56% of baseline (p = 0.009 compared to wash-out
state) and the half bandwidth started to decrease to 10.9 ± 1.6 Hz
(p = 0.232 compared to wash-out state; Figures 4Aa,b). In
contrast, the frequency in the re-wash-in state was unchanged
when compared to wash-out state (44.5 ± 1.1 Hz; p = 0.497
compared to wash-out state; Figure 4Ac).

Interestingly, PG-01037 strongly facilitated the re-
synchronization of the oscillations (Figure 4). 30 min after
wash-in of ACh and Physo (re-wash-in state), the gamma power
and the half bandwidth returned back to values comparable
to those initially present during the baseline state (power:
93.7 ± 24.4% of baseline, p = 0.044 compared to control
experiments; half bandwidth: 4.9 ± 0.7 Hz compared to the
baseline state 4.0 ± 0.8 Hz, p = 0.012 compared to the control
experiments; Figures 4Aa,b). Also the frequency decreased,
but failed to recover to values of the baseline state. However,
compared to the control group at the same time, it is significantly
reduced (41.1± 1.0 Hz compared to control group 44.3 ± 0.9 Hz,
p = 0.031; Figure 4Ac).

D3 Receptors Alter Firing Properties of
CA3 Pyramidal Cells
To investigate the mechanisms underlying the gamma oscillation
inhibition by activation of D3 receptors, we recorded membrane
potential from CA3 pyramidal cells by means of intracellular
sharp electrodes after stabilization of cholinergic gamma
oscillations. During gamma oscillations, a robust membrane
potential oscillation was observed with a mean frequency of
30.2 ± 2.5 Hz and a peak-to-peak amplitude of 1.78 ± 0.57 mV.
The frequency of these membrane potential oscillations was
comparable to the frequency of the LFP oscillations measured
in parallel by the extracellular electrode (LFP: 33.5 ± 1.57 Hz;
p = 0.292). Application of the D3 receptor agonist PD-
128907 reduced the peak-to-peak amplitude of the membrane
potential oscillations to 0.86 ± 0.26 mV (p = 0.047),
whereas their frequency was not changed (29.1 ± 2.8 Hz,
p = 0.424).

The cells fired APs at a rate of 9.8 ± 2.4 Hz (n = 7) phase-
locked to the gamma oscillations (Rayleigh test, p < 0.001
for each cell; Moore’s test, p < 0.05 for the cell population,
n = 7). Circular analysis of APs related to the gamma cycle
revealed a mean phase � of 15.3 ± 15.3◦ (mean ± circular
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FIGURE 4 | Inhibition of D3 receptors speeds re-synchronization of hippocampal gamma oscillations. (A) The selective D3 receptor antagonist PG-01037
(10 μM, black circles) did not affect the decay of gamma oscillations after the washout of ACh and Physo but significantly fastened their re-synchronization as seen
in the faster increase of the power (Aa), faster narrowing of the half bandwidth (Ab) and reversing of the original peak frequency (Ac). In control experiments no
PG-01037 was applied (open circles) (B; Left) LFP recordings before washing out of ACh and Physo (black) and after the re-perfusion of the same drugs (orange).
(Right) Power spectra for the same recordings marked with the same colors. ∗p < 0.05 compared to the time-matched control.

standard error; 0◦ = trough of the gamma cycle) and a
mean vector length r of 0.71 ± 0.07 after low-pass filtering,
indicating a rather high accuracy of neuronal firing within
the gamma cycle (r = 1 would mean that all cells fired
all APs at the very same phase with maximal synchrony,
r = 0 that all APs were equally distributed over the gamma
cycle).

PD-128907 reduced the firing rate of pyramidal cells to
5.7 ± 1.9 Hz (p = 0.045, n = 7). Whereas � did not change
(17.3 ± 18.4◦, p > 0.05) indicating that the cells still fired at
the same phase within the gamma cycle on average, r decreased
to 0.58 ± 0.07 (p = 0.027, Hotelling test for paired samples;
Figure 5) suggesting that the synchrony of spike timing was
reduced after D3 receptor activation.

Analyzing spontaneous APs during gamma oscillations before
and after PD-128907 application revealed that neither the AP
half-width (control: 1.02 ± 0.04 ms; PD-128907: 1.04 ± 0.05;
p = 0.680, not shown) nor the AP amplitude (control:
54.0± 3.2 mV; PD-128907: 54.1± 4.4 mV; p= 0.978, not shown)
were affected.

DISCUSSION

D3 Receptors and Cognition
While preclinical and clinical data suggest that activation of D3
receptors impairs cognitive processes and blockade or knock out
of the receptors have pro-cognitive effects (Nakajima et al., 2013),
much less is known about the underlying mechanisms. Our data
on hippocampal gamma oscillations may offer an explanation.
The hippocampus, expressing D3 receptors (Bouthenet et al.,
1991; Richtand et al., 1995; Khan et al., 1998), is involved in a
line of cognitive cues also affected by D3 receptors (Rubin et al.,
2014). Moreover, gamma oscillations in the hippocampus play
a key role in signal processing necessary for working memory,
attention, learning and retrieval of memory by transiently
enabling the communication between neurons and neuronal
groups in different brain areas (Lisman and Jensen, 2013). In
particular, the CA3 area of the hippocampus with its strong
recurrent collateral associative connectivity is thought to keep
information in the working memory by means of synchronous
oscillation of pyramidal cells belonging to the assembly coding
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FIGURE 5 | Dopamine D3 receptors decrease the firing rate, firing synchrony and membrane potential oscillations in CA3 pyramidal cells during
gamma oscillations. (Aa) LFP recordings from the CA3 pyramidal cell layer (top), the low-pass (100 Hz) filtered LFP signal (middle) and the corresponding
intracellular recording from a CA3 pyramidal cell (bottom) after the induction of gamma oscillations by ACh and Physo. (Ab) Effects of the selective D3 receptor
agonist PD-128907 (10 μM) on the LFP recordings (top) and the corresponding intracellular recordings from a CA3 pyramidal cell (bottom). (B) Bars summarize the
firing rates before and after PD-128907 application. (Ca) Phase histograms of action potentials (APs) before and after PD-128907 application. The average curve for
all measured cells is shown (n = 7). In every cell, 1000 APs were analyzed. 0◦ represents the troughs of the gamma cycles after low-pass filtering. PD-128907
broadened the distribution of APs during the gamma cycle. (Cb) Bars summarize the mean vector lengths (r) before and after PD-128907 application. r = 1 would
mean that all cells fired all APs at the very same phase with maximal synchrony; r = 0 that all APs were equally distributed over the gamma cycle. (D) Bars
summarize the peak-to-peak amplitude of membrane potential oscillations from CA3 pyramidal cells before and after PD-128907 application. ∗p < 0.05 compared
to the 10-min baseline period before PD-128907.

the pattern until it is stored in the synapses between CA3
pyramidal cells (Rolls, 2013). ACh release in the cortex closely
follows the time-course of attention-demanding events (Parikh
et al., 2007). Stronger gamma band modulations in V4 correlated
with faster reaction times (Womelsdorf et al., 2006; Buehlmann
and Deco, 2008) suggesting that the dynamic changes of gamma
oscillations have behavioral consequences. Our results suggest
that D3 receptor antagonists might exhibit their pro-cognitive
effects by modulation of the dynamics of hippocampal gamma
oscillations.

Dopaminergic neurons release DA within the forebrain in two
different modes: the low tonic and the high phasic transmission
mode. The tonic release underlies the background, steady state
level of extracellular DA and is mediated by dopaminergic neuron
population activity whereas the phasic release is produced by
the activation of dopaminergic neuron firing by behaviorally
relevant stimuli (Grace, 1991). High affinity D3 receptors may
be activated during the tonic mode by the lower level of DA
within the target sites, whereas low affinity receptors may only
be activated by higher DA levels reached only during the phasic
release. Our results suggest that the two release modes might
trigger opposing effects and DA, by activating different receptors,
may increase the signal-to-noise ratio: during the background

release, gamma oscillations are inhibited by the high affinity D3
receptors. Salient stimuli may transiently increase DA levels in
the forebrain activating low affinity DA receptors, such as the
D4 receptor, which may increase gamma oscillations and thus
cognitive processes such as attention, perceptual grouping, spatial
navigation, and memory (Andersson et al., 2012).

D3 Receptors and Schizophrenia
Besides genetic studies (Jönsson et al., 2003; Talkowski et al.,
2006) there are also pharmacological evidences for the
involvement of D3 receptors in schizophrenia. The atypical
antipsychotic amisulpride is a pure D2 and D3 receptor
antagonist with Ki values of 1.7 and 2.5 nM, respectively (Tadori
et al., 2011). Aripiprazole, another atypical antipsychotic, has
a partial agonistic profile at both D2 and D3 receptors with
Ki values of 2.5 and 4.2 nM, respectively (Tadori et al., 2011).
Because of the 7–40-fold higher affinity of endogenous DA for the
D3 versus D2 receptors (Tadori et al., 2011), the D3 occupancy
by these drugs might be lower (Girgis et al., 2011). Indeed,
aripiprazole was only effective against cognitive impairment
and negative symptoms at doses similar to or higher than its
antipsychotic-like effective dose, suggesting that a higher D3
occupancy is needed for these effects (Adham et al., 2014).
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Cariprazine is a newly developed antipsychotic with profound
pro-cognitive effects and very high affinity for the D3 receptor
of 0.08 nM compared to the D2 receptors: 0.6 nM (Kiss et al.,
2010). At a dose equivalent to the ED50 for antipsychotic like
efficacy, cariprazine showed high levels (above 80%) of both D2
and D3 occupancy which may contribute to its better therapeutic
outcome against cognitive and negative symptoms (Adham et al.,
2014).

In individuals with schizophrenia, altered and instable gamma
oscillations have been observed (Kwon et al., 1999). Our data
suggest that antipsychotics with high affinity for the D3 receptor
exert their antipsychotic effects by normalizing altered gamma
oscillations. Since schizophrenia is characterized by disturbed
(i.e., alternately enhanced and reduced) gamma oscillations, we
suggest that partial agonism/antagonism at the D3 receptor may
be a better therapeutic approach to treat schizophrenia than a
pure antagonism. Partial agonists may stabilize gamma network
activity at different circumstances such as different DA levels
(Kiss et al., 2010; MacDonald and Bartolomé, 2010).

Cellular Mechanisms Underlying the
Inhibition of Gamma Oscillations in the
CA3
We did not find significant differences between the effects of D3
receptors on ACh and KA-induced gamma oscillations (Table 1)
as seen, e.g., for purinergic receptors (Schulz et al., 2012b).
This may indicate that D3 receptors exert their non-specific
inhibition of the gamma circuitries in the hippocampus by
acting at a downstream target involved in both types of gamma
oscillations. D3 receptors are Gi protein-coupled and decrease
the intracellular level of cAMP (Missale et al., 1998). In the
hippocampus they have been described on pyramidal cells (Khan
et al., 1998; Swant et al., 2008). Hippocampal gamma oscillations
are generated by synchronous rhythmic inhibition of pyramidal
cell firing by fast spiking perisomatic parvalbumin+ interneurons
(Gulyás et al., 2010). Their activation is due to excitatory drive
supplied through feed forward or feedback excitatory inputs from
granule and pyramidal cells, respectively. CA3 pyramidal cells
fired APs at a rate of ∼10 Hz during gamma oscillations which
was reduced by activation of D3 receptors to ∼6 Hz. Thus, within
one gamma cycle in the presence of D3 agonists, less pyramidal
cells fired. Moreover, the synchrony of the firing at a given
phase of gamma oscillations was also reduced, suggesting that the
coupling of APs to the gamma cycle became less accurate.

D3 receptors have been found to selectively downregulate
T-type Ca2+ channels in the axon initial segment of auditory
brainstem interneurons, which in turn reduced the AP output

of these cells (Bender et al., 2010). Given the fact that axon
initial segment Ca2+ transients have been observed also in
pyramidal cells (Schiller et al., 1995), D3 receptors might
also effectively inhibit the firing frequency and synchrony
in the hippocampus by this mechanism. We also observed
that D3 receptors inhibited membrane potential oscillations
during gamma activity. These oscillations might reflect rhythmic
synaptic inputs onto pyramidal cells, and their inhibition suggests
that D3 receptors affect these inputs. Indeed, D3 receptor
activation decreased the amplitude of inhibitory postsynaptic
currents in CA1 pyramidal cells evoked in stratum radiatum
possibly by causing endocytosis of GABAA receptors in the apical
dendrites (Swant et al., 2008).

CONCLUSION

Fast network oscillations are the groundwork for cognitive
processes such as attention, perceptual grouping, spatial
navigation andmemory. Moreover, disturbed gamma oscillations
have been observed in diverse diseases such as schizophrenia,
Alzheimer’s disease and autism. Our results show that activation
of D3 receptors decreases power, coherence and dynamics
of hippocampal gamma oscillations and provide a possible
explanation how agonists may impair cognition and how
antagonists exhibit pro-cognitive and antipsychotic effects. The
complex network dynamics engendered by D3 receptor activation
help shed further light on the generation and maintenance
of gamma oscillations in the brain, and may one day be
useful in developing targeted treatment options for a variety of
neuropsychiatric conditions.
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